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Congruences on completely inverse AG∗∗-groupoids

Wieslaw A. Dudek and Roman S. Gigo«

Abstract. By a completely inverse AG∗∗-groupoid we mean an inverse AG∗∗-groupoid A satis-
fying the identity xx−1 = x−1x, where x−1 denotes a unique element of A such that x = (xx−1)x

and x−1 = (x−1x)x−1. We show that the set of all idempotents of such groupoid forms a semi-
lattice and the Green's relations H,L,R,D and J coincide on A. The main result of this note
says that any completely inverse AG∗∗-groupoid meets the famous Lallement's Lemma for regular
semigroups. Finally, we show that the Green's relation H is both the least semilattice congruence
and the maximum idempotent-separating congruence on any completely inverse AG∗∗-groupoid.

1. Preliminaries

By an Abel-Grassmann's groupoid (brie�y an AG-groupoid) we shall mean any
groupoid which satis�es the identity

xy · z = zy · x. (1)

Such groupoid is also called a left almost semigroup (brie�y an LA-semigroup) or
a left invertive groupoid (cf. [2], [3] or [5]). This structure is closely related to a
commutative semigroup, because if an AG-groupoid contains a right identity, then
it becomes a commutative monoid. Moreover, if an AG-groupoid A with a left zero
z is �nite, then (under certain conditions) A\{z} is a commutative group (cf. [6]).

One can easily check that in an arbitrary AG-groupoid A, the so-called medial

law is valid, that is, the equality

ab · cd = ac · bd (2)

holds for all a, b, c, d ∈ A.
Recall from [11] that an AG-band A is an AG-groupoid satisfying the identity

x2 = x. If in addition, ab = ba for all a, b ∈ A, then A is called an AG-semilattice.
Let A be an AG-groupoid and B ⊆ A. Denote the set of all idempotents of B

by EB , that is, EB = {b ∈ B : b2 = b}. From (2) follows that if EA 6= ∅, then
EAEA ⊆ EA, therefore, EA is an AG-band.

2010 Mathematics Subject Classi�cation: 20N02, 06B10
Keywords: completely inverse AG∗∗-groupoid, AG-group, LA-semigroup, congruence,
Green's relation.



204 W.A. Dudek and R.S. Gigo«

Further, an AG-groupoid satisfying the identity

x · yz = y · xz (3)

is said to be an AG∗∗-groupoid. Every AG∗∗-groupoid is paramedial (cf. [1]), i.e.,
it satis�es the identity

ab · cd = db · ca. (4)

Notice that each AG-groupoid with a left identity is an AG∗∗-groupoid (see [1],
too). Furthermore, observe that if A is an AG∗∗-groupoid, then (4) implies that if
EA 6= ∅, then it is an AG-semilattice. Indeed, in this case EA is an AG-band and
ef = ee · ff = fe · fe = fe for all e, f ∈ EA. Moreover, for a, b ∈ A and e ∈ EA,
we have

e · ab = ee · ab = ea · eb = e(ea · b) = e(ba · e) = ba · ee = ba · e = ea · b,

that is,
e · ab = ea · b (5)

for all a, b ∈ A and e ∈ EA. Thus, as a consequence, we obtain

Proposition 1.1. The set of all idempotents of an AG∗∗-groupoid is either empty

or a semilattice.

We say that an AG-groupoid A with a left identity e is an AG-group if each of
its elements has a left inverse a′, that is, for every a ∈ A there exists a′ ∈ A such
that a′a = e. It is not di�cult to see that such element a′ is uniquely determined
and aa′ = e. Therefore an AG-group has exactly one idempotent.

Let A be an arbitrary groupoid, a ∈ A. Denote by V (a) the set of all inverses
of a, that is,

V (a) = {a∗ ∈ A : a = aa∗ · a, a∗ = a∗a · a∗}.

An AG-groupoid A is called regular (in [1] it is called inverse) if V (a) 6= ∅ for all
a ∈ A. Note that AG-groups are of course regular AG-groupoids, but the class of
all regular AG-groupoids is vastly more extensive than the class of all AG-groups.
For example, every AG-band A is regular, since a = aa · a for all a ∈ A. In [1] it
has been proved that in any regular AG∗∗-groupoid A we have |V (a)| = 1 (a ∈ A),
so we call it an inverse AG∗∗-groupoid. In this case, we denote a unique inverse
of a ∈ A by a−1. Notice that (ab)−1 = a−1b−1 for all a, b ∈ A. Further, one can
prove that in an inverse AG∗∗-groupoid A, we have aa−1 = a−1a if and only if
aa−1, a−1a ∈ EA (cf. [1]).

Many authors studied various congruences on some special classes of AG∗∗-
groupoids and described the corresponding quotient algebras as semilattices of
some subgroupoids (see for example [1, 5, 7, 8, 9, 10]). Also, in [1, 9] the authors
studied congruences on inverse AG∗∗-groupoids satisfying the identity xx−1 =
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x−1x. We will be called such groupoids completely inverse AG∗∗-groupoids. A
simple example of such AG∗∗-groupoid is an AG-group. In the light of Proposition
1.1, the set of all idempotents of any completely inverse AG∗∗-groupoid forms a
semilattice.

A nonempty subset B of a groupoid A is called a left ideal of A if AB ⊆ B.
The notion of a right ideal is de�ned dually. Also, B is said to be an ideal of A if
it is both a left and right ideal of A. It is clear that for every a ∈ A there exists
the least left ideal of A containing the element a. Denote it by L(a). Dually, R(a)
is the least right ideal of A containing the element a. Finally, J(a) denotes the
least ideal of A containing a ∈ A.

In a similar way as in semigroup theory we de�ne the Green's equivalences on
an AG-groupoid A by putting:

aL b ⇐⇒ L(a) = L(b),

aR b ⇐⇒ R(a) = R(b),

aJ b ⇐⇒ J(a) = J(b),

H = L ∩R, D = L ∨R.

2. The main results

Let A be a completely inverse AG∗∗-groupoid. Then

a = (aa−1)a ∈ Aa

for every a ∈ A.

Proposition 2.1. Let A be a completely inverse AG∗∗-groupoid, a ∈ A. Then:
(a) aA = Aa;
(b) aA = L(a) = R(a) = J(a);
(c) H = L = R = D = J ;
(d) aA = (aa−1)A;
(e) aA = a−1A;
(f) eA = fA implies e = f for all e, f ∈ EA.

Proof. (a). Let b ∈ A. Then

ab = (aa−1)a · b = ba · aa−1 = ba · a−1a = aa · a−1b = (a−1b · a)a ∈ Aa.

Thus aA ⊆ Aa. Also,

ba = b · (aa−1)a = aa−1 · ba = ab · a−1a = ab · aa−1 = a(ab · a−1) ∈ aA,

so Aa ⊆ aA. Consequently, aA = Aa.
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(b). Obviously, it is su�cient to show that aA = Aa is an ideal of A. Let
x = ab ∈ aA and c ∈ A. Then we have cx = c(ab) = a(cb) ∈ aA and xc = (ab)c =
(cb)a ∈ Aa = aA.

(c). It follows from (b).
(d). Let b ∈ A. Then ab = (aa−1)a · b = ba · aa−1 ∈ A(aa−1) = (aa−1)A,

that is, aA ⊆ (aa−1)A. Furthermore, (aa−1)b = (ba−1)a ∈ Aa = aA. Thus
(aa−1)A ⊆ aA. Consequently, the condition (d) holds.

(e). By (d), aA = (aa−1)A = (a−1a)A = (a−1(a−1)−1)A = a−1A.

(f). Let e, f ∈ EA and eA = fA. Then e ∈ fA, that is, e = fa for some
a ∈ A. Hence fe = f(fa) = (ff)a (by Proposition 1.1), and so fe = e. Similarly,
ef = f . Since EA is a semilattice, e = f .

Corollary 2.2. Let A be a completely inverse AG∗∗-groupoid. Then each left ideal

of A is also a right ideal of A, and vice versa. In particular,

L ∩R = LR

for every (left) ideal L and every (right) ideal R.

Proof. Let L be a left ideal of A and l ∈ L. Then lA = Al ⊆ L. It follows that

L =
⋃
{lA : l ∈ L}.

Since each component lA of the above set-theoretic union is a right ideal of A,
then L is itself a right ideal of A. Similar arguments show that every right ideal of
A is a left ideal.

Clearly, LR ⊆ L∩R. Conversely, if a ∈ L∩R, then a = (aa−1)a ∈ LR. Hence
L ∩R = LR.

Let A be a completely inverse AG∗∗-groupoid. Denote by Ha the equivalence
H-class containing the element a ∈ A. We say that Ha ≤ Hb if and only if
aA ⊆ bA.

The following theorem is the main result of this paper.

Theorem 2.3. If ρ is a congruence on a completely inverse AG∗∗-groupoid A and

aρ ∈ EA/ρ (a ∈ A), then there exists e ∈ Eaρ such that He ≤ Ha.

Proof. Let ρ be a congruence on A, a ∈ A and aρa2. We know that there exists
x ∈ A such that a2 = a2x · a2, x = xa2 · x and a2x = xa2 ∈ EA. Notice that

a2x · aa = a(a2x · a) = a(xa2 · a) = a(aa2 · x) = aa2 · ax = a2 · a2x = a2 · xa2,

i.e., a2 = a2 · xa2. Put e = a · xa. Then e ρ (a2 · xa2) = a2 ρ a. Hence e ∈ aρ. Also,

e2 = (a · xa)(a · xa) = a((a · xa) · xa) = a(ax · (xa · a)) = a(ax · a2x).
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Further,
ax · a2x = ax · xa2 = a2x · xa = xa2 · xa = (xa2 · x)a

by (5), since xa2 ∈ EA. Hence ax · a2x = xa. Consequently,

e2 = a · xa = e ∈ EA.

Thus, e ∈ Eaρ.
Finally, let b ∈ A. Then eb = (a · xa)b = (b · xa)a ∈ Aa = aA, therefore,

eA ⊆ aA, so He ≤ Ha.

We say that a congruence ρ on a groupoid A is idempotent-separating if eρf
implies that e = f for all e, f ∈ EA. Furthermore, ρ is a semilattice congruence
if A/ρ is a semilattice. Finally, A is said to be a semilattice A/ρ of AG-groups if
ρ is a semilattice congruence and every ρ-class of A is an AG-group.

Corollary 2.4. Let A be a completely inverse AG∗∗-groupoid. Then:
(a) H is the least semilattice congruence on A;
(b) H is the maximum idempotent-separating congruence on A;
(c) A is a semilattice A/H ∼= EA of AG-groups He (e ∈ EA).

Proof. (a). Let aA = bA and c, x ∈ A. Then x · ca = c · xa. On the other hand,

xa ∈ Aa = aA = bA = Ab,

i.e., xa = yb, where b ∈ A, so x · ca = c · yb = y · cb ∈ A(cb). Thus A(ca) ⊆ A(cb).
By symmetry, we conclude that A(ca) = A(cb). Moreover, a = yb for some y ∈ A.
Hence ac · x = xc · a = xc · yb = bc · yx ∈ (bc)A. Thus (ac)A ⊆ (bc)A. In a similar
way we can obtain the converse inclusion, so (ac)A = (bc)A. Consequently, H is
a congruence (by Proposition 2.1 (b)). In the light of Proposition 2.1 (d), every
H-class contains an idempotent of A. This implies that A/H is a semilattice, that
is, H is a semilattice congruence on A.

Suppose that there is a semilattice congruence ρ on A such that H * ρ.
Then the relation H ∩ ρ is a semilattice congruence which is properly contained
in H, and so not every (H ∩ ρ)-class contains an idempotent of A, since each H-
class contains exactly one idempotent (Proposition 2.1 (f)), a contradiction with
Theorem 2.3. Consequently, H must be the least semilattice congruence on A.

(b). By (a) and Proposition 2.1 (f), H is an idempotent-separating congruence
on A. On the other hand, if ρ is an idempotent-separating congruence on A and
(a, b) ∈ ρ, then (a−1, b−1) ∈ ρ, so (aa−1, bb−1) ∈ ρ. Hence aa−1 = bb−1. Let
x ∈ A. Then

xa = x(aa−1 · a) = x(bb−1 · a) = bb−1 · xa = (xa · b−1)b ∈ Ab.

Thus Aa ⊆ Ab. By symmetry, we conclude that Aa = Ab. Consequently, aH b
(Proposition 2.1 (b)), that is, ρ ⊆ H, as required.
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(c). We show that every H-class of A is an AG-group. In view of the above and
Proposition 2.1 (d), (e), each H-class is an AG∗∗-groupoid. Consider an arbitrary
H-class He (e ∈ EA). Let a ∈ He. Then aa−1 ∈ He. Hence aa−1 = e and so
ea = a, that is, e is a left identity of He. Since a−1a = e and a−1 ∈ He, then He is
an AG-group. Obviously, A/H ∼= EA. Consequently, A is a semilattice A/H ∼= EA

of AG-groups He (e ∈ EA).

We say that an ideal K of a groupoid A is the kernel of A if K is contained in
every ideal of A. If in addition, K is an AG-group, then it is called the AG-group

kernel of A. Finally, a congruence ρ on A is said to be an AG-group congruence if
A/ρ is an AG-group.

Corollary 2.5. Let A be a completely inverse AG∗∗-groupoid. If e is a zero of

EA, then He = eA is the AG-group kernel of A and the map ϕ : A → eA given by

aϕ = ea (a ∈ A) is an epimorphism such that xϕ = x for all x ∈ eA.

Proof. Obviously, He ⊆ eA. Conversely, if x = ea ∈ eA, then

xx−1 = ea · ea−1 = ee · aa−1 = e.

In a view of Proposition 2.1 (d), x ∈ He. Consequently, He = eA. If I is an ideal
of A, then clearly EI 6= ∅. Let i ∈ EI . Then e = ei ∈ EI . Hence a = ea ∈ I
for all a ∈ He, so He ⊆ I. Thus He = eA is the AG-group kernel of A. Also,
for all a, b ∈ A, (aϕ)(bϕ) = (ea)(eb) = (ee)(ab) = e(ab) = (ab)ϕ, i.e., ϕ is a
homomorphism of A into eA. Evidently, ϕ is surjective. Finally, ϕ|eA = 1eA (by
Proposition 1.1).

Corollary 2.6. Let A be a completely inverse AG∗∗-groupoid. If e is a zero of EA,

then

σ = {(a, b) ∈ A×A : ea = eb}

is the least AG-group congruence on A and A/σ ∼= He.

Proof. It is clear that σ is an AG-group congruence on A induced by ϕ (de�ned
in the previous corollary). If ρ is also an AG-group congruence on A and a σ b,
then (eρ)(aρ) = (eρ)(bρ). By cancellation, a ρ b and so σ ⊆ ρ. Obviously, A/σ ∼=
He.

Remark 2.7. Let I be an ideal of a completely inverse AG∗∗-groupoid A. The
relation ρI = (I × I) ∪ 1A is a congruence on A. If e is a zero of EA, then He

is an ideal of A and σ ∩ ρHe
= 1A. It follows that A is a subdirect product

of the group He and the completely inverse AG∗∗-groupoid A/He. Note that we
may think about A/He as a groupoid B = (A \ He) ∪ {e} with zero e, where all
products ab ∈ He are equal e. In fact, fg = e in A (f, g ∈ EA) if and only if
HfHg ⊆ {e} = He in B.

Obviously, in any �nite completely inverse AG∗∗-groupoid A, the semilattice
EA has a zero.
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