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Prime and weakly prime ideals in semirings

Manish Kant Dubey

Abstract. We study the concept of subtractive prime and weakly prime ideals in a semiring
and prove some results analogous to ring theory.

1. Introduction

The notion of a semiring was �rst introduced by H. S. Vandiver in 1935. After
that several authors have generalized and characterized the results in many ways.
By a semiring, we mean a semigroup (S, ·) and a commutative monoid (S, +, 0)
in which 0 is the additive identity and s · 0 = 0 · s = 0 for all s ∈ S, both are
connected by ring-like distributivity. In this paper, all semirings are considered to
be semirings with zero.

A nonempty subset I of a semiring S is called an (left, right) ideal if a, b ∈ I
and s ∈ S implies a + b ∈ I and (sa ∈ I, as ∈ I respectively) as ∈ S and sa ∈ I.
A subtractive ideal I of S is an ideal such that if a, a + b ∈ I then b ∈ I.

For the remaining de�nition of a semiring we refer [6].

2. Weakly prime ideals

D. D. Anderson and E. Smith [3] have introduced and studied the concept of a
weakly prime ideal of an associative ring with unity. After that several authors
have focused on the study of this concept to extend the results to commutative
ring and commutative semiring theory.

De�nition 2.1. A proper ideal P of a semiring S is said to be prime if AB ⊆ P
implies A ⊆ P or B ⊆ P for any ideals A,B of S.

De�nition 2.2. A proper ideal P of a semiring S is said to be weakly prime if
{0} 6= AB ⊆ P implies A ⊆ P or B ⊆ P for any ideals A and B of S.

It is clear that every prime ideal is weakly prime. If S be a semiring with zero,
then I = {0} is a weakly prime ideal of S. It is easy to see that in Z6 an ideal
I = {0} is weakly prime but not prime.
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De�nition 2.3. An element s in a semiring S is said to be nilpotent if there exists
a positive integer n (depending on s), such that sn = 0 for s ∈ S. Nil S denote the
set of all nilpotent element of S. An ideal I in a semiring S is said to be nilpotent

if there exists a positive integer n (depending on I), such that In = 0.

Theorem 2.4. Let I be a subtractive ideal in a semiring S with 1 6= 0. The

following statements are equivalent:

(i) I is a weakly prime ideal.

(ii) If A,B are right (left) ideals of S such that {0} 6= AB ⊆ I, then A ⊆ I or

B ⊆ I.

(iii) If a, b ∈ S such that {0} 6= aSb ⊆ I, then a ∈ I or b ∈ I.

Proof. (i) ⇒ (ii) Suppose that I is a weakly prime ideal of S and A,B are two right
(left) ideals of S such that {0} 6= AB ⊆ I. Let 〈A〉 , 〈B〉 be the ideals generated
by A,B respectively. Then {0} 6= 〈A〉 〈B〉 ⊆ I implies 〈A〉 ⊆ I or 〈B〉 ⊆ I and
A ⊆ 〈A〉 ⊆ I or B ⊆ 〈B〉 ⊆ I. Therefore A ⊆ I or B ⊆ I.

(ii) ⇒ (iii) Let {0} 6= aSb ⊆ I. Since S has an identity, therefore {0} 6=
(aS)(bS) ⊆ I implies a ∈ aS ⊆ I or b ∈ bS ⊆ I.

(iii) ⇒ (i) Suppose that AB ⊆ I for ideals A and B of S, where A * I and
B * I. Let a ∈ A \ I, b ∈ B \ I. Also let a′ ∈ A∩ I, b′ ∈ B ∩ I be chosen arbitrary.
Since a+a′, b+ b′ /∈ I, we must have {0} = (a+a′)S(b+ b′). Now if we are letting
a′ = 0 or b′ = 0 or a′ = 0 and b′ = 0 and considering all combinations we get
0 = ab = a′b = a′b′ = a′b′ and hence AB = {0}.

Proposition 2.5. Every ideal of a semiring S is weakly prime if and only if for

any ideals A, B in S, we have AB = A, AB = B, or AB = 0.

Proof. Assume that every ideal of S is weakly prime. Let A,B be ideals of S.
Suppose AB 6= S. Then AB is weakly prime. If {0} 6= AB ⊆ AB; then we have
A ⊆ AB or B ⊆ AB (since AB is weakly prime ideal of S), that is, A = AB or
B = AB. If AB = S, then we have A = B = S whence S2 = S. Conversely, let I
be any proper ideal of S and suppose that {0} 6= AB ⊆ I for ideals A and B of S.
Then we have either A = AB ⊆ I or B = AB ⊆ I.

Now we can easily prove the following results based on the above proposition.
Let S be a semiring in which every ideal of S is weakly prime. Then for any ideal

A of S, we have either A2 = A or A2 = 0.

Lemma 2.6. Let P be a subtractive ideal of semiring S. Let P be a weakly prime

ideal but not a prime ideal of semiring S. Suppose ab = 0 for some a, b /∈ P , then

we have aP = Pb = {0}.

Proof. Suppose ap1 6= 0, for some p1 ∈ P . Then 0 6= a(b + p1) ∈ P . Since P is a
weakly prime ideal of S, therefore a + p1 ∈ P or b ∈ P, that is, a ∈ P or b ∈ P , a
contradiction. Therefore aP = {0}. Similarly, we can show that Pb = {0}
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Theorem 2.7. Suppose that P is a subtractive ideal in a semiring S. If P is

weakly prime but not prime, then P 2 = {0}.

Proof. Suppose that p1p2 6= 0 for some p1, p2 ∈ P and ab = 0 for some a, b /∈ P ,
where P is not a prime ideal of S. Then by Lemma 2.6 we have (a + p1)(b + p2) =
p1p2 6= 0. Hence either (a + p1) ∈ P or (b + p2) ∈ P, and thus either a ∈ P or
b ∈ P , a contradiction. Hence P 2 = {0}.

Corollary 2.8. Let P be a weakly prime ideal of S. If P is not a prime ideal of

S, then P ⊆ Nil S.

A subtractive ideal in a commutative semiring S satisfying P 2 = {0} may not
be weakly prime.

Example 2.9. Let S =
{(

a 0
0 0

)
: a ∈ Z+

12

}
. Then S is a commutative semiring

and P =
{(

0 0
0 0

)
,

(
6 0
0 0

)}
is its ideal such that P 2 = {0}. In this semiring(

2 0
0 0

) (
3 0
0 0

)
∈ P but

(
2 0
0 0

)
/∈ P and

(
3 0
0 0

)
/∈ P . Therefore P is not a

weakly prime ideal of S.

Theorem 2.10. Let P be a weakly subtractive prime ideal of a commutative semir-

ing S that is not prime. Then if z ∈ Nil S, then either z ∈ P or zP = {0}.

Proof. Let z ∈Nil S. To show that if zP 6= {0}, then z ∈ P, suppose that
zP 6= {0}. Let n be the least positive integer such that zn = 0. Then for n > 2
and for some p ∈ P we have 0 6= z(p + zn−1) = zp ∈ P. Hence either z ∈ P or
(p + zn−1) ∈ P. If z ∈ P then nothing to prove. So let (p + zn−1) ∈ P. Then
zn−1 ∈ P and thus z ∈ P. Hence for each z ∈ Nil S, we have either z ∈ P or
zP = {0}. Again we suppose that z /∈ P for some z ∈ Nil S. Then we will show
that zP = {0}. Now let zp 6= 0 for some p ∈ P. Let n be the least positive integer
such that zn = 0. Since z /∈ P, n > 2 and zP 6= 0. Hence z(zn−1+p) = zp 6= 0. Since
0 6= z(zn−1 + p) ∈ P, therefore we have either z ∈ P or zn−1 6= 0 and zn−1 ∈ P.
Hence in both cases, we have z ∈ P, a contradiction. Thus zP = {0}.

3. Prime ideals

The following lemma is obvious.

Lemma 3.1. Let f be a homomorphism of semiring S1 onto a semiring S2. Then

each of the following is true:

(i) If I is an ideal (subtractive ideal) in S1, then f(I) is an ideal (subtractive
ideal) in S2.
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(ii) If J is an ideal (subtractive ideal) in S2, then f−1(J) is an ideal (subtractive
ideal) in S1.

Proposition 3.2. If f : S1 → S2 is a homomorphism of semirings and P is a

prime ideal in S2, then f−1(P ) is a prime ideal in S1.

Proof. By Lemma f−1(P ) is an ideal of S1. Let xy ∈ f−1(P ). Then f(xy) ∈ P
implies f(x)f(y) ∈ P . Since P is a prime ideal of S2 therefore it follows that either
f(x) ∈ P or f(y) ∈ P and thus either x ∈ f−1(P ) or y ∈ f−1(P ). Hence f−1(P )
is a prime ideal of S1.

Theorem 3.3. Let I be an arbitrary ideal of a semiring S and P1, P2, . . . , Pn be

subtractive prime ideals of S. If I * Pi for all i, then there exists an element

a ∈ Isuch that a /∈
⋃

Pi. Hence, I *
⋃

Pi.

Proof. We will prove it by induction. Clearly the result is true for n = 1. Suppose
that the theorem holds for n− 1 subtractive prime ideals. Then, for each i, where
1 6 i 6 n, there exists xi ∈ I with xi /∈

⋃
j 6=i Pj . If xi /∈ Pi, then xi /∈ ∪Pj and then

we are done. Now suppose that xi ∈ Pi for all i. Let ai = x1 · · ·xi−1xi+1 · · ·xn.
We claim that ai /∈ Pi. Suppose ai ∈ Pi and since Pi is prime therefore xj ∈ Pi for
some j 6= i, which is not possible by original choice of xj . If j 6= i, then the element
aj ∈ Pi because xi being a factor of aj . Consider a =

∑n
j=1 aj . Since each aj ∈ I

where 1 6 j 6 n, therefore a ∈ I. As a = ai +
∑

j 6=i aj with
∑

j 6=i aj ∈ Pi implies
that a ∈ Pi; otherwise we would obtain ai ∈ Pi (as Pi is a subtractive ideal),
which is a contradiction. Thus we get an existence of an element a =

∑
aj ∈ I

and a /∈ Pi, which proves the theorem.

Corollary 3.4. Let I be an arbitrary ideal of a semiring S and P1, P2, . . . , Pn be

subtractive prime ideals of S. If I ⊆
⋃

Pi, then I ⊆ Pi for some I.

Theorem 3.5. Let I be a subset of a commutative semiring S which is closed

under addition and multiplication.

(i) Let P1, . . . , Pn be subtractive ideals in S, at least n− 2 of which are primes.

If I ⊆ P1 ∪ . . . ∪ Pn, then I is contained in some Pi.

(ii) Let J be an ideal of S with J ⊂ I. If there are subtractive prime ideals

P1, . . . , Pn such that I \ J ⊆ P1 ∪ . . . ∪ Pn, then I ⊆ Pi for some i.

Proof. (i) The proof is by induction n > 2. If we consider n = 2, that is, I ⊆ P1∪P2

implies I ⊆ P1 or I ⊆ P2. In this case P1 and P2 need not be prime because if
I * P2, then there is x1 ∈ I with x1 /∈ P2; since I ⊆ P1 ∪ P2, we must have
x1 ∈ P1. Similarly, if I * P1, there is x2 ∈ I with x2 /∈ P1 and x2 ∈ P2. However,
if a = x1 + x2, then a /∈ P1 (because if a ∈ P1 then x2 ∈ P1), a contradiction.
Similarly, a /∈ P2 which contradicts to fact that I ⊆ P1 ∪ P2.

Now assume that I ⊆ P1 ∪ . . .∪Pn+1, where at least n− 1 = (n + 1)− 2 of the
Pi are prime ideals. Let Mi = P1 ∪ . . .∪Pi−1 ∪Pi+1 . . .∪Pn+1. Since Mi is union
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of n ideals at least (n − 1) − 1 = n − 2 of which are prime. By the hypothesis
we can suppose that I * Mi for all i. Thus, for all i, there exist xi ∈ I with
xi /∈ Mi; since I ⊆ Mi ∪Pi therefore we must have xi ∈ Pi. Now n > 3, so that at
least one of the Pi are prime ideals; without loss of generality assume that P1 is
prime. Consider the element a = x1+x2x3 · · ·xn+1. Since all xi ∈ I and I is closed
under addition and multiplication and a ∈ I. Now a /∈ P1 because if a ∈ P1 then
x2 · · ·xn+1 ∈ P1 (as P1 is subtractive). Since P1 is a prime ideal in S therefore
some xi ∈ P1. This is a contradiction, for xi /∈ P1 ⊆ Mi. If i > 1 and a ∈ Pi,
then x2x3 · · ·xn+1 ∈ Pi, because Pi is an subtractive ideal and so x1 ∈ Pi. This
cannot be, for x1 /∈ Pi ⊆ M1. Therefore, a /∈ Pi for any i, contradicting to fact
that I ⊆ P1 ∪ . . . ∪ Pn+1.

(ii) By hypothesis, we have I ⊆ J ∪ P1 ∪ . . . ∪ Pn. Therefore (i) gives I ⊆ J
or I ⊆ Pi. Since J is a proper subset of I therefore I * J . Hence we must have
I ⊆ Pi.

Let I be an ideal of a commutative semiring S. Then the radical of I, denoted
by

√
I, is de�ned as the set

√
I = {x ∈ S : xn ∈ I for some positive integern}.

This is an ideal of S containing I, and it is the intersection of all prime ideals of
S containing I [2]. It is easy to see that if an ideal I is subtractive then

√
I is

subtractive.

De�nition 3.6. An ideal I of the commutative semiring S is said to be semiprime

if and only if I =
√

I.

Subtractive semiprime ideals of semirings are characterized by the following
theorem.

Theorem 3.7. An subtractive ideal I of a commutative semiring S is semiprime

if and only if the quotient semiring S/I has no nonzero nilpotent elements.

Proof. Suppose that a subtractive ideal I of a semiring S is semiprime. Let a+
√

I
be a nilpotent element of S/

√
I. Then there exists some positive integer n ∈ Z+

such that (a +
√

I)n = an +
√

I =
√

I. As
√

I is subtractive therefore an ∈
√

I.
Hence, (an)m = anm ∈ I for some positive integer m. This shows that a ∈ I.
Therefore we have a +

√
I =

√
I, the zero element of S/

√
I.

Conversely, suppose that S/I has no nonzero nilpotent elements and let a ∈
√

I.
Then for some positive integer n, we have an ∈ I. This implies that (a + I)n = I,
that is, a + I is nilpotent in S/I. As a + I = I (by hypothesis), therefore a ∈ I.
Thus, we have

√
I ⊆ I. The inclusion I ⊆

√
I is obvious. Hence I =

√
I, so I is

semiprime.
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