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A characterization of binary invertible algebras

of various types of linearity

Sergey S. Davidov

Abstract. In this paper we de�ne the left (right) linear over a group binary invertible algebras
and invertible algebras of mixed type of linearity and characterize the classes of such algebras by
the second-order formula, namely by the ∀∃(∀)− identities.

1. Introduction

Linear quasigroups introduced by V.D. Belousov in 1967 in connection with an
investigation of balanced identities in quasigroups [2] play a special role in the
study of quasigroups isotopic to groups [5, 4, 6, 10, 11].

A binary algebra (Q; Σ) is called invertible, if (Q;A) is a quasigroup for any
operation A ∈ Σ.

Below we introduce the notions of left (right) linear invertible algebras and
invertible algebras of mixed type of linearity and characterize the classes of such
algebras by the second order formulae, namely by the ∀∃(∀)− identities.

For details about ∀∃(∀)− identities see [9, 12].

2. Left and right linear invertible algebras

We denote by LA,a and RA,a the left and right translations of the binary algebra
(Q; Σ) : LA,a : x 7→ A(a, x), RA,a : x 7→ A(x, a). If the algebra (Q; Σ) is an
invertible algebra then the translations LA,a and RA,a are bijections for all a ∈ Q
and all A ∈ Σ.

It is well known (see [2]) that the quasigroups A−1, −1A, −1
(
A−1

)
,
(−1A

)−1
,

A∗, where A∗(x, y) = A(y, x), are associated with the quasigroup A.
Similarly, the invertible algebras:(

Q; Σ−1
)
,

(
Q; −1Σ

)
,

(
Q; −1(Σ−1)

)
,

(
Q; (−1Σ)−1

)
, (Q; Σ∗) ,

where

Σ−1 = {A−1| A ∈ Σ}, −1Σ = {−1A| A ∈ Σ}, −1(Σ−1) = {−1(A−1)| A ∈ Σ},
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(−1Σ)−1 = {(−1A)−1| A ∈ Σ}, Σ∗ = {A∗| A ∈ Σ}

are associated with the invertible algebra (Q,Σ). Each of these algebras is called
the parastrophy of the algebra (Q; Σ).

De�nition 2.1. An invertible algebra (Q; Σ) is called left (right) linear over a

group (Q; +), if every operation A ∈ Σ has the form:

A(x, y) = ϕAx+ βAy (A(x, y) = αAx+ ψAy) ,

where βA (respectively αA) is a permutation of the set Q, and ϕA (respectively
ψA) is an automorphism of the group (Q; +).

An invertible algebra is called left (right) linear if it is left (right) linear over
some group (Q; +).

Theorem 2.2. A binary invertible algebra (Q; Σ) is left linear if and only if for

all X,Y ∈ Σ the following formula

X
(
Y

(
x, Y −1(u, y)

)
, z

)
= X

(
Y

(
x, Y −1(u, u)

)
, X−1 (u,X(y, z))

)
(1)

is valid in the algebra (Q; Σ ∪ Σ−1).

Proof. Let (Q; Σ) be an invertible left linear algebra. Then for every X ∈ Σ we
have

X (x, y) = ϕXx+ βXy, (2)

where ϕX ∈ Aut(Q; +) and βX ∈ SQ. We prove that equality (1) is valid in the
algebra (Q; Σ ∪ Σ−1) for all X,Y ∈ Σ.

Observe that from (2) we obtain

X−1(x, y) = β−1
X (−ϕXx+ y) . (3)

Thus, according to (2) and (3) we get:

X(Y (x, Y −1(u, y)), z) = ϕX(ϕY x+ βY Y
−1(u, y)) + βXz

= ϕX(ϕY x+ βY β
−1
Y (−ϕY u+ y)) + βXz

= ϕXϕY x− ϕXϕY u+ ϕXy + βXz,

X(Y(x,Y −1(u, u)),X−1(u,X(y, z)))= ϕXY (x, Y −1(u, u))+βXX
−1(u,X(y, z))

= ϕX(ϕY x−ϕY u+ u)−ϕXu+ϕXy+βXz

= ϕXϕY x−ϕXϕY u+ϕXu−ϕXu+ϕXy+βXz

= ϕXϕY x− ϕXϕY u+ ϕXy + βXz.

Hence, the right and left sides of (1) are the same.
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Conversely, let (1) holds in (Q; Σ ∪Σ−1) for all X,Y ∈ Σ. Then for u = p and
X = A, Y = B, where A,B ∈ Σ, we have

A(B(x,B−1(p, y)), z) = A(B(x,B−1(p, p)), A−1(p,A(y, z))).

From this, by putting A1(x, y) = A(x, y), A2(x, y) = B(x,B−1(p, y)), A3(x, y) =
A(B(x,B−1(p, p)), y) and A4(x, y) = A−1(p,A(x, y)) we obtain

A1(A2(x, y), z) = A3(x,A4(y, z)),

which by Belousov`s theorem on four quasigroups (see [3]) shows that operations
A1, A2, A3, A4 are isotopic to the same group (Q; ∗). Hence, the operations A and
B are also isotopic to (Q; ∗). Since the operations A and B are arbitrary, we obtain
that all operations from Σ are isotopic to this group.

For every X ∈ Σ, let us de�ne the operation:

x+
X
y = X(R−1

X,ax, L
−1
X,by), (4)

where a, b are some �xed elements from Q. The operation +
X

is a loop operation

with the identity element 0X = X(b, a). Obviously, (Q; +
X

) is a loop isotopic to the

group (Q; ∗). Hence, by Albert`s theorem, it is a group. Hence every X ∈ Σ each
(Q; +

X
) is a group. So, (1) (where X = A, Y = B) can be rewritten in the form:

A(B(x, LB−1,uy), z) = A(RB,B−1(u,u)x, LA−1,uA(y, z)),

RA,a(RB,ax+
B
LB,bLB−1,uy)+

A
LA,bz=RA,aRB,B−1(u,u)x+

A
LA,bLA−1,u(RA,ay+

A
LA,bz).

Taking z = L−1
A,b0A in the last equality, we have

RA,a(RB,ax+
B
LB,bLB−1,uy) = RA,aRB,B−1(u,u)x+

A
LA,bLA−1,uRA,ay,

RA,a(x+
B
y) = αA,Bx+

A
βA,By, (5)

where αA,B = RA,aRB,B−1(u,u)R
−1
B,a, βA,B = LA,bLA−1,uRA,aL

−1
B−1,uL

−1
B,b are per-

mutations of the set Q. Since the operations A and B are arbitrary we can take
A = B in (5). Hence

RA,a(x+
A
y) = αA,Ax+

A
βA,Ay. (6)

From (5) and (6) we have

α−1
A,Bx+

B
β−1

A,By = α−1
A,Ax+

A
β−1

A,Ay,

x+
A
y = γA,Bx+

B
δA,By, (7)
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where γA,B = α−1
A,BαA,A and δA,B = β−1

A,BβA,A are permutations of the set Q.
Hence, according to (7), we get

RA,a(x+
B
y) = γA,BαA,Bx+

B
δA,BβA,By,

i.e., RA,a is a quasiautomorphism of the group (Q; +
B

). Since A is arbitrary we

have that RA,a is a quasiautomor�sm of the group (Q; +
B

) for all operations A ∈ Σ.

According to (4) we have

A(x, y) = RA,ax+
A
LA,by.

This, according to (7), gives:

A(x, y) = θ1A,Bx+
B
θ2A,By, (8)

where θ1A,B = γA,BRA,a and θ2A,B = δA,BLA,b are permutations of the set Q. Thus,
we can represent every operation from Σ by the operation +

B
.

Let + = +
B
. We prove that θ1A,B is a quasiautomorphism of the group (Q; +).

To do it we take z = (θ2A,B)−10B , X = A, Y = B in (1) and rewrite this equality
in the form:

θ1A,B(RB,ax+LB,bLB−1,uy)+θ2A,Bz= θ1A,BRB,B−1(u,u)x+θ2A,BLA−1,u(θ1A,By+θ
2
A,Bz),

θ1A,B(RB,ax+ LB,bLB−1,uy) = θ1A,BRB,B−1(u,u)x+ θ2A,BLA−1,uθ
1
A,By.

The last equality shows that θ1A,B is a quasiautomorphism of the group (Q; +).
According to [2, Lemma 2.5] we have

θ1A,Bx = ϕAx+ sA,

where ϕA is an automorphism of the group (Q,+) and sA is some element of the
set Q. Hence, it follows from (8) that

A(x, y) = ϕAx+ βAy, (9)

where βAy = sA + θ2A,By. Since A is an arbitrary operation we obtain that all
operations from Σ can be represented in the form (9), i.e., the algebra (Q; Σ) is
left linear.

Similarly, we can prove the following theorem.

Theorem 2.3. A binary invertible algebra (Q; Σ) is a right linear algebra if and

only if for all X,Y ∈ Σ the following formula

X(x, Y (−1Y (y, u), z)) = X(−1X(X(x, y), u), Y (−1Y (u, u), z)), (10)

is valid in the algebra (Q; Σ ∪ −1Σ).
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Proposition 2.4. A left and right linear invertible algebra is linear.

Corollary 2.5. The class of all invertible linear algebras is characterized by the

second order formulaes (1) and (10).

A linear invertible algebra over an abelian group is called an invertible T -algebra
(see [7]). The class of medial invertible algebras is a special subclass of invertible
T -algebras. An invertible algebra (Q; Σ) is called a left (right) T -algebra, brie�y
a LT -algebra (RT -algebra) if (Q; Σ) is a left (right) linear algebra over an abelian
group. It follows from Proposition 2.4, that if an invertible algebra is a LT -algebra
and RT -algebra, then it is a T -algebra.

Using the same arguments as in the proof of Theorem 1 from [6] and applying
our Theorems 2.2 and 2.3 we obtain

Theorem 2.6. A binary invertible algebra (Q; Σ) is a LT-algebra if and oly if for

all X,Y ∈ Σ the following formulaes

X(Y (x, Y −1(u, y)), z) = X(Y (x, Y −1(u, u)), X−1(u,X(y, z))),

X(−1X(x, u), X−1(u, y)) = X(−1X(y, u), X−1(u, x)), (11)

are valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ).

Theorem 2.7. A binary invertible algebra (Q; Σ) is a RT-algebra if and only if

for all X,Y ∈ Σ the following formulaes

X(x, Y (−1Y (y, u), z)) = X(−1X(X(x, y), u), Y (−1Y (u, u), z)),

X(−1X(x, u), X−1(u, y)) = X(−1X(y, u), X−1(u, x))

are valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ).

Corollary 2.8. The class of all invertible T -algebras is characterized by the second

order formulaes (1), (10) and (11).

3. Invertible algebras of mixed type of linearity

De�nition 3.1. An invertible algebra (Q; Σ) is called an invertible algebra of

mixed type of linearity of the �rst (second) kind over a group (Q; +), if every
operation A ∈ Σ has the form

A(x, y) = ϕAx+ cA + ψAy (A(x, y) = ϕAx+ cA + ψAy),

where ϕA, ψA ∈ Aut(Q; +), ψA, ϕA are antiautomorphisms of (Q; +), and cA is a
�xed element from Q.
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Theorem 3.2. An invertible algebra (Q; Σ) is of mixed type of linearity of the

�rst kind if and only if for all X,Y ∈ Σ the following second order formulaes

X(Y (x, Y −1(u, y)), z) = X(Y (x, Y −1(u, u)), X−1(u,X(y, z))), (12)

X(x,−1 Y (Y (y, Y −1(u, v)), u)) = X(−1X(X(x,−1 Y (v, u)), u), y) (13)

are valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ) .

Proof. Let (Q; Σ) be an invertible algebra of mixed type of linearity of the �rst
kind, then for every X ∈ Σ we have

X(x, y) = ϕXx+ cX + ψXy,
−1X(x, y) = ϕ−1

X (x− ψXy − cX),

X−1(x, y) = ψ
−1

X (−cX − ϕXx+ y),

where ϕX ∈ Aut(Q; +), ψX is an antiautomorphism of (Q; +) and cX ∈ Q.
Using the above identities we can prove that the left and right sides of (12)

and (13) are the same.

Conversely, let (12) and (13) be valid in the algebra (Q; Σ∪Σ−1 ∪−1Σ) for all
X,Y ∈ Σ.We prove that an algebra (Q; Σ) is an algebra of mixed type of linearity
of the �rst kind.

As in the proof of Theorem 2.2 we can see that from (12) we obtain

A(x, y) = θ1A,Bx+ θ2A,By, (14)

for any operation A ∈ Σ, where θ1A,B is a quasiautomor�sm of the group (Q; +).
Thus,

θ1A,Bx = ϕAx+ tA, (15)

where ϕA ∈ Aut(Q; +) and tA is some element of the set Q [2, Lemma 2.5].
To prove that θ2A,B is an antiquasiautomorphism of the group (Q; +) observe

that (13) for X = A, Y = B and �xed u ∈ Q gives

A(x,R−1B,uB(y, LB−1,uv)) = A(R−1A,uA(x,R−1B,uv), y),

θ1A,Bx+θ
2

A,BR−1B,u(RB,ay+LB,bLB−1,uv)= θ1A,BR−1A,u(θ1A,Bx+ θ2A,BR−1B,uv)+θ2A,By.

Taking x = (θ1A,B)−10 in the last equality, we obtain

θ2A,BR−1B,u(y + v) = θ1A,BR−1A,uθ
2
A,BR−1B,uL

−1
B−1,uL

−1
B,bv + θ2A,BR

−1
B,ay.

Thus, the triplet

(θ1A,BR−1A,uθ
2
A,BR−1B,uL

−1
B−1,uL

−1
B,b, θ

2
A,BR

−1
B,a, θ

2
A,BR−1B,u)
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is an antiautotopy of the group (Q; +). Since any component of an antiautotopy
of a group is an antiquasiautomorphism (see [1]), then θ2A,BR

−1
B,a is an antiquasi-

automorphism of the group (Q; +). Similarly as in the proof of Theorem 2.2 we
can see that R−1

B,a is a quasiautomorphism of the group (Q; +). Therefore θ2A,B is
an antiquasiautomorphism of the group (Q; +).

Thus,

θ2A,Bx = sA + ψAx, (16)

where ψA is an antiautomorphism of (Q; +), and sA is an element of the set Q.
Hence, from (14), (15) and (16) we get

A(x, y) = ϕAx+ cA + ψAx, (17)

where cA = tA + sA.

Theorem 3.3. An invertible algebra (Q; Σ) is an invertible algebra of mixed type

of linearity of the second kind if and only if for all X,Y ∈ Σ the following formulaes

X(x, Y (−1Y (y, u), z)) = X(−1X(X(x, y), u), Y (−1Y (u, u), z)), (18)

X(Y −1(u, Y (−1Y (x, u), y)), v) = X(y,X−1(u,X(Y −1(u, x), v))), (19)

are valid in the algebra (Q; Σ ∪ Σ−1 ∪ −1Σ).

Proof. The proof is similar to the proof of Theorem 3.2.

Note, that the equalities (1), (10), (11), (12), (13), (18) and (19) are the
identities of the second order (in the sense of Yu.M. Movsisyan [11]).
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