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Essential operations of clones

Adam W. Marczak

Abstract. Clones of algebras consist not only of essential operations but also of operations
not depending on every variable. However, the sets of all essential operations of clones uniquely
determine the clones. In this note we present a short precise proof of this fact and indicate these
essential operations that are equal to inessential elements of clones.

1. Introduction

In the last century research in the theory of �nite automata and deterministic
operators led to problems concerning essential variables of functions. From that
time the theory of essential variables of �nite operations became a quite frequent
research direction. The study of essential variables in functions de�ned on �nite
sets, initiated by A. Salomaa in [11], goes with multiple-valued logic and currently
plays an important role in computer sciences. Essential variables of functions and
essential term operations of algebras were widely studied under di�erent aspects,
see e.g. [1]�[6], [8],[9], [12],[13].

The clone of a given algebra consists of all its term operations � it contains
both essentially n-ary term operations as well as term operations not depending on
every variable. But the clone is uniquely determined by the set of all its constants
and essential operations. This fact is sometimes assumed as intuitive, since every
term operation not depending on every its variable can be obtained by adding
inessential variables to an essential operation. However, this argumentation is
imprecise and it cannot be regarded as su�cient, especially when the essential
operation equal to a given inessential one has to be indicated, as e.g. in [10].
Therefore we decided to give in this note a short precise argument that clones of
algebras are determined only by constants and essentially n-ary term operations.
We indicate these essential elements of clones that are equal to the elements not
depending on every variable.

By an algebra we mean a pair A = (A; FA), where A is a nonempty set and
FA is a family of mappings fA : An → A called fundamental operations of A. The
number n is called the arity of fA. A type of algebras we de�ne as a mapping
τ : F → N ∪ {0} , where F is a nonempty set of fundamental operation symbols
and N is the set of positive integers. An algebra is said to be of type τ if it is of
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the form A = (A; FA), where FA = {fA : f ∈ F}, and the arity of fA equals τ(f)
for every f ∈ F .

Let an algebra A = (A; FA) of type τ be given. Recall that for every 1 6 i 6 n,
the i-th n-ary projection is the mapping (a1, . . . , an) 7→ ai. It is usually denoted by
en
i (x1, . . . , xn) = xi. The smallest set containing all projections and all elements
of FA that is closed under superpositions is called the set of term operations of A,
or the clone of A. We denote it by Cl (A). An n-ary term operation fA ∈ Cl (A)
depends on the variable xi, if there exist elements a1, . . . , an, b ∈ A such that

fA(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= fA(a1, . . . , ai−1, b, ai+1, . . . , an).

The number of essential variables in fA is called the essential arity of fA. If the
term operation fA depends on every of its variable, then it is said to be essentially
n-ary, or an essential operation of A. Otherwise fA is called inessential.

Following [6], for an algebra A and every positive integer n, Pn(A) denotes
the set of all essentially n-ary term operations of A. P0(A) denotes the set of all
constant non-nullary term operations of A and all its nullary operations.

2. The result

Let an algebra A = (A; FA) of type τ be given. For an n-ary term operation
fA(x1, . . . , xn) ∈ Cl (A) and a permutation σ of 1, . . . , n, de�ne

fA
σ (x1, . . . , xn) = fA(xσ(1), . . . , xσ(n)).

Recall the following two simple observations. They are both easily provable by
induction on the complexity of term operation, see also [7], § 8.

(2.i) Let n > 1. For every n-ary term operation fA ∈ Cl (A), there exists an

(n− 1)-ary term operation gA ∈ Cl (A) such that

fA(a1, . . . , an−1, an−1) = gA(a1, . . . , an−1)

for all a1, . . . , an−1 ∈ A.

(2.ii) If an n-ary term operation fA ∈ Pn(A), then also fA
σ ∈ Pn(A) for every

permutation σ of 1, . . . , n.

Then we have the following.

Lemma. For a given algebra A, if a term operation fA(x1, . . . , xn) depends only

on the variables x1, . . . , xk for some k < n, then there exists a term operation

(f∗)A(x1, . . . , xk) ∈ Pk(A) such that

fA(x1, . . . , xn) = (f∗)A(
en
1 (x1, . . . , xn), . . . , en

k (x1, . . . , xn)
)
,

where en
i (x1, . . . , xn) = xi for every i = 1, . . . , k.



Essential operations of clones 83

Proof. Consider a term operation fA(x1, . . . , xn) ∈ Cl (A) that depends on x1, ..., xk

for some k < n. From (2.i), there exists a k-ary term operation (f∗)A ∈ Cl (A)
such that

(f∗)A(a1, . . . , ak) = fA(a1, . . . , ak, . . . , ak)

for every a1, . . . , ak ∈ A. We shall prove that (f∗)A
is essentially k-ary. Indeed,

since fA(x1, . . . , xn) depends on xi for every i = 1, . . . , k−1, there exist elements
a1, . . . , ai, . . . , an, bi ∈ A such that

fA(a1, . . . , ai−1, ai, ai+1, . . . , an) 6= fA(a1, . . . , ai−1, bi, ai+1, . . . , an).

Since fA does not depend on xj for j > k, so we have

fA(a1, . . . , ai−1, ai, ai+1, . . . , ak, ak+1, . . . , an) =
fA(a1, . . . , ai−1, ai, ai+1, . . . , ak, ak, . . . , ak)

and

fA(a1, . . . , ai−1, bi, ai+1, . . . , ak, ak+1, . . . , an) =
fA(a1, . . . , ai−1, bi, ai+1, . . . , ak, ak, . . . , ak),

and consequently

(f∗)A(a1, . . . , ai−1, ai, ai+1, . . . , ak) 6= (f∗)A(a1, . . . , ai−1, bi, ai+1, . . . , ak)

for every i = 1, . . . , k − 1. Therefore the term operation (f∗)A
depends on xi for

every i < k. Moreover, since fA depends also on xk, we have

fA(c1, . . . , ck−1, ck, ck+1, . . . , cn) 6= fA(c1, . . . , ck−1, dk, ck+1, . . . , cn)

for some elements c1, . . . , cn, dk ∈ A. But fA does not depend on xj for every
j > k, so we have

fA(c1, . . . , ck−1, ck, ck+1, . . . , cn) = fA(c1, . . . , ck−1, ck, ck, . . . , ck)

and

fA(c1, . . . , ck−1, dk, ck+1, . . . , cn) = fA(c1, . . . , ck−1, dk, dk, . . . , dk)

and consequently

(f∗)A(c1, . . . , ck−1, ck) 6= (f∗)A(c1, . . . , ck−1, dk).

Thus (f∗)A(x1, . . . , xk) ∈ Pk(A) ⊂ Cl (A). Finally, let (f∗∗)A
denote the term

operation obtained from (f∗)A
by substituting every its variable xi for the n-ary

projection en
i (x1, . . . , xn) for every i = 1, . . . , k. We have

(f∗∗)A(x1, . . . , xn) = (f∗)A(
en
1 (x1, . . . , xn), . . . , en

k (x1, . . . , xn)
)
.
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Note that for every a1, . . . , an ∈ A we have

(f∗∗)A(a1, . . . , an) = (f∗)A(
en
1 (a1, . . . , an), . . . , en

k (a1, . . . , an)
)

=

(f∗)A(a1, . . . , ak) = fA(a1, . . . , ak, ak, . . . , ak)

and since fA does not depend on xj for any j > k, we obtain

fA(a1, . . . , ak, ak, . . . , ak) = fA(a1, . . . , ak, ak+1, . . . , an)

and consequently

(f∗∗)A(x1, . . . , xn) = fA(x1, . . . , xn),

completing the proof.

Theorem. Let A1 = (A; F A1) and A2 = (A; GA2) be algebras of types τ1

and τ2, respectively. Then Cl (A1) = Cl (A2) if and only if Pn(A1) = Pn(A2) for

every n ∈ N ∪ {0}.

In another words, the clone Cl (A) of a given algebra A is uniquely determined by
the subset of Cl (A) consisting of all term operations depending on every variable
and all constant operations.

Proof. The necessity of the theorem is obvious. For the proof of su�ciency assume
that Pn(A1) = Pn(A2) for every nonnegative integer n. Let a mapping f be
a nullary, constant non-nullary or essentially n-ary term operation of A1. Then,
by the assumption, f ∈ Pn(A1) if and only if f ∈ Pn(A2) for some n ∈ N ∪ {0}.
Let fA1(x1, . . . , xn) ∈ Cl (A1) be a term operation depending only on k, k < n,
its variables. Consider a term operation fA1

σ (x1, . . . , xn) = fA1(xσ(1), . . . , xσ(n))
for a permutation σ ∈ Sn such that fA1

σ depends on x1, . . . , xk. From (2.ii),
fA1 ∈ Cl (A1) implies that fA1

σ ∈ Cl (A1). Then, from Lemma, there exists a term

operation (f∗σ)A1 ∈ Pk(A1) such that

(f∗σ)A1(a1, . . . , ak) = fA1
σ (a1, . . . , ak, ak+1, . . . , an)

for every a1, . . . , an ∈ A. But since (f∗σ)A1 is essentially k-ary, so � by the as-

sumption � (f∗σ)A1 belongs also to the set Pk(A2) ⊆ Cl (A2) and hence fA1
σ ∈

Cl (A2). Now, from (2.ii) again, fA1 ∈ Cl (A2) and consequently the inclusion
Cl (A1) ⊆ Cl (A2) holds. The proof of the opposite inclusion is analogous. So,
Cl (A1) = Cl (A2), completing the proof.
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