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Some enumerational results relating

the numbers of latin and frequency squares

of order n

Francis N. Castro, Gary L. Mullen and Ivelisse Rubio

Abstract We discuss some enumerational results relating the numbers of F (n; λ1, ..., λm) and
F (n; λ′

1, ..., λ′
k) frequency squares of order n. In particular, for any frequency vector (λ1, ..., λm)

of n, we discuss some enumerational results relating the number of F (n; λ1, ..., λm) frequency
squares and the number of latin squares of order n. In Section 4 we also discuss some enumera-
tional results for latin rectangles.

1. Introduction

A latin square of order n is an n×n array in which each of the numbers 1, 2, . . . , n
appears exactly once in each row and each column. By an F (n;λ1, . . . , λm) fre-
quency square is meant an n × n array in which each of the numbers i with
1 6 i 6 m appears exactly λi times in each row and each column. Thus we
have n = λ1 + · · ·+ λm and an F (n; 1, . . . , 1) frequency square is a latin square of
order n.

Let F(n;λ1, . . . , λm) denote the total number of distinct F (n;λ1, . . . , λm) fre-
quency squares and let f(n;λ1, . . . , λm) represent the number of reduced squares
where a frequency square as above is reduced if the �rst row and �rst column are
both in standard order with λ1 1's, λ2 2's, and continuing, λm m's.

It is known from [1] that

Theorem 1.1. For any frequency vector (λ1, . . . , λm) of n

F(n;λ1, . . . , λm) =
(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

)
f(n;λ1, . . . , λm). �

See [9] for some enumerational and classi�cation results concerning latin squares.
Let Ln denote the total number of latin squares of order n and let ln denote the
number of reduced latin squares of order n. It is known ([2], page 142) and easy
to prove that

Corollary 1.2. For n > 2, Ln = n!(n− 1)!ln.
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In this paper we prove several results relating the total number Ln of distinct
latin squares of order n and the number of frequency squares with a �xed frequency
vector. We also prove results relating the numbers of frequency squares of order
n with two di�erent frequency vectors.

It is known (see for example [8], Thm. 7.1) that a latin square of order n is
equivalent to a 1-factorization of Kn,n, a bipartite graph in which each vertex of
U is joined to each vertex of W , where U,W represent the rows and columns of a
latin square of order n so that both U and W contain exactly n elements. If the
symbol in position (i, j) is k, then we color the edge from i to j with color k. See
page 107 of [8] for more details.

Now let ~Kn (see page 111 of [8]) be the complete directed graph with loops
on n vertices. Then in Cor. 7.10 of [8] it is shown that the number of latin
squares of order n with �rst row in standard order is the same as the number of
1-factorizations of ~Kn. Also see [5] for connections between enumerating certain
frequency squares and 1-factorizations of certain graphs.

Thus one can certainly show that counting latin squares can be done by count-
ing 1-factorizations of an appropriate graph. In our paper we are not just counting
or enumerating frequency squares, rather we are showing how to enumerate fre-
quency squares with one frequency vector relative to the number of frequency
squares with a di�erent frequency vector. This is the main point of the current
paper.

In [10] Wanless considers k-plexes for latin squares. Such objects are generaliza-
tions of transversals in latin squares. Many of our results could be stated using the
terminlogy of k-plexes, but we prefer to use terminology involving i-transversals
that is de�ned in the next section.

In [6] it was shown in Theorem 3.1 that one could relate the number of latin
squares of order n to the number of 1-factorizations of frequency squares with
frequency vector λ1, ..., λm via the use of isotopy classes. While the result in that
paper is valid, the proof was incomplete in that it assumed (without proof) that
each frequency square in an isotopy class had the same number of 1-factorizations.
While this fact turns out to be true, it does require some proof. This proof is now
given in Lemma 2.1 of the current paper.

In this paper we also extend the result from equation (2) in [6] dealing with
latin and frequency squares, to the case where we relate the number of frequency
squares with one frequency vector to the number of frequency squares with a
di�erent frequency vector.

2. Numbers of frequency and latin squares

Let F (n;λ1, . . . , λm) be a frequency square of order n with frequency vector
(λ1, . . . , λm). For i = 1, . . . ,m, by an i-transversal is meant a set of n cells,
one in each row and one in each column, each containing the symbol i. A set of n
transversals containing λi, i-transversals for each i = 1, . . . ,m, forms a partition
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of the frequency square if for each i, the i-transversals disjointly partition the set
of nλi cells containing i. We de�ne an i-partition to be the subset of a partition
consisting of all i-transversals in the partition.

As in [1] two frequency squares F1 and F2 of the same order and frequency vec-
tor, are said to be isotopic if there exist permutations σr, σc, σ# so that F2 can be
obtained from F1 by applying σr to the rows of F1, and then successively applying
σc to the columns and σ# to the numbers of each resulting square, respectively.

We now prove that frequency squares from the same isotopy class yield exactly
the same number of partitions. This will greatly reduce our calculations which
will of course be very helpful for larger values of n.

Lemma 2.1. Assume that two frequency squares F1 and F2 (of the same order
n and frequency vector) are isotopic. Then the number of partitions of F1 is the
same as the number of partitions of F2.

Proof. Let F1 and F2 be frequency squares of order n with the same frequency
vector. Suppose that F1 and F2 are isotopic. Fix permutations σr, σc and σ#

and de�ne a function from the set of partitions of F1 to the set of partitions
of F2 by applying σr, σc, σ# to the transversals of the partitions. Let F r

1 be
the frequency square obtained after we apply σr to F1. Given an i-transversal
{(1, i1), (2, i2), . . . , (n, in)} of F1 and applying σr to the i-transversal we obtain

{(σr(1), i1), . . . , (σr(n), in)},

an i-transversal of F r
1 . Let F c

1 be the frequency square obtained after we apply
σc to F r

1 . Given an i-transversal {(1, i1), (2, i2), . . . , (n, in)} of F r
1 and applying

σc to the i-transversal, we obtain {(1, σc(i1)), . . . , (n, σc(in))}, an i-transversal of

F c
1 . Let F#

1 be the frequency square obtained after we apply σ# to F c
1 . Note that

F2 = F#
1 for some r, c,#. Given an i-transversal {(1, i1), (2, i2), . . . , (n, in)} of F c

1

we obtain the σ#(i)-transversal {(1, i1), . . . , (n, in)} of F2. Hence σr, σc, σ# take
a transversal of F1 to a transversal of F2.

Let A = {(1, i1), . . . , (n, in)} 6= B = {(1, j1), . . . , (n, jn)} be two distinct i-
transversals of F1. We claim that applying σr, σc, or σ# to A and B we obtain dis-
tinct transversals. Suppose that σc(A) = {(1, σc(i1)), . . . , (n, σc(in))} = σc(B) =
{(1, σc(j1)), · · · , (n, σc(jn))}. Then σc(ik) = σc(jk) for k = 1, . . . , n. This implies
that ik = jk for k = 1, . . . , n, contradicting the fact that A 6= B. The same can be
proved for σr and σ#. We also claim that if A ∩ B = ∅, then σc(A) ∩ σc(B) = ∅.
Suppose not. Then (k, σc(ik)) = (k, σc(jk)) for some k = 1, . . . , n. Then ik = jk,
contradicting that A ∩ B = ∅. The same can be proved for σr and σ#. Hence,
applying σr, σc, σ# to a partition of F1 we obtain a partition of F2.

The above shows that σ# ◦ σc ◦ σr is a well de�ned function between the sets
of partitions of F1 and F2. This implies that the number of partitions of F1 is
less than or equal to the number of partitions of F2. But we can repeat the same
process starting with F2 and we obtain that the number of partitions of F2 is
less than or equal to the number of partitions of F1. Therefore, the number of
partitions of F1 and F2 are equal.



40 F. N. Castro, G. L. Mullen and I. Rubio

It is clear from the previous proof that permutations of rows and columns take
an i-transversal to another i-transversal. These permutations also take di�erent i-
transversals into di�erent i-transversals; hence the number of
i-transversals is preserved by permutations of rows and columns as the next lemma
states.

Lemma 2.2. Let F1 and F2 be frequency squares of the same order and fre-
quency vector. Suppose that F2 can be obtained from F1 by successively applying
permutations of rows and columns. Then, F1 and F2 have the same number of
i-transversals.

Remark 1. Note that permutations σ# of symbols of a frequency square take
i-transversals to σ#(i)-transversals and therefore it is false in general that the
number of i-transversals of frequency squares belonging to the same isotopy class
is �xed, as it is shown in the next example.

Example 2.3. Considere the following reduced frequency squares with vector
(5; 2, 2, 1):

F1 =


1 1 2 2 3
1 1 2 3 2
2 2 3 1 1
2 3 1 1 2
3 2 1 2 1

, F ′
1 =


1 1 2 2 3
1 3 1 2 2
2 2 3 1 1
2 2 1 3 1
3 1 2 1 2

.

The square F ′
1 can be obtained from square F1 by interchanging entries 1 ↔ 2

and permuting the rows and columns to convert it into a reduced square and hence
the two squares are isotopic. It can be checked that F1 has 2, 1-transversals and
4, 2-transversals, and F ′

1 has 4, 1-transversals and 2, 2-transversals. Note that
σ#(1) = 2 and the number of 1-transversals of F1 is the number of 2-transversals
of F ′

1.

Let Λ(n;λ1, . . . , λm) denote the number of distinct isotopy classes of frequency
squares F (n;λ1, . . . , λm). For a �xed frequency vector, from Theorem 1.1, we
know that the number of isotopy classes of frequency squares is the same as the
number of isotopy classes of reduced frequency squares. Assume that the j-th class
contains nj reduced squares so that

Λ(n;λ1,...,λm)∑
j=1

nj = f(n;λ1, . . . , λm). (1)

We now prove

Theorem 2.4. For any frequency vector (λ1, . . . , λm) of n(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ(n;λ1,...,λm)∑
j=1

njδ
(j)λ1! · · ·λm! (2)
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= n!(n− 1)!ln = Ln,

where δ(j) denotes the number of distinct partitions of any reduced frequency square
F (n;λ1, . . . , λm) in the j-th isotopy class of reduced squares which contains nj

reduced squares.

Proof. How many distinct latin squares of order n does the left hand side of (2)
generate? Consider the j-th isotopy class. By Lemma 2.1 each frequency square
in this class has the same number δ(j) of partitions so consider a �xed reduced
frequency square F = F (n;λ1, . . . , λm) in this class. Using this reduced frequency
square one can construct di�erent latin squares in the following way.

Fix a partition P of F . For each 1-transversal in P , replace each value 1 in
the cells given by the 1-transversal by a number k, k = 1, · · · , λ1, one number for
each of the λ1 1-transversals. Since the 1-transversals are disjoint, this gives λ1!
di�erent latin squares of order n. Similarly, for each 2-transversal of F , replace
the number 2 by λ1 + 1, · · · , λ1 + λ2. Doing the same for each i = 1, · · · ,m, the
partition P generates λ1!× · · ·×λm! distinct latin squares of order n. Each of the(

n
λ1,...,λm

)(
n−1

λ1−1,...,λm

)
distinct frequency squares obtained by permuting rows and

columns of F will also produce λ1!× · · · × λm! latin squares.
Continuing, this can be repeated for each of the nj reduced squares in the j-th

isotopy class. Finally, we doing this for each class we get that the number of latin
squares of order n generated from the left hand side will be at most Ln.

Conversely, given a latin square L1 of order n, construct a frequency square
FS1 = F1(n;λ1, . . . , λm) in the following way: replace the numbers 1, 2, . . . , λ1 in
the latin square by 1, the numbers λ1 + 1, . . . , λ1 + λ2 by 2 and continuing, until
the numbers λ1 + · · ·+ λm−1 + 1, . . . , n by m.

Consider the a1, . . . , aλ1 , 1-transversals forming a 1-partition of FS1. Note that
any latin square with the numbers λ1+1, . . . , n in the same positions as L1 and with
a value i1, 1 6 i1 6 λ1 in the positions of a1, a value i2 6= i1, 1 6 i2 6 λ1 in the
positions of a2 and so on gives FS1 if we apply the above construction. There are
δ1(FS1)λ1! latin squares that give FS1 under this construction, where δ1(FS1) is
the number of
1-partitions of FS1 and there are no other latin squares that give FS1 under this
construction. Something similar happens for all the other i-partitions. Let C1 be
the set of all these latin squares; this is, C1 is the set of all the latin squares that give
FS1 under this construction. There are exactly δ1(FS1) · · · δm(FS1)λ1! · · ·λm! dif-
ferent latin squares in C1, where δi(FS1) is the number of i-partitions of FS1.

Take another latin square of order n that it is not in C1 and construct a
frequency square FS2 with the above construction. This gives another set C2 of
latin squares associated to FS2. Repeat until we have a set {C1, · · · , Ck} such
that any latin square of order n belongs to a Cs and each Cs corresponds to a
unique FSs. We then have that

Ln =
k∑

s=1

|Cs| =
k∑

s=1

δ(s)λ1! · · ·λm!
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6
F∑

s=1

δ(s)λ1! · · ·λm! =
(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) f∑
s=1

δ(s)λ1! · · ·λm!,

where F is the total number of frequency squares F (n;λ1, . . . , λm), f is the total
number of reduced frequency squares with the same frequency vector and δ(s) =
δ1(FSs) · · · δm(FSs) is the number of partitions of the frequency square FSs.

Using (1) one can now sum over the isotopy classes of reduced frequency squares
to see that δ(s) coincides with δ(j) in equation (2) and get that

Ln 6

(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ(n;λ1,...,λm)∑
j=1

njδ
(j)λ1! · · ·λm!. �

One can easily simplify the result of the theorem to obtain

Corollary 2.5. For any frequency vector (λ1, . . . , λm) of n

n!
(

n− 1
λ1 − 1, . . . , λm

) Λ(n;λ1,...,λm)∑
j=1

njδ
(j) = n!(n− 1)!ln = Ln,

where δ(j) denotes the number of distinct partitions of any reduced frequency square
F (n;λ1, . . . , λm) in the j-th isotopy class which contains nj reduced squares.

We note that results for the number of isotopy classes of frequency squares of
order n 6 6 can be found in [1] while results for orders 7 and 8 can be found in
[7].

Example 2.6. For n = 4, from [1] there are �ve reduced F (4; 2, 2) frequency
squares and these are given by

F1 =

1 1 2 2
1 1 2 2
2 2 1 1
2 2 1 1

, F2 =

1 1 2 2
1 2 1 2
2 2 1 1
2 1 2 1

, F3 =

1 1 2 2
1 2 2 1
2 2 1 1
2 1 1 2

F4 =

1 1 2 2
1 2 2 1
2 1 1 2
2 2 1 1

, F5 =

1 1 2 2
1 2 1 2
2 1 2 1
2 2 1 1

Square #1− trans. #2− trans. δj

F1 4 4 4
F2 2 2 1
F3 2 2 1
F4 2 2 1
F5 2 2 1



Numbers of latin and frequency squares 43

Note that from [1], there are just two distinct isotopy classes; the �rst contain-
ing just the square F1 while the second class contains the four squares F2, . . . , F5.
Hence our theorem yields(

4
2, 2

)(
3

2, 1

)
[4(2!)(2!) + 4(2!)(2!)] = 6(3)(16 + 16) = 576 = 4!3!(4) = L4. �

Remark 2. The above results simplify considerably when there is only one isotopy
class. This is the case for frequency squares F (n;n− 1, 1).

The next argument shows that there is only one isotopy class for
F (n;n− 1, 1) frequency squares. Since each row and column contains only one 2
and the rest 1's, we can easily interchange rows and columns to show that every
F (n;n− 1, 1) frequency square is isotopic to the square

1 1 · · · 1 2
1 1 · · · 2 1
. . . . .
. . . . .
. . . . .
2 1 · · · 1 1

which has 2's on the back diagonal. It is easy to see that there are (n−2)! reduced
frequency squares of this type.

3. Enumerating frequency squares

In this section we enumerate frequency squares of certain frequency vectors using
the number of i-transversals of frequency squares of a related frequency vector. We
also give a formula to compute the number of 1-transversals of frequency squares
F (n;n−1, 1). As a consequence we can compute the number of frequency squares
F (n;n− 2, 1, 1) for any n > 3. Let F (n) be a frequency square of order n and let
Ti(F (n)) be the number of i-transversals of F (n).

Lemma 3.1. Let (λ1, . . . , λm, 1, . . . , 1︸ ︷︷ ︸
s

) be a frequency vector of n where λm 6= λj

for all j 6= m, and let Λ = Λ(n;λ1, . . . , λm, 1, . . . , 1︸ ︷︷ ︸
s

) be the number of distinct

isotopy classes of frequency squares associated to it. Then(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ∑
j=1

njTm(Fj(n)) (3)

= F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

)
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where λm > 2, s > 0, and Tm(Fj(n)) denotes the number of distinct m-transver-
sals of any reduced frequency square F (n;λ1, . . . , λm, 1, . . . , 1) in the j-th isotopy
class of reduced frequency squares which contains nj reduced squares.

Proof. Assume that λm 6= λj for all j 6= m. This implies that the permutations
used to construct the isotopy classes of the frequency vector
(n;λ1, . . . , λm, 1, . . . , 1) do not include permutations σ# of the symbol m because,
if one apply the permutation σ#(m), the resulting frequency square will have a
di�erent frequency vector and all the vectors in the isotopy class must have the
same frequency vector. Hence, by Lemma 2.2 the number of m-transversals within
an isotopy class is �xed.

Given a frequency square FSm = F (n;λ1, . . . , λm, 1, . . . , 1) we construct an-
other frequency square FSm−1 = F (n;λ1, . . . , λm−1, λm − 1, 1, 1, . . . , 1) in the fol-
lowing way: consider an m-transversal of FSm and replace the m's in the entries
given by the m-transversal by the number l = m+s+1. Each of the Tm(FSm) dif-
ferent m-transversals of FSm gives a di�erent frequency square FSm−1. The same
can be done with each of the Tm(Fj(n)) m-transversals of the

(
n

λ1,...,λm

)(
n−1

λ1−1,...,λm

)
di�erent frequency squares FSm given by each of the nj reduced frequency squares
in the j-th isotopy class of FSm. Hence,(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ∑
j=1

njTm(Fj(n))

6 F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

)

Conversely, given a frequency square FSm−1
1 construct a frequency squa-

re FSm
1 by replacing the number l = m + s + 1 by the number m. Any frequency

square with the number i in the λi positions of FSm−1
1 for i 6= m, l will produce

the same frequency square FSm
1 . Let C1 be the set of all the frequency squares

FSm−1 that produce FSm
1 under the above construction. The number of squares

FSm−1 in C1 is the number of m-transversals of FSm
1 . Take another frequency

square FSm−1
2 that it is not in C1 and construct FSm

2 . This gives another set C2,
and, repeating the construction, we get a set {C1, · · · , Ck}, where each frequency
square FSm−1 belongs to a Ci and each Cs corresponds to a unique FSm. This
gives

F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

) =
k∑

i=1

|Ci|

=
k∑

i=1

Tm(FSm
i ) 6

F∑
i=1

Tm(FSm
i ),

where F is the total number of frequency squares F (n;λ1, . . . , λm, 1, . . . , 1). Since

the number of m-transversals do not change with row and column permutations
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and the number of m-transversals does not change within the isotopy classes we
have that

F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

)

6

(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) f∑
j=1

Tm(Fj(n))

=
(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ∑
j=1

njTm(Fj(n)),

where f is the number of reduced frequency squares with frequency vector of the
form (n;λ1, . . . , λm, 1, . . . , 1) and nj is the number of reduced squares in the j-th
isotopy class.

Example 3.2. The above lemma gives a way to compute F(8; 6, 1, 1) using re-
duced frequency squares with frequency vector (7, 1). Namely, it is known that
f(n;n − 1, 1) = (n − 2)! and, by Remark 2, there is only one isotopy class of
frequency squares with frequency vector (n− 1, 1). Hence

F(8; 6, 1, 1) = 8× 7× 6!× T1(8; 7, 1) = 598, 066, 560,

as reported in [7].

Example 3.3. In general, to compute F(n;n − 2, 1, 1) using reduced frequency
squares with frequency vector (n − 1, 1), we need to compute
T1(F (n;n− 1, 1)), and then

F(n;n− 2, 1, 1) = n!× T1(F (n;n− 1, 1)).

Theorem 3.8 gives a formula to compute F(n;n− 2, 1, 1) for any n.

Remark 3. If λm = λi for some i, then Lemma 3.1 is false. The reason is that
one can interchange the numbers m and i in a frequency square to obtain another
frequency square in the same isotopy class but both having di�erent numbers of
m-transversals. In fact, two reduced frequency squares in the same isotopy class
can have have di�erent m-transversals as we saw in Example 2.3. Therefore, in
this case one cannot group the reduced squares in the isotopy class to get nj in
equation (3). However, if instead of summing over the isotopy classes, one sums
over all the reduced frequency squares, one obtains a formula that works for any
frequency vector as we see in Lemma 3.5.

Remark 4. Note that, since one can relabel i ↔ m, and interchange the positions
of λm, λi, it is enough to have any λi be such that λi 6= λj for all j 6= i.

Lemma 3.1 can be applied successively to obtain the following result.
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Theorem 3.4. Let (λ1, . . . , λl, · · · , λm, 1, . . . , 1︸ ︷︷ ︸
s

) be a frequency vector of n where

λi 6= λj for i = l, · · · ,m, j = 1, · · · ,m, and let Λ be the number of distinct isotopy
classes of reduced frequency squares associated to it. Then(

n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ∑
j=1

njTl+1(Fj(n)) · · ·Tm(Fj(n))

= F(n;λ1, . . . , λl, λl+1 − 1, . . . , λm−1 − 1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+m−l+1

),

where λl > 2, . . . , λm > 2, s > 0, and Tl(Fj(n)) denote the number of distinct l-
transversals of any reduced frequency square Fj(n;λ1, . . . , λm, 1, . . . , 1) in the j-th
isotopy class of reduced squares which contains nj reduced squares.

Note that Lemma 3.1 requires λm 6= λi for all i 6= m. Alternatively, one can
sum over all the reduced frequency squares and then this assumption is not needed:

Lemma 3.5. For any frequency vector (λ1, . . . , λm, 1, . . . , 1︸ ︷︷ ︸
s

) of n, let f be the

number of distinct reduced frequency squares with this frequency vector. Then(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) f∑
j=1

Tm(Fj(n))

= F(n;λ1, . . . , λm−1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+1

)

where λm > 2, s > 0, and Tm(Fj(n)) denotes the number of distinct m-transversals
of the reduced frequency square Fj(n;λ1, . . . , λm, 1, . . . , 1) and the sum is over the
f di�erent reduced frequency squares.

Theorem 3.6. For any frequency vector (λ1, . . . , λm, 1, . . . , 1︸ ︷︷ ︸
s

) of n, let f be the

number of distinct reduced frequency squares with this frequency vector. Then(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) f∑
j=1

Tl+1(Fj(n)) · · ·Tm(Fj(n))

= F(n;λ1, . . . , λl, λl+1 − 1, . . . , λm−1 − 1, λm − 1, 1, . . . , 1︸ ︷︷ ︸
s+m−l+1

),

where λl > 2, . . . , λm > 2, s > 0, and Tl(Fj(n)) denote the number of distinct
l-transversals of the reduced frequency square Fj(n;λ1, . . . , λm, 1, . . . , 1) and the
sum is over the f di�erent reduced frequency squares.
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The following is a well known result for derangements. When it is reinterpreted
for frequency squares, it gives a formula to compute the number of 1-transversals
of a frequency square with frequency vector (n− 1, 1).

Lemma 3.7. Let T1(F (n;n−1, 1)) be the number of 1-transversals of an F (n;n−
1, 1) frequency square. Then

T1(F (n;n− 1, 1)) = (n− 1) (T1(F (n− 1;n− 2, 1)) + T1(F (n− 2;n− 3, 1)))

= n!
n∑

i=2

(−1)i

i!
. �

Note that this is the number of derangements of n symbols. The above result,
together with Lemma 3.1, and the fact that there is only one isotopy class for
frequency squares F (n;n − 1, 1) with (n − 2)! reduced frequency squares is used
to obtain a formula for the number of frequency squares F(n;n − 2, 1, 1) for any
n > 3.

Theorem 3.8. Let F(n;n − 2, 1, 1) be the number of frequency squares with fre-
quency vector (n− 2, 1, 1). Then,

F(n;n− 2, 1, 1) = n!n!
n∑

i=2

(−1)i

i!
. �

The number of reduced frequency squares f(n;n−2, 1, 1) for n 6 8 where given
in [1] and [7]. Theorem 3.8 gives a formula for the value of f(n;n− 2, 1, 1) for any
n > 3.

Corollary 3.9. Let f(n;n − 2, 1, 1) be the number of reduced frequency squares
with frequency vector (n− 2, 1, 1). Then,

f(n;n− 2, 1, 1) = (n− 3)!(n− 2)!n
n∑

i=2

(−1)i

i!
.

n f(n, n− 2, 1, 1)
7 7416
8 254280
9 12014640
10 747578160
11 59329146240
12 5814256049280
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4. Transversals and latin rectangles

Let T1(n;n − 1, 1) be the number of 1-transversals of an F (n;n − 1, 1) frequency
square. Consider the two line latin rectangles with �rst row 1,2,3:

R1 =
(

1 2 3
2 3 1

)
, R2 =

(
1 2 3
3 1 2

)
.

We can associate 1-transversals to the above two line latin rectangles as follows.
Consider the frequency square

Fd(3) =

(
2 1 1
1 2 1
1 1 2

)
.

with 2's on the main diagonal. The 1-transversal of Fd(3) associated to R1 is

{(1, 2), (2, 3), (3, 1)},

and the 1-transversal associated to R2 is

{(1, 3), (2, 1), (3, 2)}.

Note that there are correspondences {(1, 2), (2, 3), (3, 1)} 7→ (2 3 1) and
{(1, 3), (2, 1), (3, 2)} 7→ (3 1 2).

We can generalize this construction for any n since no 1-transversal of the
frequency square Fd(n) with 2's in the diagonal will contain the pair (i, i) for
i = 1, . . . , n. In general, consider the �diagonal� frequency square of order n

Fd(n) =


2 1 · · · 1
1 2 · · · 1

...
1 1 · · · 2

. (4)

Note that the set of 1-transversals of Fd(n) is

A = {{(1, i1), (2, i2), · · · , (n, in)} | il 6= l, ik 6= il for k 6= l} ,

and
{(1, i1), (2, i2), · · · , (n, in)} 7→ (i1 i2 · · · in)

de�nes a 1-1 correspondence between the set of 1-transversals A and the set of two
line latin rectangles whose �rst row is in the natural order 1, 2, . . . , n and second
row is (i1 i2 · · · in).

For m 6 n, let R(m,n) be the number of m line latin rectangles of order n
whose �rst row is in standard order 1, 2, . . . , n.

Corollary 4.1. For each n > 2, R(2, n) = T1(n;n− 1, 1).
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The correspondence of pairs of disjoint 1-transversals of Fd(n) and 3 line latin
rectangles is similar. Consider the diagonal frequency square (4) and note that
the set of pairs of disjoint 1-transversals of this square is

A = {{{(1, i1), (2, i2), · · · , (n, in)} , {(1, j1), (2, j2), · · · , (n, jn)}} |

il, jl 6= l, ik 6= il and jk 6= jl for k 6= l, and ik 6= jk} .

Now each element in A (a pair) de�nes the last two rows

(i1 i2 · · · in), (j1 j2 · · · jn)

of a three line latin rectangle with �rst row in the natural order. Since we can in-
terchange the order of the last 2 rows, we have 2 di�erent three line latin rectangles

with �rst row in the natural order for each element in A. Let T
(m)
1 (n;n− 1, 1) be

the number of sets of m disjoint 1-transversals of the frequency square (2). Hence

T
(1)
1 (n;n− 1, 1) = T1(n;n− 1, 1).

Corollary 4.2. For each n > 3, R(3, n) = 2T
(2)
1 (n;n− 1, 1).

The construction for m line latin rectangles is similar: the set A is the set of
all sets of m− 1 disjoint 1-transversals of (4). Each element in A gives m− 1 rows
of the m line latin rectangle. There are (m− 1)!, m line latin rectangles for each
element in A.

Corollary 4.3. For 1 6 m 6 n, R(m,n) = (m− 1)!T (m−1)
1 (n;n− 1, 1).

See page 142 of [2] for the number of m line latin rectangles of order n 6 11.

Corollary 4.4. For each n > 2, T
(n−1)
1 (n;n − 1, 1) = ln, the number of reduced

latin squares of order n.

5. Relating the numbers of frequency squares

with two di�erent frequency vectors

In this section we extend our results from Section 2 in order to be able to go from
one frequency vector to another, not just from a given frequency vector to the
vector (1, . . . , 1) involving latin squares.

Let λ1 + · · ·+ λm be a partition of n. Another partition

λ′11 + · · ·+ λ′1e1
+ · · ·+ λ′m1 + · · ·+ λ′mem

of n is a re�nement, if for each i = 1, . . . ,m, λi = λ′i1 + · · ·+λ′iei
. In this case, will

call (λ′11, . . . , λ
′
mem

) a re�nement vector of (λ1, . . . , λm)
For each i = 1, . . . ,m, we have λin cells (λi in each row and column) in the

F (n;λ1, . . . , λm) frequency square containing the symbol i. For each i = 1, . . . ,m,
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we now form an (λ′i1, . . . , λ
′
iei

)-array containing ei disjoint blocks. The �rst block
has λ′i1n cells with λ′i1 cells in each row and column. Continuing, the ei-th block
has λ′iei

n cells with λ′iei
cells occurring in each row and column.

In Section 2, to construct latin squares from frequency squares, we replaced the
values of the cells given by each of the i-transversals of an
i-partition by a symbol, one symbol for each transversal, hence λi symbols for
each i-partition. Now, to construct frequency squares with frequency vector
(n;λ′11, . . . , λ

′
mem

), we will replace the values of the cells given in each block of
a (λ′i1, . . . , λ

′
iei

)-array by a symbol, one symbol for each block, hence ei symbols
for each (λ′i1, . . . , λ

′
iei

)-array.
Let δi(F ) be the number of such arrays arising from the symbol i which occurs

in the reduced frequency square F = F (n;λ1, . . . , λm). Following the proof of
Lemma 2.1, one can prove that the product δ = δ1(F ) · · · δm(F ) is invariant in an
isotopy class:

Lemma 5.1. Assume that two frequency squares F1 and F2 (of the same order n
and frequency vector) are isotopic. Then the number of arrays from F1 is the same
as the number of arrays from F2; that is δ1(F1) · · · δm(F1) = δ1(F2) · · · δm(F2).

Remark 5. As in Example 2.3, for a �xed i, δi(F1) might not be equal to δi(F2),
but, since we are considering all the symbols in the product, we get that we have
δ1(F1) · · · δm(F1) = δ1(F2) · · · δm(F2).

We now obtain a theorem that extends the result in Theorem 2.4:

Theorem 5.2. If λ = (λ1, . . . , λm) is a frequency vector of n and (λ′11, . . . , λ
′
mem

)
is a �xed re�nement vector of λ, then

(
n

λ1, . . . , λm

)(
n− 1

λ1 − 1, . . . , λm

) Λ(n;λ1,...,λm)∑
j=1

njδ
(j)e1! · · · em!

=
(

n

λ′11, . . . , λ
′
mem

)(
n− 1

λ′11 − 1, . . . , λ′mem

)
f(n;λ′11, . . . , λ

′
mem

)

= F(n;λ′11, . . . , λ
′
mem

)

where δ(j) denotes the number of distinct arrays (as de�ned above) of any reduced
frequency square F (n;λ1, . . . , λm) in the j-th isotopy class of reduced squares which
contains nj reduced squares.

As the proof of this theorem is similar to the proof of Theorem 2.4 in Section
2 for determining the total number of latin squares from reduced F (n;λ1, . . . , λm)
frequency squares, we omit the proof and instead, provide the reader with the
following illustrative example.

We start with reduced F (5; 4, 1) frequency squares and determine the total
number of F (5; 2, 2, 1) frequency squares. There is only one isotopy class and
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(5− 2)! reduced frequency squares with the frequency vector (4, 1). Consider

F =

1 1 1 1 2
1 1 1 2 1
1 1 2 1 1
1 2 1 1 1
2 1 1 1 1

.

There are (4)(5)=20 cells containing the symbol 1. Form a (2,2)-array con-
taining 2 blocks with 10 cells each, 2 per row and column. This is the same as
considering a partition and selecting 2, 1-transversals to construct one block and 2
other 1-transversals to construct the other block. For example, from the partition

P = {{(1, 1), (2, 2), (3, 4), (4, 3), (5, 5)} , {(1, 2), (2, 3), (3, 5), (4, 1), (5, 4)} ,

{(1, 3), (2, 5), (3, 1), (4, 4), (5, 2)} , {(1, 4), (2, 1), (3, 2), (4, 5), (5, 3)} ,

{(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}} ,

one can form an array {B1, B2} with the two blocks

B1 = {(1, 1), (2, 2), (3, 4), (4, 3), (5, 5), (1, 2), (2, 3), (3, 5), (4, 1), (5, 4)} ,

B2 = {(1, 3), (2, 5), (3, 1), (4, 4), (5, 2), (1, 4), (2, 1), (3, 2), (4, 5), (5, 3)} .

The 1's in B1 can be changed to 3's to obtain

F ′ =

3 3 1 1 2
1 3 3 2 1
1 1 2 3 3
3 2 3 1 1
2 1 1 3 3

.

Note that there are e1! = 2! ways to replace the symbol 1 using this array.
There are a total of δ1 = 108 distinct arrays containing the symbol 1. Theorem
5.2 implies that there are 72 reduced frequency squares F (5; 2, 2, 1), which agrees
with the results from [1].
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