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A Zariski topology for k-semirings

Shahabaddin Ebrahimi Atani and Reza Ebrahimi Atani

Abstract. The prime k-spectrum Speck(R) of a k-semiring R will be introduced. It will be
proven that it is a topological space, and some properties of this space will be investigated.
Connections between the topological properties of Speck(R) and possible algebraic properties of
the k-semiring R will be established.

1. Introduction

Semirings which are regarded as a generalization of rings have been found useful in
solving problems in di�erent disciplines of applied mathematics and information
sciences because semirings provides an algebraic framework for modeling. Ideals
of semirings play a central role in the structure theory and are useful for many
purposes. However, they do not in general coincide with the usual ring ideals and,
for this reason; their use is somewhat limited in trying to obtain analogues of ring
theorems for semirings. Indeed, many results in rings apparently have no analogues
in semirings using only ideals. Let R be a commutative ring with identity. The
prime spectrum Spec(R) and the topological space obtained by introducing Zariski
topology on the set of prime ideals of R play an important role in the �elds of
commutative algebra, algebraic geometry and lattice theory. Also, recently the
notion of prime submodules and Zariski topology on Spec(M), the set of all prime
submodules of a module M over R, are studied by many authors (for example see
[11]). In this paper, we concentrate on Zariski topology of semirings and generalize
the some well known results of Zariski topology on the sets of prime ideals of a
commutative ring to prime ideals of a commutative semiring and investigate the
basic properties of this topology. For example, we prove that if R is a k-semiring,
then Speck(R) is a T0-space and it is a compact space.

Throughout this paper R is a commutative semiring with identity. For the
de�nitions of monoid, semirings, semimodules and subsemimodules we refer [1,
6, 8, 10, 11]. All semiring in this paper are commutative with non-zero identity.
Allen [1] has presented the notion of Q-ideal I in the semiring R and constructed
the quotient semiring R/I (also see [3, 5, 7]). Let R be a semiring. A subtractive

ideal (= k-ideal) I is a ideal of R such that if x, x + y ∈ I, then y ∈ I (so {0R}
is a k-ideal of R). A prime ideal of R is a proper ideal P of R in which x ∈ P or
y ∈ P whenever xy ∈ P . So P is prime if and only if whenever IJ ⊆ P for some
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ideals I, J of R implies that I ⊆ P or J ⊆ P . Furthermore, the collection of all
prime k-ideals of R is called the spectrum of R and denoted by Speck(R). An ideal
I of R is said to be semiprime if I is an intersection of prime k-ideals of R. If I
is a proper ideal of R, then the radical rad(I) of I (in R) is the intersection of all
prime k-ideals of R containing I (see [4]). Note that I ⊆ rad(I) and that rad(I)
is a semiprime k-ideal of R. An ideal I of R is called extraordinary if whenever
A and B are semiprime k-ideals of R with A ∩ B ⊆ I, then A ⊆ I or B ⊆ I. A
semiring is called a partitioning semiring, if every proper principal ideal of R is a
partitioning ideal (= a Q-ideal) (see [7]). A non-zero element a of a semiring R
with identity is said to be a semiunit in R if 1 + ra = sa for some r, s ∈ R.

Lemma 1.1. Let R be a semiring. If {Ii}i∈Λ is a collection of k-ideals of R, then∑
i∈Λ Ii and

⋂
i∈Λ Ii are k-ideals of R.

2. Properties of top semirings

Let R be a semiring with 1 6= 0. Then R has at least one maximal k-ideal and if
I is a proper Q-ideal of R, then I ⊆ P for some maximal k-ideal P of R (see [5]).
Now by [3], R/P is a semi�eld and hence it is a semidomain. Thus P is prime and
Speck(R) 6= ∅ (see [3]). Then we have the following

Lemma 2.1. If P is a maximal Q-ideal of a semiring R, then P is a prime k-ideal
of R. In particular, Speck(R) 6= ∅.

Let R be a semiring R with non-zero identity. For any k-ideal I of R by V (I)
we mean the set of all prime k-ideals of R containing I. Clearly, V (R) = ∅ and
V ({0}) = Spec(R).

De�nition 2.2. A semiring is called a k-semiring, if every ideal of R is a k-ideal.

Example 2.3. Assume that E+ be the set of all non-negative integers and let
R = E+ ∪ {∞}. De�ne a + b = max{a, b} and ab = min{a, b} for all a, b ∈ R.
Then R is a commutative semiring with 1R = ∞ and 0R = 0. An inspection will
show that the list of ideals of R are: R, E+ and for every non-negative integer n

In = {0, 1, . . . , n}.

It is clear that every ideal of R is a k-ideal; so R is a k-semiring. Moreover, every
proper ideal of R is a prime k-ideal; so Spec(R) = {E+, I0, . . .}.

Lemma 2.4. Let R be a k-semiring. Then the following statements hold:

(i) If S is a subset of R, then V (S) = V (〈S〉).

(ii) V (I) ∪ V (J) = V (IJ) = V (I ∩ J) for every k-ideals I and J of R.

(iii) If I is a k-ideal of R, then V (I) = V (rad(I)).
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(iv) If V (I) ⊆ V (J), then J ⊆ rad(I) for every deals I, J of R.

(v) V (I)=V (J) if and only if rad(I)=rad(J) for every ideals I, J of R.

(vi) If {Ii}i∈Λ is a family of ideals of R, then V (
∑

i∈Λ Ii) =
⋂

i∈Λ V (Ii).

Proof. (i) and (iv) are obvious.
(ii) It is clear that V (I) ∪ V (J) ⊆ V (I ∩ J) ⊆ V (IJ). Let P ∈ V (IJ). Then
IJ ⊆ P , and hence I ⊆ P or J ⊆ P . Thus P ∈ V (I) or P ∈ V (J), i.e.,
P ∈ V (I) ∪ V (J). Hence V (IJ) ⊆ V (I) ∪ V (J).

(iii) Since I ⊆ rad(I), we have V (rad(I)) ⊆ V (I). For the reverse inclusion,
assume that P ∈ V (I). Then I ⊆ P . Hence rad(I) ⊆ P , and so we have the
equality.

(v) Let V (I) = V (J). By (iii), we have V (I) ⊆ V (rad(J); hence rad(J) ⊆ rad(I)
by (iv). Similarly, rad(I) ⊆ rad(J), and so we have the equality. The other
implication is similar.

(vi) Let P ∈
⋂

i∈Λ V (Ii). Then Ii ⊆ P for every i ∈ Λ, so
∑

i∈Λ Ii ⊆ P , which
implies that

⋂
i∈Λ V (Ii) ⊆ V (

∑
i∈Λ Ii). The reverse inclusion is similar.

Let R be a k-semiring. If ζ(R) denotes the collection of all subsets V (I) of
Speck(R), then ζ(R) contains the empty set and Spec(R) = X and is closed under
arbitrary intersection by Lemma 2.4 (vi). If also ζ(R) is closed under �nite union,
that is, for every ideals I and J of R such that V (I)∪V (J) = V (L) for some ideal
L of R, for in this case ζ(R) satis�es the axioms of closed subsetes of a topological
spaces, which is called Zariski topology. The following de�nition is the same as
that introduced by MacCasland, Moore, and Smith in [11].

De�nition 2.5. Let R be a k-semiring. An R-semimodule M equipped with
Zariski topology is called top semimodule. A k-semiring R which is a top semi-
module as an R-semimodule is called a top semiring.

Proposition 2.6. Every k-semiring with a non-zero identity is a top semiring.

Proof. Apply Lemma 2.4.

Theorem 2.7. Every ideal of a k-semiring with a non-zero identity is extraordi-

nary.

Proof. Note that Speck(R) 6= ∅ by Lemma 2.1. Let P be any ideal of R and
let I and J be semiprime ideals of R such that I ∩ J ⊆ P . By Proposition 2.6,
there exists an ideal U of R such that V (I) ∪ V (J) = V (U). Since I =

⋂
i∈Λ Pi,

where Pi are prime k-ideals of R (i ∈ Λ), for each i ∈ Λ, Pi ∈ V (I) ⊆ V (U), so
that U ⊆ Pi. Thus U ⊆ I. Similarly, U ⊆ J . Thus U ⊆ I ∩ J . Now we have
V (I)∪V (J) ⊆ V (I ∩ J) ⊆ V (U) = V (I)∪V (J), that is, V (I)∪V (J) = V (I ∩ J).
Hence P ∈ V (I ∩ J) gives I ⊆ P or J ⊆ P .
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De�nition 2.8. A semiring is called a strong partitioning semiring, if every proper
�nitely generated ideal of R is a partitioning ideal (= a Q-ideal).

Proposition 2.9. Assume that R is a strong partitioning semiring and let I be

the proper ideal of R generated by a family {at}t∈Λ of elements R. Then I is a

Q-ideal of R.

Proof. Since R =
⋃
{q +Rat : q ∈ Q} for some t ∈ Λ, we must have R =

⋃
{q + I :

q ∈ Q}. Let X ∈ (q1 + I) ∩ (q2 + I) 6= ∅. Then X = q1 + ri1ai1 + . . . + rinain =
q2 + sj1aj1 + . . . + sjm

ajm
for some ajk

, ait
∈ I and rit

, sjk
∈ R (1 6 t 6 n, 1 6

k 6 m). Let J be the ideal of R generated by ri1ai1 , ..., rin
ain

, sj1aj1 , . . . , sjm
ajm

.
By assumption, J is a Q-ideal of R and X ∈ (q1 + J) ∩ (q2 + J); hence q1 = q2.
Thus I is a Q-ideal of R.

Remark 2.10. Let X = Speck(R). For each subset S of R, by XS we mean
X − V (S) = {P ∈ X : S * P}. If S = {f}, then by Xf we denote the set
{P ∈ X : f /∈ P}. Clearly, the sets Xf are open, and they are called basic open

sets.

Theorem 2.11. Let R be a strong partitioning semiring and X =
⋃

i∈Λ Xai . If I
is the ideal of R generated by {ai}i∈Λ, then I = R.

Proof. Suppose not. Since I is a proper Q-ideal of R by Proposition 2.9, we have
I ⊆ P for some maximal k-ideal P of R. By assumption, P /∈ Xai

for every i ∈ Λ,
which is a contradiction.

Theorem 2.12. Let R be a strong partitioning semiring. Then the following

statements hold:

(i) Xf ∩Xe = Xfe for all f, e ∈ R.

(ii) Xf = ∅ if and only if f is nilpotent.

(iii) Xf = X if and only if f is a semiunit in R.

Proof. (i) If P ∈ Xf ∩Xe, then e, f /∈ P , so ef /∈ P , which implies that P ∈ Xfe.
Thus Xf ∩Xe ⊆ Xef . The other inclusion is similar.

(ii) Assume that an element f is nilpotent and let P be any element of X. Then
fs = 0 ∈ P for some positive integer s. Thus P prime k-ideal gives f ∈ P ; hence
P /∈ Xf for every P ∈ X. Thus Xf = ∅. Conversely, assume that Xf = ∅. Then
for each P ∈ X, we have f ∈ P ; whence f ∈

⋂
P∈X P = rad(0) (see [4]). Thus f

is nilpotent.

(iii) Let f be a semiunit. Since the inclusion Xf ⊆ X is trivial, we will prove the
reverse inclusion. Let P be any element of X. If Rf ⊆ P , then R = P by [5],
which is a contradiction. Thus f /∈ P ; hence P ∈ Xf , and so we have equality.
Conversely, assume that X = Xf . Then for any P ∈ X, we must have f /∈ P . If
f is not a semiunit in R, then Rf is a Q-ideal of R and hence it is contained in
a maximal k-ideal of R which is a prime k-ideal by Lemma 2.1, a contradiction.
Thus f is semiunit.
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Theorem 2.13. Let R be a k-semiring. Then the set A = {Xf : f ∈ R} forms a

base for the Zariski topology on X.

Proof. Suppose that U is an open set in X. Then U = X − V (I) for some k-
ideal I of R. Let I = 〈{fi : i ∈ Λ}〉, where {fi : i ∈ Λ} is a generator set of
I. Then V (I) = V (

∑
i∈Λ Rfi) =

⋂
i∈λ V (Rfi) by Lemma 2.4(vi). It follows that

U = X − V (I) = X −
⋂

i∈Λ V (Rfi) =
⋃

i∈Λ Xfi
. Thus A is a base for the Zariski

topology on X.

Proposition 2.14. Let I be an ideal of a k-semiring R. Then

(i) XI =
⋃

a∈I Xa. Moreover, if I = 〈a1, a2, . . . , an〉, then XI =
⋃n

i=1 Xai
.

(ii) Let {ai}i∈Λ be the collection of elements of R and a ∈ R. Then Xa ⊆⋃
i∈Λ Xai if and only if there are elements ai1 , . . . , ain ∈ {ai}i∈Λ such that

a ∈ rad(〈ai1 , . . . , ain〉).

Proof. (i) Assume that a ∈ I and let P ∈ Xa. Then a /∈ P which implies P ∈ XI .
Thus

⋃
a∈I Xa ⊆ XI . For the reverse inclusion, assume that P ∈ XI . Then

P ∈ Xb for some b ∈ I − P , and so we have the equality. Finally, since the
inclusion

⋃n
i=1 Xai

⊆ XI is clear, we will prove the reverse inclusion. Let P ∈ XI .
Then there exist a ∈ I − P and ri ∈ R (1 6 i 6 n) such that P ∈ Xa and
a =

∑n
i=1 riai. It follows that there exists a positive integer j (1 6 j 6 n) such

that aj /∈ P ; hence P ∈ Xaj
, as needed.

(ii) Let a ∈ rad(〈ai1 , . . . , ain
〉). Then there exists a positive integer m and ri ∈ R

(1 6 i 6 n) such that am =
∑n

j=1 rjaij . Now, let P ∈ Xa. So a /∈ P gives am /∈ P ;
hence P ∈ Xaik

for some k. Thus Xa ⊆
⋃

i∈Λ Xai .
Conversely, assume that Xa ⊆

⋃
i∈Λ Xai

and let I be the ideal of R gen-
erated by {ai : i ∈ Λ}. It is clear that if P ∈ X and P /∈

⋃
i∈Λ Xai

, then
ai ∈ P implies that a ∈ P . Therefore we have V (I) ⊆ V (〈a〉). It follows that
a ∈

⋂
P∈V (<a>) P ⊆

⋂
P∈V (I) P = rad(I). So, there exist i1, i2, . . . , is ∈ Λ and

t1, t2, . . . , ts ∈ R such that am = t1ai1 + . . . + tsais for some positive integer m;
thus a ∈ rad(〈ai1 , . . . , ain

〉).

Theorem 2.15. Let R be a k-semiring. For every a ∈ R, the set Xa is compact.

Speci�cally the whole space X1 = X is compact.

Proof. By Theorem 2.13, it su�ces to show that every cover of basic open sets has
a �nite subcover. Suppose that Xa ⊆

⋃
i∈Λ Xai

. By Proposition 2.14 (ii), there are
ai1 , . . . , ain

∈ R such that a ∈ rad(〈ai1 , . . . , ain
〉). Since V (rad(〈ai1 , . . . , ain

〉)) =
V (〈ai1 , . . . , ain

〉) by Lemma 2.4 (iii), we must have Xa ⊆
⋃n

i=1 Xai
by Proposition

2.14 (i). This completes the proof.

From Theorem 2.13 and Theorem 2.15 the next result is immediate.

Corollary 2.16. Let R be a k-semiring. Then an open set of X is compact if and

only if it is a �nite union of basic open sets.
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Let R be a k-semiring. The topological space X = Speck(R) is said to be a
T0-space if for every P, P ′ ∈ X, P 6= P ′ there is either a neighborhood Xa of P
such that Xa ∩ P ′ = ∅ or a neighborhood Xb of P ′ such that Xb ∩ P = ∅.

Theorem 2.17. Let R be a k-semiring. Then the topological space X = Speck(R)
is a T0-space.

Proof. Let P, P ′ ∈ X with P 6= P ′. We note that the set Xa is a neighborhood of
P if and only if a /∈ P . Assume that P ′ ∈ Xa for all a /∈ P . Then we conclude that
a ∈ P ′ implies that a ∈ P ; hence P ′ ⊂ P . Now let b ∈ P − P ′. Then b /∈ P ′ gives
Xb is a neighborhood of P ′, but b ∈ P , so P /∈ Xb. This completes the proof.

Quotient semimodules over a semiring R have already been introduced and
studied by present authors in [6]. Chaudhari and Bonde extended the de�nition of
QM -subsemimodule of a semimodule and some results given in the Section 2 in [6]
to a more general quotient semimodules case in [8] (for the structure of quotient
semimodules we refer [8]).

Convention. For each QR-subsemimodule I of the R-semimodule R, we mean I
is a QR-ideal of R. Now If I is a QR-ideal of a semiring R, then R/I is a quotient
semimodule of R by I. Now we give an example of semimodules over a semiring
that are top semimodules.

Lemma 2.18. Let I be a QR-ideal (or a QR-subsemimodule) of a semiring R. If

J is a k-ideal of R containing I, then (J :R R) = (J/I :R R/I).

Proof. Let r ∈ (J : R). If q + I ∈ R/I, then there exists a unique element q′ of
QR such that r(q + I) = q′ + I, where rq + I ⊆ q′ + I; so q′ ∈ J ∩QR since rq ∈ J
and J is a k-ideal. Thus (J : R) ⊆ (J/I : R/I).

Conversely, assume that a ∈ (J/I : R/I) and s ∈ R. Then s = q1 + t for some
q1 ∈ QR and t ∈ I; so there is a unique element q2 of QR with a(q1 + I) = q2 + I ∈
J/I, where aq1 + I ⊆ q2 + I. Thus J k-ideal gives aq1 ∈ J . As as = aq1 + at ∈ J ,
we have a ∈ (J : R).

Proposition 2.19. Let I be a QR-ideal of a semiring R. Then there is a one-

to-one correspondence between prime k-subsemimodules of R-semimodule R/I and

prime k-ideals of R containing I.

Proof. Let J be a prime k-ideal of R containing I. Then it follows from [3] that
J/I is a proper k-subsemimodule of R/I. Let a(q1 + I) = q2 + I ∈ J/I, where
q2 ∈ QR ∩ J and aq1 + I ⊆ q2 + I, so aq1 ∈ J since J is a k-ideal of R. But J
is prime, hence either q1 ∈ J (so q1 + I ∈ J/I) or a ∈ (J : R) = (J/I : R/I) by
Lemma 2.18. Thus, J/I is a prime k-subsemimodule of R/I.

Conversely, assume that J/I is a prime k-subsemimodule of R/I. To show
that J is a prime k-ideal of R, suppose that rx ∈ J , where r, x ∈ R. We may
assume that r 6= 0. There are elements q ∈ QR and n ∈ I such that x = q + n,
so rx = rq + rn ∈ J ; hence rq ∈ J since J is a k-ideal. Therefore, there exists a
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unique element q′ ∈ QR such that r(q + I) = q′ + I, where rq + I ⊆ q′ + I; hence
q′ ∈ J . Thus r(q + I) ∈ J/I. Then J/I prime gives either q + I ∈ J/I (so x ∈ J)
or r ∈ (J/I : R/I) = (J : R), and the proof is complete.

Corollary 2.20. Let I be a QR-ideal of a semiring R. Then there is a one-to-

one correspondence between semiprime k-subsemimodules of R/I and semiprime

k-ideals of R containing I.

Proof. Apply Theorem 2.19 (note that (
⋂

i∈J Pi)/I =
⋂

i∈J(Pi/I), where Pi is a
prime k-ideal for all i ∈ J).

Theorem 2.21. Let I be an QR-ideal of a semiring R with a non-zero ideantity.

Then the following statements hold:

(i) Every k-subsemimodule of R/I is extraordinary.

(ii) R/I is a top R-semimodule.

Proof. (i) Wemay assume that Spec(R/I) 6= ∅. Then any semiprime k-subsemimo-
dule of R/I has the form A/I where A is a semiprime k-ideal of R containing I
by Corollary 2.20. Let B/I be any k-subsemimodule of R/I and let U/I and L/I
be semiprime k-subsemimodules of R/I such that (L/I) ∩ (U/I() ⊆ B/N . Then
(L ∩ U)/I ⊆ (L/I) ∩ (U/I) ⊆ B/I, so U ∩ L ⊆ B; hence either U ⊆ B or L ⊆ B
since T is extraordinary by Theorem 2.7. Thus either U/I ⊆ B/I or L/I ⊆ B/I,
as needed.

(ii) First we show that V (U/I) ∪ V (L/I) = V (U/I ∩ L/I) for any semiprime
subsemimodules U/I and L/I of R/I.

Clearly V (U/I) ∪ V (L/I) ⊆ V (U/I ∩ L/I). Let P/I ∈ V (U/I ∩ L/I), where
P is a semiprime by Corollary 2.20. Then U ∩ L ⊆ P and hence L ⊆ P or
U ⊆ P (see Theorem 2.7), i.e., P/I ∈ V (U/I) or P/I ∈ V (L/I). This proves that
V (U/I ∩ L/I) ⊆ V (U/I) ∪ V (L/I) ans hence V (U/I) ∪ V (L/I) = V (U/I ∩ L/I).
Next, let A/I and B/I be any subsemimodules of R/I. If V (A/I) is empty then
V (A/I) ∪ V (B/I) = V (B/I). Suppose that V (A/I) and V (B/I) are both non-
empty. Then V (A/I) ∩ V (B/I) = V (rad(A/I)) ∩ V (rad(B/I)) = V (rad(A/I) ∩
rad(B/I)). This proves (ii).

Example 2.22. Let R be the k-semiring as described in Example 2.3. Then
Spec(R) is compact and it is a T0-space by Theorems 2.15 and 2.17.
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