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A Zariski topology for k-semirings

Shahabaddin Ebrahimi Atani and Reza Ebrahimi Atani

Abstract. The prime k-spectrum Spec,(R) of a k-semiring R will be introduced. It will be
proven that it is a topological space, and some properties of this space will be investigated.
Connections between the topological properties of Spec, (R) and possible algebraic properties of
the k-semiring R will be established.

1. Introduction

Semirings which are regarded as a generalization of rings have been found useful in
solving problems in different disciplines of applied mathematics and information
sciences because semirings provides an algebraic framework for modeling. Ideals
of semirings play a central role in the structure theory and are useful for many
purposes. However, they do not in general coincide with the usual ring ideals and,
for this reason; their use is somewhat limited in trying to obtain analogues of ring
theorems for semirings. Indeed, many results in rings apparently have no analogues
in semirings using only ideals. Let R be a commutative ring with identity. The
prime spectrum Spec(R) and the topological space obtained by introducing Zariski
topology on the set of prime ideals of R play an important role in the fields of
commutative algebra, algebraic geometry and lattice theory. Also, recently the
notion of prime submodules and Zariski topology on Spec(M), the set of all prime
submodules of a module M over R, are studied by many authors (for example see
[11]). In this paper, we concentrate on Zariski topology of semirings and generalize
the some well known results of Zariski topology on the sets of prime ideals of a
commutative ring to prime ideals of a commutative semiring and investigate the
basic properties of this topology. For example, we prove that if R is a k-semiring,
then Spec, (R) is a Tp-space and it is a compact space.

Throughout this paper R is a commutative semiring with identity. For the
definitions of monoid, semirings, semimodules and subsemimodules we refer [1,
6, 8, 10, 11]. All semiring in this paper are commutative with non-zero identity.
Allen [1] has presented the notion of @-ideal I in the semiring R and constructed
the quotient semiring R/I (also see [3, 5, 7]). Let R be a semiring. A subtractive
ideal (= k-ideal) I is a ideal of R such that if z,x +y € I, then y € I (so {Or}
is a k-ideal of R). A prime ideal of R is a proper ideal P of R in which = € P or
y € P whenever xy € P. So P is prime if and only if whenever I.J C P for some
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ideals I, J of R implies that I C P or J C P. Furthermore, the collection of all
prime k-ideals of R is called the spectrum of R and denoted by Spec,(R). An ideal
I of R is said to be semiprime if I is an intersection of prime k-ideals of R. If T
is a proper ideal of R, then the radical rad(I) of I (in R) is the intersection of all
prime k-ideals of R containing I (see [4]). Note that I C rad(I) and that rad(I)
is a semiprime k-ideal of R. An ideal I of R is called extraordinary if whenever
A and B are semiprime k-ideals of R with ANB CI,then ACTor BCI. A
semiring is called a partitioning semiring, if every proper principal ideal of R is a
partitioning ideal (= a Q-ideal) (see [7]). A non-zero element a of a semiring R
with identity is said to be a semiunit in R if 1 + ra = sa for some r,s € R.

Lemma 1.1. Let R be a semiring. If {I;};ca is a collection of k-ideals of R, then
Y ieali and (o I; are k-ideals of R. O

2. Properties of top semirings

Let R be a semiring with 1 # 0. Then R has at least one maximal k-ideal and if
I is a proper @-ideal of R, then I C P for some maximal k-ideal P of R (see [5]).
Now by [3], R/P is a semifield and hence it is a semidomain. Thus P is prime and
Specy, (R) # 0 (see |3]). Then we have the following

Lemma 2.1. If P is a maximal Q-ideal of a semiring R, then P is a prime k-ideal
of R. In particular, Spec,(R) # 0. O

Let R be a semiring R with non-zero identity. For any k-ideal I of R by V(I)
we mean the set of all prime k-ideals of R containing I. Clearly, V(R) = () and

V({0}) = Spec(R).
Definition 2.2. A semiring is called a k-semiring, if every ideal of R is a k-ideal.

Example 2.3. Assume that F, be the set of all non-negative integers and let
R = E, U{oo}. Define a + b = max{a,b} and ab = min{a,b} for all a,b € R.
Then R is a commutative semiring with 1z = co and Og = 0. An inspection will
show that the list of ideals of R are: R, E; and for every non-negative integer n

I,={0,1,...,n}.

It is clear that every ideal of R is a k-ideal; so R is a k-semiring. Moreover, every
proper ideal of R is a prime k-ideal; so Spec(R) = {E, I, .. .}. O

Lemma 2.4. Let R be a k-semiring. Then the following statements hold:
(i) If S is a subset of R, then V(S) =V ((S)).
(i) V(I)UV(J)=V(IJ)=V(INJ) for every k-ideals I and J of R.
(#it) If I is a k-ideal of R, then V(I) =V (rad(I)).
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() IfV(I) CV(J), then J Crad(I) for every deals I,J of R.
(v) V()=V(J) if and only if rad(I)=rad(J) for every ideals I, J of R.
(vi) If {Ii}ien is a family of ideals of R, then V(3 ,cp 1i) = Niea V (Li).

Proof. (i) and (iv) are obvious.

(7) It is clear that V(I)UV(J) C V(INJ) C V(IJ). Let P € V(IJ). Then
IJ C P, and hence I C Por J C P. Thus P € V(I) or P € V(J), ie,
P € V(I)UV(J). Hence V(I.J) C V(I) UV(J).

(#i¢) Since I C rad(I), we have V(rad(I)) € V(I). For the reverse inclusion,
assume that P € V(I). Then I C P. Hence rad(I) C P, and so we have the
equality.

(v) Let V(I) = V(J). By (iii), we have V(I) C V(rad(J); hence rad(J) C rad(I)
by (iv). Similarly, rad(I) C rad(J), and so we have the equality. The other
implication is similar.

(vi) Let P € [;cp V(I;). Then I; C P for every i € A, so > ;. I; € P, which
implies that ()., V(1;) € V(3_;ca Ii). The reverse inclusion is similar. O

s
)

€A

Let R be a k-semiring. If ((R) denotes the collection of all subsets V(I) of
Spec, (R), then ((R) contains the empty set and Spec(R) = X and is closed under
arbitrary intersection by Lemma 2.4 (vi). If also {(R) is closed under finite union,
that is, for every ideals I and J of R such that V(I)UV(J) = V(L) for some ideal
L of R, for in this case ((R) satisfies the axioms of closed subsetes of a topological
spaces, which is called Zariski topology. The following definition is the same as
that introduced by MacCasland, Moore, and Smith in [11].

Definition 2.5. Let R be a k-semiring. An R-semimodule M equipped with
Zariski topology is called top semimodule. A k-semiring R which is a top semi-
module as an R-semimodule is called a top semiring.

Proposition 2.6. Every k-semiring with a non-zero identity is a top semiring.

Proof. Apply Lemma 2.4. O

Theorem 2.7. Every ideal of a k-semiring with a non-zero identity is extraordi-
nary.

Proof. Note that Spec,(R) # 0 by Lemma 2.1. Let P be any ideal of R and
let I and J be semiprime ideals of R such that I NJ C P. By Proposition 2.6,
there exists an ideal U of R such that V(1) UV (J) = V(U). Since I = ;.5 P,
where P; are prime k-ideals of R (i € A), for each i € A, P, € V(I) C V(U), so
that U C P;. Thus U C I. Similarly, U C J. Thus U C I NnJ. Now we have
VHUVJ) CVINJ)CVU)=VI)UV(J), thatis, V(I)UV(J) =V (INJ).
Hence P V(INJ) gives I C Por JC P. O
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Definition 2.8. A semiring is called a strong partitioning semiring, if every proper
finitely generated ideal of R is a partitioning ideal (= a Q-ideal).

Proposition 2.9. Assume that R is a strong partitioning semiring and let I be
the proper ideal of R generated by a family {a;}icn of elements R. Then I is a
Q-ideal of R.

Proof. Since R = |J{q+ Ra; : ¢ € Q} for some ¢ € A, we must have R = |J{q+ I :
geQ}. Let Xe (@ +D)N(g2a+1I)#0. Then X = q1 +rya4, +...+ 75,0, =
g2 + sj, a5, + ...+ sj,.a;, for some aj, ,a;, € I and r;,,s;, € R(1<t<n, 1<

k < m). Let J be the ideal of R generated by r;, a;,,...,7i, @i, ,Sj, jy - ., S}, 05, -
By assumption, J is a @-ideal of R and X € (¢1 + J) N (g2 + J); hence ¢1 = ¢o.
Thus I is a Q-ideal of R. O

Remark 2.10. Let X = Spec,(R). For each subset S of R, by Xg we mean
X-V(S)={PeX:S5¢ P} IfS={f}, then by X; we denote the set
{P e X :f¢ P} Clearly, the sets X, are open, and they are called basic open
sets. O

Theorem 2.11. Let R be a strong partitioning semiring and X = J;cp Xa,- If I
is the ideal of R generated by {a;}ica, then I = R.

Proof. Suppose not. Since [ is a proper (Q-ideal of R by Proposition 2.9, we have
I C P for some maximal k-ideal P of R. By assumption, P ¢ X, for every i € A,
which is a contradiction. O

Theorem 2.12. Let R be a strong partitioning semiring. Then the following
statements hold:

(1) XyNX, =Xy forall f,e € R.
(it) Xy =0 1if and only if f is nilpotent.
(191) Xy =X if and only if f is a semiunit in R.

Proof. (i) If P € XyNX,, thene, f ¢ P, soef ¢ P, which implies that P € X¢..
Thus Xy N X, C X.r. The other inclusion is similar.

(#4) Assume that an element f is nilpotent and let P be any element of X. Then
f® =0 € P for some positive integer s. Thus P prime k-ideal gives f € P; hence
P ¢ X; for every P € X. Thus X; = (). Conversely, assume that X; = (). Then
for each P € X, we have f € P; whence f € (|pcx P = rad(0) (see [4]). Thus f
is nilpotent.

(43¢) Let f be a semiunit. Since the inclusion Xy C X is trivial, we will prove the
reverse inclusion. Let P be any element of X. If Rf C P, then R = P by [5],
which is a contradiction. Thus f ¢ P; hence P € X, and so we have equality.
Conversely, assume that X = X;. Then for any P € X, we must have f ¢ P. If
f is not a semiunit in R, then Rf is a Q-ideal of R and hence it is contained in
a maximal k-ideal of R which is a prime k-ideal by Lemma 2.1, a contradiction.
Thus f is semiunit. O



A Zariski topology for k-semirings 33

Theorem 2.13. Let R be a k-semiring. Then the set A = {X;: f € R} forms a
base for the Zariski topology on X.

Proof. Suppose that U is an open set in X. Then U = X — V(I) for some k-
ideal T of R. Let I = ({f; : i € A}), where {f; : i € A} is a generator set of
I. Then V(I) = V(3 _;cp BRfi) = Niea V(Rfi) by Lemma 2.4(vi). It follows that
U=X-V(I)=X —iea V(Rfi) = U;ep Xs,- Thus A is a base for the Zariski
topology on X. O

Proposition 2.14. Let I be an ideal of a k-semiring R. Then
(1) X1=Uguer Xa- Moreover, if I= (a1, az,...,an), then X;=J;_; Xq,.

(i7) Let {a;}ica be the collection of elements of R and a € R. Then X, C
Uica Xa, if and only if there are elements a;,, ..., a;, € {ai}icr such that
a €rad({a;,...,a:,)).

Proof. (i) Assume that a € I and let P € X,,. Then a ¢ P which implies P € X.
Thus Uael X, € X;. For the reverse inclusion, assume that P € X;. Then
P € X, for some b € I — P, and so we have the equality. Finally, since the
inclusion U?:1 Xa, € X7 is clear, we will prove the reverse inclusion. Let P € X7.
Then there exist a € I — P and r; € R (1 < ¢ < n) such that P € X, and
a =" ra; It follows that there exists a positive integer j (1 < j < n) such
that a; ¢ P; hence P € X,;, as needed.

(#4) Let a € rad({a;,,...,a;,)). Then there exists a positive integer m and r; € R
(1 <4 < n)such that a™ = Y7 7ja;,. Now, let P € X,. Soa ¢ P gives a™ ¢ P;
hence P € X‘lik for some k. Thus X, C (J;cp Xa,-

Conversely, assume that X, C (J;cp Xo, and let I be the ideal of R gen-
erated by {a; : i € A}. It is clear that if P € X and P ¢ |J;cp X4, then
a; € P implies that a € P. Therefore we have V(I) C V({a)). It follows that
a € ﬂpev(<a>)P - ﬂPeV(I)P = rad(I). So, there exist i1,42,...,is € A and
t1,t2,...,ts € R such that a™ = tia;, + ... + tsa;, for some positive integer m;
thus a € rad({a;,,...,a;,)). O

Theorem 2.15. Let R be a k-semiring. For every a € R, the set X, is compact.
Specifically the whole space X1 = X is compact.

Proof. By Theorem 2.13, it suffices to show that every cover of basic open sets has
a finite subcover. Suppose that X, C (J;c, Xq,. By Proposition 2.14 (i), there are
@iy .- -,0;, € R such that a € rad({a;,,...,a;,)). Since V(rad({a;,,...,a,))) =
V({ai,...,a;,)) by Lemma 2.4 (i), we must have X, C |J_, X,, by Proposition
2.14 (i). This completes the proof. O

From Theorem 2.13 and Theorem 2.15 the next result is immediate.

Corollary 2.16. Let R be a k-semiring. Then an open set of X is compact if and
only if it is a finite union of basic open sets. O
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Let R be a k-semiring. The topological space X = Spec,(R) is said to be a
To-space if for every P,P' € X, P # P’ there is either a neighborhood X, of P
such that X, N P’ = () or a neighborhood X, of P’ such that X, N P = ().

Theorem 2.17. Let R be a k-semiring. Then the topological space X = Spec,(R)
1s a Tp-space.

Proof. Let P,P’ € X with P # P’. We note that the set X, is a neighborhood of
Pif and only if a ¢ P. Assume that P’ € X, for all a ¢ P. Then we conclude that
a € P’ implies that @ € P; hence P’ C P. Now let b € P — P’. Then b ¢ P’ gives
X, is a neighborhood of P/, but b € P, so P ¢ X,. This completes the proof. [

Quotient semimodules over a semiring R have already been introduced and
studied by present authors in [6]. Chaudhari and Bonde extended the definition of
@ v-subsemimodule of a semimodule and some results given in the Section 2 in [6]
to a more general quotient semimodules case in [8] (for the structure of quotient
semimodules we refer [8]).

Convention. For each @Qg-subsemimodule I of the R-semimodule R, we mean [
is a Qp-ideal of R. Now If I is a Qg-ideal of a semiring R, then R/I is a quotient
semimodule of R by I. Now we give an example of semimodules over a semiring
that are top semimodules.

Lemma 2.18. Let I be a Qgr-ideal (or a Qgr-subsemimodule) of a semiring R. If
J is a k-ideal of R containing I, then (J :g R) = (J/I :r R/I).

Proof. Let r € (J: R). If ¢+ I € R/I, then there exists a unique element ¢’ of
Qg such that r(¢g+ 1) =¢ + 1, whererq+1 C ¢ +1;s0 ¢ € JNQR since rq € J
and J is a k-ideal. Thus (J: R) C (J/I: R/I).

Conversely, assume that a € (J/I: R/I) and s € R. Then s = g; + t for some
q1 € Qr and t € I; so there is a unique element gs of Qg with a(qg1 +1) = g2+ 1 €
J/I, where aq1 + I C g2 + I. Thus J k-ideal gives ag; € J. As as = aq; +at € J,
we have a € (J: R). O

Proposition 2.19. Let I be a Qr-ideal of a semiring R. Then there is a one-
to-one correspondence between prime k-subsemimodules of R-semimodule R/I and
prime k-ideals of R containing I.

Proof. Let J be a prime k-ideal of R containing I. Then it follows from [3] that
J/I is a proper k-subsemimodule of R/I. Let a(q1 +I) = g2 + 1 € J/I, where
g2 € QrNJ and ag; + I C g2 + I, so aq; € J since J is a k-ideal of R. But J
is prime, hence either ¢ € J (so 1 +1 € J/I) ora € (J: R) = (J/I: R/I) by
Lemma 2.18. Thus, J/I is a prime k-subsemimodule of R/I.

Conversely, assume that J/I is a prime k-subsemimodule of R/I. To show
that J is a prime k-ideal of R, suppose that rx € J, where r,x € R. We may
assume that r # 0. There are elements ¢ € Qr and n € I such that = ¢ + n,
so rz = rq+rn € J; hence rq € J since J is a k-ideal. Therefore, there exists a
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unique element ¢’ € Qg such that r(¢+ I) = ¢ + I, where rq¢+ I C ¢’ + I; hence
q € J. Thus r(¢+I) € J/I. Then J/I prime gives either ¢+ I € J/I (so z € J)
orr e (J/I:R/I)=(J:R), and the proof is complete. O

Corollary 2.20. Let I be a Qr-ideal of a semiring R. Then there is a one-to-
one correspondence between semiprime k-subsemimodules of R/I and semiprime
k-ideals of R containing I.

Proof. Apply Theorem 2.19 (note that ((,c; P;)/I = (\;c;(Pi/I), where P; is a
prime k-ideal for all i € J). O

Theorem 2.21. Let I be an Qr-ideal of a semiring R with a non-zero ideantity.
Then the following statements hold:

(1) Every k-subsemimodule of R/I is extraordinary.
(#6) R/I is a top R-semimodule.

Proof. (i) We may assume that Spec(R/I) # (. Then any semiprime k-subsemimo-
dule of R/I has the form A/I where A is a semiprime k-ideal of R containing I
by Corollary 2.20. Let B/I be any k-subsemimodule of R/I and let U/I and L/I
be semiprime k-subsemimodules of R/I such that (L/I) N (U/I() C B/N. Then
(LNU)/I C(L/I)n(U/I)C B/I,s0o UNLC B; hence either U C Bor L C B
since T is extraordinary by Theorem 2.7. Thus either U/I C B/I or L/I C B/I,
as needed.
(#) First we show that V(U/I) U V(L/I) = V(U/I N L/I) for any semiprime
subsemimodules U/I and L/I of R/I.

Clearly V(U/I)UV(L/I) CV(U/INL/I). Let P/T € V(U/INL/I), where
P is a semiprime by Corollary 2.20. Then U N L C P and hence L. C P or
U C P (see Theorem 2.7), i.e., P/I € V(U/I) or P/I € V(L/I). This proves that
V(U/INL/I) CV(U/I)JUV(L/I) ans hence V(U/I)UV(L/I)=V(U/INL/I).
Next, let A/I and B/I be any subsemimodules of R/I. If V(A/I) is empty then
V(A/T)uUV(B/I) = V(B/I). Suppose that V(A/I) and V(B/I) are both non-
empty. Then V(A/I)NV(B/I) = V(rad(A4/I)) NV (rad(B/I)) = V(rad(A/I) N
rad(B/I)). This proves (ii). O

Example 2.22. Let R be the k-semiring as described in Example 2.3. Then
Spec(R) is compact and it is a Tp-space by Theorems 2.15 and 2.17. O
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