THE INTERPRETATION AND EQUIVALENCE OF THE VARIETY OF n-GROUPS

Antoni Chronowski

Abstract

In this paper the varieties of n-ary groups are studied from the point of view of the interpretation and equivalence.

In this paper we deal with the interpretation and equivalence of the variety of n-groups. First of all, we shall recall some definitions and theorems from the theory of universal algebras (cf. [4]). We use the letter A to denote the universe of the algebra \underline{A} . Let F be a similarity type of an algebra \underline{A} . The subset of all n-ary function symbols in F is denoted by F_n for n = 0,1,2,...

Definition 1. Let F be a similarity type. Let $\omega = \{0,1,2,...,n,...\}$. By a term (of type F) we mean an element of the term algebra $T_F(\omega)$. We put $z_n = (n)$, and the terms z_n $(n \in \omega)$ are called variables.

For every $n \ge 0$ the term algebra $T_F(n)$ is the subalgebra of $T_F(\omega)$ generated by $Z_n = \{z_0, z_1, ..., z_{n-1}\}$. If n = 0, then $Z_0 = \emptyset$. If $F_0 = \emptyset$, then the algebra $T_F(0)$ does not exist.

Assume that \underline{A} is an algebra of type F. If $p \in T_F(\omega)$ then $p^{\underline{A}}$ denotes the term operation of the algebra \underline{A} determined by the

term p. We use the symbols $Clo(\underline{A})$ and $Pol(\underline{A})$ to denote the clones of term operations and polynomial operations of an algebra \underline{A} , respectively.

Definition 2. Two algebras \underline{A} and \underline{B} are called *term* equivalent if

- (i) A = B,
- (ii) $Clo(\underline{A}) = Clo(\underline{B})$.

Definition 3. Two algebras \underline{A} and \underline{B} are called polynomially equivalent if

- (i) A = B,
- (ii) $Pol(\underline{A}) = Pol(\underline{B})$.

Definition 4. Let V and W be varieties of respective similarity types F and G. By an interpretation of V in W a mapping $D: F \to T_G(\omega)$ is meant satisfying the following conditions:

- (D1) If $f \in F_n$ and n > 0, then $D(f) = f_D \in T_G(n)$;
- (D2) If $f \in F_0$, then $D(f) = f_D \in T_G(1)$ and the equation $f_D(z_0) \approx f_D(z_1)$ is valid in W;
- (D3) For every algebra $\underline{A} \in W$, the algebra $\underline{A}^D = (A, f_D^{\underline{A}} \ (f \in F))$ belongs to the variety V.

Definition 5. By an equivalence of varieties V and W a pair of interpretations (D,E) is meant satisfying the following conditions:

- 1) D is an interpretation of V in W;
- 2) E is an interpretation of W in V;

- 3) $\forall \underline{A} \in W$: $\underline{A}^{DE} = \underline{A}$;
- 4) $\forall B \in V$: $\underline{B}^{ED} = \underline{B}$.

Now we present the fundamental definitions and theorems from the theory of n-groups (cf. [1], [5], [6]). For simplicity of notation, it will be convenient to abbreviate $x_1, ..., x_k$, as x_1^k . If $x_1 = x_2 = ... = x_k = x$, then we write x^k .

Definition 6. An algebra $\underline{A} = (A, f)$ endowed with an n-ary operation $f: A^n \to A$ $(n \ge 2)$ is called an n-groupoid (a groupoid for n = 2).

Definition 7. An *n*-groupoid $\underline{A} = (A, f)$ is said to be an *n*-group if the following conditions hold:

(1) for all $x_1,...,x_{2n-1} \in A$ the associative law

$$f(x_1^{i-1}, f(x_i^{n+i-1}), x_{n+i}^{2n-1}) = f(x_1^{j-1}, f(x_j^{n+j-1}), x_{n+j}^{2n-1})$$

holds for all $i, j \in \{1, ..., n\}$;

(2) for every $k \in \{1,...,n\}$ and for all $x_0,x_1,...,x_{k-1},x_{k+1},...,x_n \in A$ there exists an uniquely element $z_k \in A$ such that

$$f(x_1^{k-1}, z_k, x_{k+1}^n) = x_0.$$

Theorem 1 (cf. [2]). An n-groupoid $\underline{A} = (A, f)$ is an n-group if and only if

$$f(x_1^n) = x_1 \cdot \alpha(x_2) \cdot \alpha^2(x_3) \dots \alpha^{n-2}(x_{n-1}) \cdot \alpha \cdot x_n$$
 (3)

for all $x_1,...,x_n \in A$, where the following conditions hold:

(i) (A, -1, e) is a group;

(ii) $a \in A$ is a fixed element;

(iii)
$$\alpha \in Aut(A, -1, e)$$
, $\alpha(a) = a$, $\alpha^{n-1}(x) = a \cdot x \cdot a^{-1}$ for every $x \in A$.

Definition 8. An algebra $\underline{A}^{(n)} = (A_r, {}^1, e, \alpha, \alpha^{-1}, a)$ fulfilling the conditions (3) and (i)-(iii) of **Theorem 1** is called an α -algebra associated with the n-group $\underline{A} = (A, f)$

For simplicity, this algebra will be denoted by $\underline{A}^{(n)} = (A, \alpha, a)$. From now on, we consider n-groups with $n \ge 3$.

Theorem 2 (cf. [1]). If $\underline{A} = (A, f)$ is an n-group, then there is a unary operation $x \to \overline{x}$ on the set A such that

$$f(\bar{x}, x^{n-2}, y) = y$$
 and $f(y, x^{n-2}, \bar{x}) = y$ (4)

for all $x, y \in A$. Conversely, if a nonempty set A carries an n-ary operation f and a unary operation $x \to \overline{x}$ satisfying the conditions (1) and (4), then $\underline{A} = (A, f)$ is an n-group.

In view of **Theorem 2**, an *n*-group will often be defined as an algebra $\underline{A} = (A, f, -)$ equipped with an *n*-ary operation f and an unary operation $x \to \overline{x}$ satisfying the conditions (1) and (4). The element \overline{x} is usually called a *skew element*.

Let $\underline{A} = (A, f, -)$ be an *n*-group. Let $p \in A$ be an arbitrary fixed element. Using the Sokolov method (cf. [6]) we can construct an α -algebra $\underline{A}^{(n)} = (A, \alpha, \alpha)$ associated with the *n*-group $\underline{A} = (A, f, -)$ in the following way.

Define the binary operation according to the formula

$$x \cdot y = f(x, p^{n-1}, y)$$

for all $x, y \in A$. Let $\alpha: A \to A$ be the mapping defined by

$$\alpha(x) = f(\overline{p}, x, p^{n-2})$$

for $x \in A$. Finally, let us take

$$a = f(\overline{p}^n)$$

The α -algebra $\underline{A}^{(n)} = (A, \cdot, \alpha, a)$ associated with the n-group $\underline{A} = (A, f, -)$ and constructed by means of the above method will be denoted by $\underline{A}_p^{(n)} = (A, \cdot, \alpha, a)$.

From **Theorem 2** it follows that the class of all n-groups is a variety which will be denoted by V_n . It is easy to verify that

$$p(x, y, z) = f(x, y, y^{n-3}, z)$$

is a Malcev term for V_n . Thus the variety V_n is congruence-permutable.

For $n \ge 3$ we define an algebra

$$\underline{A}^{(n)} = (A, -1, e, \alpha, \alpha^{-1}, a)$$
 (5)

fulfilling the following conditions:

- (i) (A, -1, e) is a group;
- (ii) $\forall x, y \in A$: $\alpha(x \cdot y) = \alpha(x) \cdot \alpha(y)$;
- (iii) $\forall x \in A$: $\alpha(\alpha^{-1}(x)) = \alpha^{-1}(\alpha(x)) = x$;
- (iv) $\alpha(a) = a$;
- (v) $\forall x \in A$: $\alpha^{n-1}(x) = a \cdot x \cdot a^{-1}$.

For simplicity, this algebra will be denoted by $\underline{A}^{(n)} = (A, \alpha, \alpha)$.

Definition 9. The algebra $\underline{A}^{(n)}$ defined by (5) is called an α -algebra.

For an arbitrary fixed $n \ge 3$ the class of all α -algebras $\underline{A}^{(n)}$ is a Malcev variety and it will be denoted by W_n .

Theorem 3. The variety V_n is interpretable into the variety W_n .

Proof. Let us consider the similarity types $F = \{f, -\}$ and $G = \{\cdot, ^{-1}, e, \alpha, \alpha^{-1}, a\}$ of the varieties V_n and W_n , respectively. We define the mapping $D: F \to T_G(\omega)$ according to the formulas:

$$D(f) = z_1 \cdot \alpha(z_2) \cdot \alpha^2(z_3) + \alpha^{n-2}(z_{n-1}) \cdot a \cdot z_n$$

where $z_1, z_2, ..., z_n \in T_G(n)$ are variables, and

$$D(-) = a^{-1} \cdot \alpha^{n-2}(z^{-1}) ... \cdot \alpha^{2}(z^{-1}) \cdot \alpha(z^{-1})$$

where $z \in T_G(1)$ is a variable. It follows immediately that conditions (D1) and (D2) of **Definition 4** are satisfied. Assume that $\underline{A} = (A, -1, e, \alpha, \alpha^{-1}, a) \in W_n$. Let us take

$$f(x_1^n) = x_1 \cdot \alpha(x_2) \cdot \alpha^2(x_3) \dots \alpha^{n-2}(x_{n-1}) \cdot \alpha \cdot x_n,$$

$$\overline{x} = a^{-1} \cdot \alpha^{n-2}(x^{-1}) \dots \alpha^2(x^{-1}) \cdot \alpha(x^{-1})$$

for all $x, x_1, ..., x_n \in A$. It is easy to check that $\underline{A}^D = (A, f, -) \in V_n$. Consequently, the condition (D3) holds.

Corollary 1. For every α -algebra $\underline{A} \in W_n$ there exists an n-group $\underline{A}^D \in V_n$ such that $\operatorname{Clo}(\underline{A}^D) \subset \operatorname{Clo}(\underline{A})$.

The variety W_n is not interpretable into the variety V_n

Example 1. Consider the Klein group with the universe $A = \{e, a, b, c\}$. The mapping

$$\alpha(e) = e$$
, $\alpha(a) = b$, $\alpha(b) = a$, $\alpha(c) = c$

is an automorphism of the above group. We define the 3-group $\underline{A} = (A, f, -)$ as follows

$$f(x_1, x_2, x_3) = x_1 \alpha(x_2) x_3$$

for all $x_1, x_2, x_3 \in A$. The 3-group \underline{A} has the two different one-element 3-subgroups with the subinverses $\{e\}$ and $\{c\}$. On the other hand, there are no α -algebras of the variety W_3 with two different one-element α -subalgebras.

Definition 10. Let us consider an algebra $\underline{A} = (A, f, -, p)$ fulfilling the following conditions:

- (i) the reduct (A, f, -) is an n-group,
- (ii) p is a constant 0-ary operation such that p = p. An algebra $\underline{A} = (A, f, -, p)$ is called an n-group with constant.

The class V_n^0 of all n-groups with constant is a Malcev variety. Let W_n^0 be a class of all α -algebras $\underline{A}^{(n)} = (A, \cdot, ^{-1}, e, \alpha, \alpha^{-1}, a)$ of the variety W_n such that a = e. In this case we write $\underline{A}^{(n)} = (A, \cdot, ^{-1}, e, \alpha, \alpha^{-1})$. Since any α -algebra $\underline{A}^{(n)} = (A, \cdot, ^{-1}, e, \alpha, \alpha^{-1})$ belongs to the class of Ω -groups (cf. [3]) with $\Omega = \{\alpha, \alpha^{-1}\}$, it will be referred to as an α -group. The class W_n^0 is a Malcev variety.

Theorem 4. The varieties V_n^0 and W_n^0 are equivalent.

Proof. Let $F = \{f, -, p\}$ and $G = \{-, -1, e, \alpha, \alpha^{-1}\}$ be similarity types of the varieties V_n^0 and W_n^0 , respectively. We define the mapping $D: F \to T_G(\omega)$ as follows:

$$D(f) = z_1 \cdot \alpha(z_2) \cdot \alpha^2(z_3) \dots \alpha^{n-2}(z_{n-1}) \cdot z_n,$$

where $z_1,...,z_n \in T_G(n)$ are variables,

$$D(-) = \alpha^{n-2}(z^{-1}) \dots \alpha^{2}(z^{-1}) \cdot \alpha(z^{-1}),$$
$$D(p) = z \cdot z^{-1},$$

where $z \in T_G(1)$ is a variable.

The conditions (D1) and (D2) are satisfied. Suppose that $\underline{A}^{(n)} = (A, \cdot, -1, e, \alpha, \alpha^{-1}) \in W_n^0$. Let us put:

$$f(x_1^n) = x_1 \cdot \alpha(x_2) \cdot \alpha^2(x_3) \dots \alpha^{n-2}(x_{n-1}) \cdot x_n,$$

$$\bar{x} = \alpha^{n-2}(x^{-1}) \dots \alpha^2(x^{-1}) \cdot \alpha(x^{-1}),$$

$$p = e$$

for all $x, x_1, ..., x_n \in A$. It is easy to check that $(\underline{A}^{(n)})^D = (A, f, -, e) \in V_n^0$. Thus, D is an interpretation of V_n^0 in W_n^0 . Next, we define the mapping $E: G \to T_F(\omega)$ as follows:

$$E(\cdot) = f(z_1, p^{n-2}, z_2)$$

where $z_1, z_2 \in T_F(2)$ are variables,

$$E(^{-1}) = f(p, \overline{z}, z^{n-3}, p),$$

$$E(e) = f(\overline{z}, z^{n-2}, p),$$

$$E(\alpha) = f(p, z, p^{n-2}),$$

$$E(\alpha^{-1}) = f(p^{n-2}, z, p)$$

where $z \in T_F(1)$ is a variable.

The mapping E satisfies the conditions (D1) and (D2).

Suppose that $\underline{A} = (A, f, -, p) \in V_n^0$. Let us put:

$$x_1 \cdot x_2 = f(x_1, p^{n-2}, x_2).$$

$$x^{-1} = f(p, x, x^{n-3}, p),$$

$$e = p,$$

$$\alpha(x) = f(p, x, p^{n-2}),$$

$$\alpha^{-1}(x) = f(p^{n-2}, x, p)$$

for all $x, x_1, x_2 \in A$.

Using the Sokolov method it is easy to check that $\underline{A}^E = (A, \cdot, ^{-1}, e, \alpha, \alpha^{-1}) \in W_n^0$. Thus E is an interpretation of W_n^0 in V_n^0 . A straightforward computation shows that $(\underline{A}^{(n)})^{DE} = \underline{A}^{(n)}$ and $\underline{A}^{ED} = \underline{A}$. The pair of interpretations (D, E) is an equivalence of varieties V_n^0 and W_n^0 .

As an immediate consequence of Theorem 4 we obtain the following corollary.

Corollary 2. If \underline{A} is an n-group with constant p, then the algebras \underline{A} and $\underline{A}_p^{(n)}$ are term equivalent.

Proposition 1. Let $\underline{A} = (A, f, -, p)$ be a 3-group with an arbitrary fixed constant p (not necessarily $p = \overline{p}$). The algebras \underline{A} and $\underline{A}_p^{(3)} = (A, \alpha, \alpha)$ are term equivalent.

Proof. Since

$$x \cdot y = f(x, p, y),$$

$$x^{-1} = f(\overline{p}, \overline{x}, \overline{p}),$$

$$e = \overline{p},$$

$$\alpha(x) = f(\overline{p}, x, p),$$

$$\alpha^{-1}(x) = f(p, x, \overline{p}),$$

$$a = f(\overline{p}, \overline{p}, \overline{p})$$

for all $x, y \in A$, we conclude that $Clo(\underline{A}_p^{(3)}) \subset Clo(\underline{A})$. We have

$$f(x_1, x_2, x_3) = x_1 \cdot \alpha(x_2) \cdot a \cdot x_3,$$
$$\overline{x} = a^{-1} \cdot \alpha(x^{-1}),$$
$$p = a^{-1}$$

for all $x, x_1, x_2, x_3 \in A$. Consequently, $Clo(\underline{A}) \subset Clo(\underline{A}_p^{(3)})$.

On the whole, an n-group \underline{A} with an arbitrary fixed constant p (not necessarily $p=\overline{p}$) is not term equivalent to an α -algebra $A_p^{(n)}$ for n>3. Consider a suitable example.

Example 2. Let Z_4 be the additive group of the integers modulo 4. Consider the 4-group $\underline{A} = (Z_4, f, -1)$ with constant 1 defined according to the formula

$$f(x_1^4) = x_1 + x_2 + x_3 + x_4 + 2$$

for all $x_1, x_2, x_3, x_4 \in \mathbb{Z}_4$. Define the mapping

$$\varphi(3) = 0$$
, $\varphi(1) = 3$, $\varphi(2) = 2$, $\varphi(3) = 1$

The mapping φ is an automorphism of the algebra $\underline{A}_1^{(4)} = (Z_4, +, \mathrm{id}_{Z_4}, 2)$, but it is not an automorphism of the 4-group \underline{A} . Thus the algebras \underline{A} and $\underline{A}_1^{(4)}$ are not term equivalent.

Proposition 2. Let $\underline{A} = (A, f, -)$ be an n-group, and let $\underline{A}^{(n)} = (A, \alpha, \alpha)$ be an α -algebra associated with the n-group \underline{A} . Then the algebras \underline{A} and $\underline{A}^{(n)}$ are polynomially equivalent.

Proof. Since

$$f(x_1^n) = x_1 \cdot \alpha(x_2) \cdot \alpha^2(x_3) \dots \alpha^{n-2}(x_{n-1}) \cdot \alpha \cdot x_n,$$

$$\overline{x} = \alpha^{-1} \cdot \alpha^{n-2}(x^{-1}) \dots \alpha^2(x^{-1}) \cdot \alpha(x^{-1}),$$

for all $x, x_1, ..., x_n \in A$, we conclude that $\operatorname{Pol}(\underline{A}) \subset \operatorname{Pol}(\underline{A}^{(n)})$. Note that $\overline{e} = a^{-1}$. It is easy to prove that

$$x \cdot y = f(x, e^{n-3}, \overline{e}, y),$$

$$x^{-1} = f(e, \overline{x}, x^{n-3}, e),$$

$$\alpha(x) = f(e, x, e^{n-3}, \overline{e}),$$

$$\alpha^{-1}(x) = f(\overline{e}, e^{n-3}, x, e)$$

for all $x, y \in A$. Therefore $Pol(\underline{A}^{(n)}) \subset Pol(\underline{A})$.

Corollary 3. Let $\underline{A} = (A, f, -)$ be an n-group, and let $\underline{A}^{(n)} = (A, \cdot, \alpha, a)$ be an α -algebra associated with the n-group \underline{A} . Then there exists a constant $p \in A$ such that the algebra A' = (A, f, -, p) is term equivalent to the α -algebra $\underline{A}^{(n)}$.

It is sufficient to take p = e.

References

- 1. W.A. Dudek, K. Glazek, B. Gleichgewicht, A note on the axioms of n-groups, Colloq. math. Soc. J. Bolyai, 29, Universal Algebra, Esztergom 1977, p. 195-202.
- 2. M. Hosszu, On the explicit form of n-group operations, Publ. Math., Debrecen, 10(1963), p. 88-92.
- 3. A.G. Kurosh, Lectures on General Algebra, Chelsea, New York, 1963.
- 4. R.N. McKenzie, G.F. McNulty, W.F. Taylor, Algebras, lattices, varieties, vol. 1, The Wadsworth and Brooks/Cole Mathematics Series, Monterey, California, 1987.
- 5. J.D. Monk, F.M. Sioson, On the general theory of m-groups, Fund. Math. 72(1971), p. 233-244.
- 6. E.I. Sokolov, On the Gluskin-Hosszu theorem on the Dornte n-groups (Russian) Mat. Issled. 39(1976), p. 187-189.

Ghronowski A. Ph.D.

Institute of Mathematics, Pedagogical University, ul. Podchorazych, 2, 30-084 Krakow POLAND Received October 20, 1993