Roughness in ternary semigroups

Muhammad Shabir and Noor Rehman

Abstract. In this paper we introduced the notions of rough left (right, lateral) ideal and rough prime ideals in ternary semigroup, and studied some properties of these ideals.

1. Introduction and preliminaries

The notion of rough set introduced by Z. Pawlak in his pioneering paper [7] and that of ternary semigroup by D. H. Lehmer in 1932 [6]. In this paper, we introduce lower and upper approximations with respect to the congruences on a ternary semigroup.

A ternary semigroup is an algebraic structure (S, f) such that S is a nonempty set and $f: S^3 \to S$ is a ternary operation satisfying the following associative law:

$$f(f(a, b, c), d, e) = f(a, f(b, c, d), e) = f(a, b, f(c, d, e)).$$

For simplicity we write f(a, b, c) as *abc*. A non-empty subset T of a ternary semigroup S is said to be a *ternary subsemigroup* of S if $TTT = T^3 \subseteq T$, that is $abc \in T$ for all $a, b, c \in T$.

By a left (right, lateral (middle)) ideal of a ternary semigroup S we mean a non-empty subset A of S such that $SSA \subseteq A$ ($ASS \subseteq A$, $SAS \subseteq A$). By a two sided ideal, we mean a subset of S which is both a left and a right ideal of S. If a non-empty subset of S is a left, right and lateral ideal of S, then it is called an *ideal* of S.

A non-empty subset A of a ternary semigroup S is called a *bi-ideal* of S if $AAA \subseteq A$ and $ASASA \subseteq A$ (cf. [2]).

For an equivalence relation ρ on S and a subset A of S we define two subsets

$$\rho_{-}(A) = \{ x \in S : [x]_{\rho} \subseteq A \}, \qquad \rho^{-}(A) = \{ x \in S : [x]_{\rho} \cap A \neq \emptyset \}$$

called ρ -lower and ρ -upper approximations of A, respectively.

²⁰¹⁰ Mathematics Subject Classification: 20N10

Keywords: Ternary semigroup, rough left ideal, rough prime ideal.

Theorem 1.1. Let ρ and λ be equivalence relations on a certain set S. If A and B are non-empty subsets of S, then

- (1) $\rho_{-}(A) \subseteq A \subseteq \rho^{-}(A),$
- (2) $\rho^{-}(A \cup B) = \rho^{-}(A) \cup \rho^{-}(B),$
- (3) $\rho_{-}(A \cap B) = \rho_{-}(A) \cap \rho_{-}(B),$
- (4) $A \subseteq B$ implies $\rho_{-}(A) \subseteq \rho_{-}(B)$,
- (5) $A \subseteq B$ implies $\rho^{-}(A) \subseteq \rho^{-}(B)$,
- (6) $\rho_{-}(A) \cup \rho_{-}(B) \subseteq \rho_{-}(A \cup B),$
- (7) $\rho^{-}(A \cap B) \subseteq \rho^{-}(A) \cap \rho^{-}(B),$
- (8) $\rho \subseteq \lambda$ implies $\rho_{-}(A) \supseteq \lambda_{-}(A)$,
- (9) $\rho \subseteq \lambda$ implies $\rho^{-}(A) \subseteq \lambda^{-}(A)$.

The proof is analogous to the proof presented in [7].

2. Rough ideals in a ternary semigroup

Definition 2.1. A congruence ρ on a ternary semigroup S is called *stable* or *compatible* with the operation if $[a]_{\rho}[b]_{\rho}[c]_{\rho} = [abc]_{\rho}$ for all $a, b, c \in S$.

The following example shows that there are congruences which are not stable.

Example 2.2. Let $S = \{a, b, c, d, e\}$ be a semigroup with respect to * and xyz = (x * y) * z for all $x, y, z \in S$. Where * is defined by the table:

*	a	b	c	d	e
a	b	b	d	d	d
b	b	b b d d d	d	d	d
c	d	d	c	d	c
d	d	d	d	d	d
e	d	d	c	d	c

Then S is a ternary semigroup. Let ρ be a congruence on S such that the ρ -congruence classes are the subsets $\{a, b\}, \{c, d\}, \{e\}$.

Then clearly ρ is not stable, since $[a]_{\rho}[c]_{\rho}[a]_{\rho} \neq [aca]_{\rho}$.

Definition 2.3. Let ρ be a congruence on a ternary semigroup S. Then a non-empty subset A of S is called an upper (resp. lower) rough ternary subsemigroup of S if $\rho^{-}(A)$ (resp. $\rho_{-}(A)$) is a ternary subsemigroup of S. A is called an *upper* (resp. *lower*) rough left (right, lateral, two sided) ideal of S if $\rho^{-}(A)$ (resp. $\rho_{-}(A)$) is a left (right, lateral, two sided) ideal of S. **Lemma 2.4.** Let ρ be a congruence relation on a ternary semigroup S. If A, B and C are non-empty subsets of S, then $\rho^{-}(A)\rho^{-}(B)\rho^{-}(C) \subseteq \rho^{-}(ABC)$.

Proof. If $d \in \rho^{-}(t)\rho^{-}(B)\rho^{-}(C)$, then d = abc for some $a \in \rho^{-}(A)$, $b \in \rho^{-}(B)$, $c \in \rho^{-}(C)$. Thus there exist elements $x, y, z \in S$ such that $x \in [a]_{\rho} \cap A$, $y \in [b]_{\rho} \cap B$, $z \in [c]_{\rho} \cap C$. This implies that $x \in [a]_{\rho}$, $y \in [b]_{\rho}$, $z \in [c]_{\rho}$ and $x \in A$, $y \in B$, $z \in C$.

Since ρ is a congruence on S, so $xyz \in [abc]_{\rho}$. Also $xyz \in ABC$. Thus we have $xyz \in [abc]_{\rho} \cap ABC$. This implies that $abc \in \rho^{-}(ABC)$.

The following example shows that the equality in Lemma 2.4 does not hold in general.

Example 2.5. Consider the ternary semigroup S and congruence relation ρ as given in Example 2.2. Let $A = \{a, b\}, B = \{b, c\}, C = \{d\}$. Then $\rho^{-}(A) = \{a, b\}, \rho^{-}(B) = \{a, b, c, d\}, \rho^{-}(C) = \{c, d\}$. Thus $\rho^{-}(A)\rho^{-}(B)\rho^{-}(C) = \{d\}$ and $\rho^{-}(ABC) = \{x \in S : [x]_{\rho} \cap (ABC) = \{c, d\}$. Therefore, $\rho^{-}(ABC) \notin \rho^{-}(A)\rho^{-}(B)\rho^{-}(C)$.

Lemma 2.6. Let ρ be a stable congruence on a ternary semigroup S. If A, B, C are non-empty subsets of S, then $\rho_{-}(A) \rho_{-}(B) \rho_{-}(C) \subseteq \rho_{-}(ABC)$.

Proof. The proof is similar to the proof of Lemma 2.4. \Box

The following example shows that if ρ is not a stable congruence, then Lemma 2.6 does not hold.

Example 2.7. Consider the ternary semigroup S and congruence relation ρ from Example 2.2. For $A = \{a, b\}$, $B = \{c, d\}$, $C = \{e\}$ we have $\rho_{-}(A) = \{a, b\}, \rho_{-}(B) = \{c, d\}, \rho_{-}(C) = \{e\}, \rho_{-}(A) \rho_{-}(B) \rho_{-}(C) = \{d\}$ and $\rho_{-}(ABC) = \rho_{-}(\{d\}) = \emptyset$. So, $\rho_{-}(A) \rho_{-}(B) \rho_{-}(C) \notin \rho_{-}(ABC)$. \Box

Theorem 2.8. Let ρ be a congruence on a ternary semigroup S.

- (1) If A is a ternary subsemigroup of S, then A is an upper rough ternary subsemigroup of S.
- (2) If A is left (right, lateral, two sided) ideal of S, then A is an upper rough left (right, lateral, two sided) ideal of S.

Proof. (1) Let A be a ternary subsemigroup of S. Then $A \subseteq \rho^{-}(A)$ and $\rho^{-}(A) \rho^{-}(A) \subseteq \rho^{-}(AAA) \subseteq \rho^{-}(A)$, by Lemma 2.4. (2) Analogously as (1). The following examples show that $\rho^{-}(A)$ is a ternary subsemigroup (ideal) of S even if A is not a ternary subsemigroup (ideal) of S.

Example 2.9. Let $S = \{-i, 0, i\}$ be a ternary semigroup. Let ρ be a congruence on S such that the ρ -congruence classes are the subsets $\{-i, i\}, \{0\}$. Then $A = \{i\}$ is not a ternary subsemigroup of S, but $\rho^-(A) = \{i, -i\}$ is a ternary subsemigroup. Moreover, $B = \{0, i\}$ is not a left ideal of S, but $\rho^-(B) = \{-i, 0, i\}$ is a left ideal.

Theorem 2.10. Let ρ be a stable congruence on a ternary semigroup S and let $A \subset S$ be such that $\rho_{-}(A)$ is non-empty.

(1) If A is a ternary subsemigroup of S, then $\rho_{-}(A)$ also is a ternary subsemigroup of S.

(2) If A is a left (right, lateral, two sided) ideal of S, then $\rho_{-}(A)$ also is a left (right, lateral, two sided) ideal of S.

The following example shows that if ρ is a stable congruence on a ternary semigroup S, then $\rho_{-}(A)$ is a ternary subsemigroup of S even if A is not a ternary subsemigroup of S.

Example 2.11. Let $S = \{-i, 0, i\}$ and ρ be as in the previous example. Then $A = \{0, i\}$ is not a ternary subsemigroup of S but $\rho_{-}(A) = \{0\}$ is a ternary subsemigroup of S.

Definition 2.12. A non-empty subset A of a ternary semigroup S is called a ρ -upper (resp. ρ -lower) rough bi-ideal of S, if $\rho^{-}(A)$ (resp. $\rho_{-}(A)$ is a bi-ideal of S.

Theorem 2.13. Let ρ be a congruence relation on a ternary semigroup S. If A is a bi-ideal of S, then it is ρ -upper rough bi-ideal of S.

Proof. The proof is similar to the proof of Theorem 2.8.

Example 2.14. Let S be as in Example 2.2 and let ρ be a congruence relation on S such the ρ -congruence classes are the subsets $\{a, b, d\}, \{c, e\}$. Then $A = \{a, b\}$ is not a bi-ideal of S but $\rho^-(A) = \{a, b, d\}$ is a bi-ideal. \Box

Theorem 2.15. Let ρ be a stable congruence on a ternary semigroup S and A a bi-ideal of S. Then $\rho_{-}(A)$ is a bi-ideal of S if it is non-empty.

Proof. The proof is similar to the proof of Theorem 2.8.

Theorem 2.16. Let ρ be a congruence on a ternary semigroup S. If A, B and C are right, lateral and left ideal of S, respectively, then

(1) $\rho^{-}(ABC) \subseteq \rho^{-}(A) \cap \rho^{-}(B) \cap \rho^{-}(C),$

(2) $\rho_{-}(ABC) \subseteq \rho_{-}(A) \cap \rho_{-}(B) \cap \rho_{-}(C).$

3. Rough prime ideals in ternary semigroups

Definition 3.1. A left (right, lateral) bi-ideal A of a ternary semigroup S is a *prime* left (right, lateral) bi-ideal of S if $xyz \in A$ implies $x \in A$ or $y \in A$ or $z \in A$ for all $x, y, z \in S$.

Theorem 3.2. Let ρ be a stable congruence on a ternary semigroup S and A a prime ideal of S. Then $\rho_{-}(A) \neq \emptyset$ is a prime ideal of S.

Proof. Suppose A is a prime ideal of S. Then $\rho_{-}(A)$ is an ideal of S.

Suppose that $\rho_{-}(A)$ is not a prime ideal of S. Then there exist elements $x, y, z \in S$ such that $xyz \in \rho_{-}(A)$ but $x \notin \rho_{-}(A)$, $y \notin \rho_{-}(A)$, and $z \notin \rho_{-}(A)$. Then $[x]_{\rho} \nsubseteq A$, $[y]_{\rho} \nsubseteq A$, $[z]_{\rho} \nsubseteq A$. Thus there exist $x' \in [x]_{\rho}$ but $x' \notin A$, $y' \in [y]_{\rho}$ but $y' \notin A$, $z' \in [z]_{\rho}$ but $z' \notin A$. This implies that $x'y'z' \in [x]_{\rho}[y]_{\rho}[z]_{\rho} \subseteq A$. Since A is a prime ideal of S, we have $x' \in A$ or $y' \in A$ or $z' \in A$. A contradiction. Hence $\rho_{-}(A)$ is a prime ideal of S. \Box

Theorem 3.3. Let ρ be a stable congruence on a ternary semigroup S. If A is a prime ideal of S, then A is an upper rough prime ideal of S.

Proof. Suppose A is a prime ideal of S. Then $\rho^{-}(A)$ is an ideal of S. Let $xyz \in \rho^{-}(A)$ for $x, y, z \in S$. Then $[xyz]_{\rho} \cap A = [x]_{\rho} [y]_{\rho} [z]_{\rho} \cap A \neq \emptyset$. Thus there exist $x' \in [x]_{\rho}$, $y' \in [y]_{\rho}$, $z' \in [z]_{\rho}$ such that $x'y'z' \in A$. Since A is a prime ideal of S, so $x' \in A$ or $y' \in A$ or $z' \in A$. This implies that $[x]_{\rho} \cap A \neq \emptyset$ or $[y]_{\rho} \cap A \neq \emptyset$ or $[z]_{\rho} \cap A \neq \emptyset$ and so $x \in \rho^{-}(A)$ or $y \in \rho^{-}(A)$ or $z \in \rho^{-}(A)$. Thus $\rho^{-}(A)$ is a prime ideal of S. Hence A is an upper rough prime ideal of S.

Theorem 3.4. Let ρ be a stable congruence on a ternary semigroup S.

- (1) If A a prime left (right, lateral) ideal of S, then $\rho_{-}(A) (\neq \emptyset)$ and $\rho^{-}(A)$ are prime left (right, lateral) ideal of S.
- (2) If A is a prime bi-ideal of S, then it is ρ -upper and ρ -lower rough prime bi-ideal of S.

Proof. Proof is similar to the proofs of Theorem 3.2 and Theorem 3.3. \Box

4. Rough sets and idempotent congruences

A congruence relation ρ on a ternary semigroup S is called an *idempotent* congruence if the quotient ternary semigroup S/ρ is an idempotent ternary semigroup.

Definition 4.1. A subset P of a ternary semigroup S is called *semiprime* if $a^3 \in P$ implies $a \in P$ for all $a \in S$.

Theorem 4.2. Let ρ be an idempotent stable congruence on a ternary semigroup S. If A is non-empty subset of S, then $\rho^{-}(A)$ is semiprime.

Proof. Let $a^3 \in \rho^-(A)$, since ρ is idempotent congruence so $[a]_{\rho} \cap A =$ $[a]_{\rho}[a]_{\rho}[a]_{\rho} \cap A = [a^3]_{\rho} \cap A \neq \emptyset$. Therefore $a \in \rho^-(A)$. So $\rho^-(A)$ is semiprime.

Theorem 4.3. Let ρ be an idempotent congruence on a ternary semigroup S. If A, B and C are non-empty subsets of S, then

- (1) $\rho^{-}(A) \cap \rho^{-}(B) \cap \rho^{-}(C) \subseteq \rho^{-}(ABC),$
- (2) $\rho_{-}(A) \cap \rho_{-}(B) \cap \rho_{-}(C) \subseteq \rho_{-}(ABC).$

Proof. (1) Let $d \in \rho^{-}(A) \cap \rho^{-}(B) \cap \rho^{-}(C)$. Then $d \in \rho^{-}(A), d \in \rho^{-}(B)$ and $d \in \rho^{-}(C)$. Then there exist $a, b, c \in S$ such that $a \in [d]_{a}, a \in A, b \in [d]_{a}$, $b \in B, c \in [d]_{\rho}, c \in C$. Since ρ is idempotent, so $abc \in [d]_{\rho} [d]_{\rho} [d]_{\rho} = [d]_{\rho}$ and since $abc \in ABC$. Therefore $abc \in [d]_{\rho} \cap ABC$. Thus $d \in \rho^{-}(ABC)$. \square

The proof of (2) is similar.

Theorem 4.4. Let ρ be an idempotent congruence on a ternary semigroup S. If A, B, C are right, lateral and left ideals of S, respectively, then

- (1) $\rho^{-}(A) \cap \rho^{-}(B) \cap \rho^{-}(C) = \rho^{-}(ABC),$
- (2) $\rho_{-}(A) \cap \rho_{-}(B) \cap \rho_{-}(C) = \rho_{-}(ABC).$

Proof. Follows from Theorem 2.16 and Theorem 4.3.

5. Rough ideals in a quotient ternary semigroup

Let ρ be a congruence relation on a ternary semigroup S. The lower and upper approximations can be presented as

$$\underline{\rho}\left(A\right) = \left\{ [x]_{\rho} \in S/\rho \colon \left[x\right]_{\rho} \subseteq A \right\}, \qquad \overline{\rho}\left(A\right) = \left\{ [x]_{\rho} \in S/\rho \colon \left[x\right]_{\rho} \cap A \neq \emptyset \right\}.$$

Theorem 5.1. Let ρ be a congruence relation on a ternary semigroup S. If A is a ternary subsemigroup of S, then $\overline{\rho}(A)$ and $\rho(A)$ are ternary subsemigroups of S/ρ .

Proof. Let A be a ternary subsemigroup. Then $\emptyset \neq A \subseteq \overline{\rho}(A)$. For every $[x]_{\rho}, [y]_{\rho}, [z]_{\rho} \in \overline{\rho}(A) \text{ we have } [x]_{\rho} \cap A \neq \emptyset, \ [y]_{\rho} \cap A \neq \emptyset, \ [z]_{\rho} \cap A \neq \emptyset.$ So, there are $a, b, c \in S$ such that $a \in [x]_{\rho} \cap A, \ b \in [y]_{\rho} \cap A, \ c \in [z]_{\rho} \cap A$. Thus $(a, x) \in \rho$, $(b, y) \in \rho$ $(c, z) \in \rho$. As ρ is a congruence on S, we have $(abc, xyz) \in \rho$, this implies that $abc \in [xyz]_{\rho}$. Then $abc \in [xyz]_{\rho} \cap A$, so $[xyz]_{\rho} \in \overline{\rho}(A)$. Hence $\overline{\rho}(A)$ is a ternary subsemigroup of S/ρ .

For $\rho(A)$ the proof is similar.

 \square

Theorem 5.2. Let ρ be a congruence relation on a ternary semigroup S. If A is a left (right, lateral, two sided) ideal of S, then $\overline{\rho}(A)$ is a left (right, lateral, two sided) ideal of S/ρ . Also $\rho(A)$ is a left (right, lateral, two sided) ideal of S/ρ , if it is non-empty.

Proof. Let A be a left ideal of S. Let $[x]_{\rho} \in \overline{\rho}(A), [y]_{\rho}, [z]_{\rho} \in S/\rho$, then $[x]_{\rho} \cap A \neq \emptyset$. Thus there exists $a \in [x]_{\rho} \cap A$. As A is a left ideal of S, so $zya \in A$. Since $zya \in [z]_{\rho}[y]_{\rho}[x]_{\rho}$, we have $zya \in [z]_{\rho}[y]_{\rho}[x]_{\rho} \cap A$. But $[z]_{\rho}[y]_{\rho}[x]_{\rho} \subseteq [zyx]_{\rho}$, so $[zyx]_{\rho} \subseteq \overline{\rho}(A)$. Thus $\overline{\rho}(A)$ is a left ideal of S/ρ . For $\rho(A)$ the proof is analogous.

Theorem 5.3. Let ρ be a congruence relation on a ternary semigroup S. If A is a bi-ideal of S, then $\overline{\rho}(A)$ is a bi-ideal of S/ρ . Also $\rho(A)$ is a bi-ideal of S/ρ , if it is non-empty.

Proof. Let A be a bi-ideal of S, so $\overline{\rho}(A)$ is a ternary subsemigroup of S. Let $[x]_{\rho}, [y]_{\rho}, [z]_{\rho} \in \overline{\rho}(A)$ and $[u]_{\rho}, [v]_{\rho} \in S/\rho$. Then there exist $a, b, c \in S$ such that $a \in [x]_{\rho} \cap A$, $b \in [y]_{\rho} \cap A$, $c \in [z]_{\rho} \cap A$. Let $u_1 \in [u]_{\rho}$, $v_1 \in [v]_{\rho}$. Since A is bi-ideal so $au_1bv_1c \in A$. Now, as $a\rho x$, $u_1\rho u$, $b\rho y$, $v_1\rho v$, $c\rho z$, we have $(au_1bv_1c) \rho(xuyvz)$. This implies that $au_1bv_1c \in [xuyvz]_{\alpha}$. Thus $[xuyvz]_{\rho} \cap A \neq \emptyset$. Hence $[xuyvz]_{\rho} \in \overline{\rho}(A)$. Thus $\overline{\rho}(A)$ is a bi-ideal of S/ρ .

For $\rho(A)$ the proof is analogous.

References

[1] Z. Bonikowski, Algebraic structures of rough sets, in: W. P Ziarko (Ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, Springer-Verlag, Berlin, (1995), 242 - 257.

- [2] V. N. Dixit and S. Dewan, A note on quasi and bi-ideals in ternary semigroups, Int. J. Math. Sci. 18 (1995), 501 - 508.
- [3] W. A. Dudek, I. Groździńska, On ideals in n-semigroups, Mat. Bilten (Skopje) **3-4** (1980), 35 - 44.
- [4] T. Iwinski, Algebraic approach to rough sets, Bull Polish Acad. Sci. Math. **36** (1987), 673 - 683.
- [5] S. Kar and B. K. Maity, Congruences on ternary semigroups, J. Chugcheong Math. Soc. 20 (2007), 191 – 200.
- [6] D. H. Lehmer, A ternary analogue of abelian groups, Amer. J. Math. **59** (1932), 329 - 338.
- [7] Z. Pawlak, Rough sets, Int. J. Comp. Sci. 11 (1982), 341-356.
- [8] M. Shabir and M. Bano, Prime bi-ideals in ternary semigroups, Quasigroups and Related Systems 16 (2008), 239 - 256.
- [9] F. M. Sioson, Ideal theory in ternary semigroups, Math. Japonica 10 (1965), 63 - 84.
- [10] F. M. Sioson, Ideals in (m+1)-semigroups, Ann. Math. Pura Appl. 68 (1965), 161 - 200.

Received December 27, 2010 Revised February 8, 2011

Department of Mathematics, Quaid i Azam University, Islamabad, Pakistan. E-mails: mshabirbhatti@yahoo.co.uk (M.Shabir), noorrehman82@yahoo.com (N.Rehman)