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Central r-naturally fully ordered groupoids

with left identity

Yutaka Matsushita

Abstract. In this paper a generalized version (r -naturally fully ordered groupoid) of a
naturally fully ordered groupoid with left identity in the sense that only right solvabil-
ity is permissible is embedded in a concrete groupoid of all non-negative real numbers.
First, the introduction of centrality makes the r -naturally fully ordered groupoid with
left identity order-isomorphic to the positive cone of a fully ordered central quasigroup.
Second, the left Archimedean property enables this ordered groupoid to be embedded in
the concrete groupoid.

1. Introduction

In this paper we will generalize the classical result of Hölder [6] with the
embedding of a fully ordered (brie�y, f.o.) semigroup in the additive semi-
group of all non-negative real numbers in the context of groupoids. The
embedding will be carried out in a concrete groupoid (Example 3.1) con-
sisting of all non-negative real numbers. This approach is similar to that of
Hartman [5], who considered the embedding of a f.o. loop in the additive
group of all real numbers. Our concern lies in an r -naturally f.o. groupoid
with left identity, which is a generalized version of a naturally f.o. groupoid
with left identity in the sense that only right solvability is guaranteed. First,
the analogous concept to centrality [9] for quasigroups is introduced so that
an r -naturally f.o. groupoid can be the positive cone of a f.o. central quasi-
group with left identity. Second, the left Archimedean property makes the
ordered groupoid embeddable in the concrete groupoid.
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2. Preliminaries

A quasigroup is an algebra (Q, ·, /, \) with three binary operations satisfying
the following identities:

(a · b)/b = a = (a/b) · b and a\(a · b) = b = a · (a\b).

These identities imply that, given a, b ∈ Q, the equations x · b = a and
b ·x = a have unique solutions x = a/b and x = b\a, respectively. A loop is
a quasigroup Q with an identity element e (e · a = a = a · e for all a ∈ Q).
For any a ∈ Q, we denote by Ra and La the mappings of Q onto itself
de�ned by the rules Ra(x) = xa and La(x) = ax, respectively. Moreover,
R−1

a (x) = x/a, L−1
a (x) = a\x. Multiplications expressed implicitly by

juxtaposition are meant to bind more strongly than the divisions so as to
reduce the number of brackets in quasigroup equalities. For example, (a·b)/b
reduces to ab/b.

Every quasigroup (Q, ·, /, \) is isotopic to a loop. Indeed, if a binary
operation + on Q is de�ned by

a + b = R−1
e\e(a) · L−1

e (b) for all a, b ∈ Q,

then it is seen that (Q,+, e), denoted B(Q), is a loop. Assume here that
e is a left identity element for (Q, ·) (ea = a for all a ∈ Q). Then e\a = a
holds for all a ∈ Q but a/e = a does not unless a = e. Hence

a + b = (a/e)b. (1)

Using (1),
a− b = (a/b)e

One outstanding bene�t of centering is that it makes the loop B(Q) into
an abelian group. According to Corollary 3.7 in [9], a central quasigroup
(Q, ·, /, \, e) with a left identity element e is characterized by the following
identities:

((a/e)b/e)c = (a/e)((b/e)c); (2)

(a/e)b = (b/e)a; (3)

((a/e)b)e = (ae/e)(be). (4)

The �rst two identities show that B(Q) is an abelian group. Indeed, identi-
ties (2) and (3) specify the associativity and commutativity of B(Q), respec-
tively. Identity (4) means that right multiplication by e is an automorphism
of B(Q), i.e., Re(a + b) = Re(a) + Re(b).
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A quasigroup (Q, ·, /, \) with a binary relation > is called a f.o. quasi-

group if (Q, >) is a fully ordered set and the following monotony law holds:

(M) a > b ⇔ ax > bx ⇔ xa > xb for all a, b, x ∈ Q.

The law (M) implies that (see [3, Lemma 3.1])

(D) a > b ⇔ a/x > b/x, x\a > x\b, x/b > x/a, b\x > a\x.

A f.o. central quasigroup with left identity is a f.o. quasigroup with
left identity satisfying (2) to (4). In a f.o. central quasigroup Q with left
identity, it is clear from (M) and (D) that (B(Q),>) is a f.o. abelian group.
Therefore the positive cone of Q is de�ned by Q+ = {a ∈ Q | a > e}. A
groupoid (Q, ·) with a full order > that satis�es (M) is a f.o. groupoid.

3. r-naturally f.o. groupoid and centrality

We follow the terminology of [4] for ordering. An element a of a f. o. gro-
upoid P is r-positive or l-positive according as xa > x or ax > x for all
x ∈ P . A f.o. groupoid is called r-positively ordered or l-positively ordered

if all of its elements are r -positive or l -positive, respectively. If a f. o.
groupoid contains a left identity element e, then a is l -positive if and only
if a > e, whereas a strictly positive element a > e is not always r -positive.
However, it will be shown at the end of this section that the introduction of
centrality makes an r -positively ordered groupoid equivalent to the positive
cone of a f.o. central quasigroup. For this the concept of a naturally ordered
groupoid is generalized in such a way that only the existence of a right
solution is permissible. A f.o. groupoid P is said to be r-naturally ordered

if it is r -positively ordered and

a > b implies that xb = a for some x ∈ P .

Note that by (M) the solution x is unique. This condition implies that P has
a right division that is �partially� de�ned on P in the sense that its domain
is a subset of P : Set x = a/b with a > b. Then (a/b)b = a and ab/b = a
are satis�ed. Also, P has a partial left division that is always de�nable on
a f.o. groupoid. Since x = b is a unique solution to ax = ab by (M), we can
de�ne x = a\ab so that a\ab = b and a(a\ab) = ab. Speci�cally, e\b = b.
Consequently, P is regarded as a set equipped with three binary operations:
the groupoid multiplication and the partial right and left divisions.
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Example 3.1. We de�ne a binary operation ⊕ on the set R+ of all non-
negative real numbers by

a⊕ b = αa + b for some α > 1.

The set R+ with this operation and the usual order is an r -naturally f.o.
groupoid with a left identity element 0.

Example 3.2. Let Q be a f.o. central quasigroup with a left identity
element e. Assume that xe > x for all x ∈ Q. Then Q+ is an r -naturally
f.o. groupoid with a left identity element e.

Throughout the paper, unless otherwise speci�ed, we will use the symbol
e to denote a left identity element, and let P be an r -naturally f.o. groupoid
with left identity. The trivial case where P has just a single element e will
always be excluded. Centrality of P is de�ned in a similar way to centrality
of quasigroups (see [9] for the speci�c de�nition of central quasigroups). We
now consider the Cartesian product P 2 as a partial algebra (P 2, ·, /, \) with
componentwise groupoid multiplication and componentwise partial right
and left divisions. An equivalence relation W on P is a congruence if it is
a subalgebra of P 2. The diagonal P̂ = {(a, a) | a ∈ P} is a subalgebra of
P 2. An r -naturally f.o. groupoid P is de�ned to be central if there exists
a congruence W on P 2 having P̂ as a congruence class. In addition we will
call this W a centering congruence. The equivalence class of (a, b) ∈ P 2

under W is denoted by (a, b)W , i.e., (a, b)W =
{
(x, y) ∈ P 2 | (x, y)W (a, b)

}
,

and the set of equivalence classes by P 2/W .

A partial ternary operation on P is de�ned by

p(a, b, c) = (a/b)c provided that a > b.

This de�nition does not entails the identity p(a, b, b) = a in case of a < b.
Therefore useful methods cannot be used to obtain the following properties
of centering congruences. To solve this problem, we provide a new ternary
operation ps on P de�ned by

ps(a, b, c) = (sa/b)c provided that sa > b

Indeed, even for a < b by right solvability and (M) we can take s ∈ P such
that sa > b. Then since ps(a, b, b) = sa, it follows that s\ps(a, b, b) = a.
Also, s\ps(a, a, b) = b. Using the operation ps, we obtain similar results to
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Propositions 3.1, 3.3, and 3.4 in [9]. The result similar to Proposition 3.1
guarantees the existence of a centering congruence on P 2. The other results
are listed in the form in which they will be used in what follows.

Proposition 3.3. Let P be a central r-naturally f.o. groupoid with left

identity and let W be a centering congruence on P 2. Then

(RR) (a, b) ∈ P 2 ⇒ (a, a)W (b, b);

(RS) (a, b)W (a′, b′) ⇒ (b, a)W (b′, a′);

(RT) (a, b)W (a′, b′) and (b, c)W (b′, c′) ⇒ (a, c)W (a′, c′).

Proof. The proof is much the same as that of [9]. Therefore we prove only
(RT) because the operation ps is necessary in case of a < b, b > c, a′ < b′,
and b′ > c′. Assume that (a, b)W (a′, b′) and (b, c)W (b′, c′). Take s ∈ P
such that sa > b and sa′ > b′ (which is possible by setting s = max(u, v)
such that ua > b, va′ > b′). Then

(s, s)W (s, s) by (RR),

(a, b)W (a′, b′) is given,

(b, b)W (b′, b′) by (RR),

(b, c)W (b′, c′) is given,

(s, s)W (s, s) by (RR)

⇒ (s\ps(a, b, b), s\ps(b, b, c))W (s\ps(a′, b′, b′), s\ps(b′, b′, c′)).

Hence we obtain (a, c)W (a′, c′), as required for (RT).

Proposition 3.4. Let P be a central r-naturally f.o. groupoid with left

identity and let W be a centering congruence on P 2. Then W is uniquely

speci�ed by

if c > a, then (a, b)W (c, d) ⇔ d = p(c, a, b). (5)

if a > b, then (a, b)W (c, d) ⇔ c = p(a, b, d). (6)

Applying (RS) of W and with the use of (6), we have

if a < b, then (a, b)W (c, d) ⇔ d = p(b, a, c). (7)
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Lemma 3.5. If P is an r-naturally f. o. groupoid with left identity, then

a > e for all a ∈ P .

Proof. By r -positivity we have aa > a for all a ∈ P , i.e., aa > ea. Hence
by (M) we obtain a > e for all a ∈ P . �

Lemma 3.6. Let P be a central r-naturally f.o. groupoid with left identity.

Then identity (3) is satis�ed for all elements of P , and if a > be then

b\a = (a/be)e.

Proof. Let a, b ∈ P be arbitrary positive elements. Both (5) and (7) guar-
antee the existence of c ∈ P such that (e, a)W (b, c). Note here that c is
uniquely determined. Hence p(b, e, a) = p(a, e, b), or (b/e)a = (a/e)b. To
prove the latter part, assume that a > be and let x ∈ P be such that
bx = a. Then since a/be ∈ P by right solvability, it follows from (3) that
(be/e)((a/be)e) = (a/be)(be) = a. Hence by (M) x = (a/be)e.

Theorem 3.7. Let P be a central r-naturally f.o. groupoid with left identity

and let W be a centering congruence on P 2. Then the quotient P 2/W is

a f.o. central quasigroup with left identity, and P is o-isomorphic (order-
isomorphic) to the positive cone of P 2/W .

Proof. Let PW = {(a, b)W | a > b} and NW = {(a, b)W | a 6 b} be the sets
of positive and negative elements in P 2/W , respectively. The ordering on
PW and NW is determined by:

(a) > on PW : (a, b)W > (c, d)W if and only if p(a, b, e) > p(c, d, e),

(b) > on NW : (a, b)W > (c, d)W if and only if p(b, a, e) 6 p(d, c, e).

Rules (a) and (b) are based on (6) and (7), respectively. Since it is the case
that (a, b)W > (c, d)W whenever (a, b)W ∈ PW with a > b, (c, d)W ∈ NW

with c < d, (a) and (b) provide a full order on P 2/W . Further, multiplica-
tion on P 2/W is de�ned by

(c) multiplication: (a, b)W (c, d)W = (ac, bd)W .

For (c) we may use an element of the form (s, e)W with s = p(a, b, e) > e
or (e, t)W with t = p(b, a, e) > e based on whether each (a, b)W is positive
or negative. We show that P 2/W is right and left solvable. First, the
following is clear from (a) and (b): if a > b, then x = a/b is a solution to
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(x, e)W (b, e)W = (a, e)W and (e, x)W (e, b)W = (e, a)W . Second, if a > be,
then by Lemma 3.6 x = (a/be)e is a solution to (b, e)W (x, e)W = (a, e)W

and (e, b)W (e, x)W = (e, a)W . We consider solutions to the other cases of
equations.

Case 1R. (e, x)W (b, e)W = (a, e)W with a < b: Since in this case (a, e)W =
(b, p(b, a, e))W by (5), we have xe = p(b, a, e). Hence x = b/a.

Case 1L. (b, e)W (e, x)W = (a, e)W with a < be: Since in this case (a, e)W =
(be, p(be, a, e))W by (5), we have x = p(be, a, e). Hence x = (be/a)e.

Case 2R. (x, e)W (e, b)W = (a, e)W : Since (a, e)W = (p(a, e, b), b)W by (6),
we have xe = p(a, e, b). Hence x = (a/e)b/e.

Case 2L. (e, b)W (x, e)W = (a, e)W : Since (a, e)W = (p(a, e, be), be)W by
(6), we have x = p(a, e, be). Hence x = (a/e)(be).

A similar method guarantees the existence of a solution to each of the
above equations into which (e, a)W is substituted for (a, e)W . Obviously,
(s, s)W (= (e, e)W ) is a left identity element for multiplication. Therefore
the right division on P 2/W is de�ned as follows:

(a1, a2)W /(b1, b2)W = (sa1/b1, sa2/b2)W , (8)

where sa1 > b1, sa2 > b2. Indeed, setting s = b/a and s = b/e give the
solutions in Cases 1R and 2R, respectively. By making use of Lemma 3.6,
the left division is also de�ned as

(b1, b2)W \(a1, a2)W = ((sa1/b1e)e, (sa2/b2e)e)W , (9)

where sa1 > b1e, sa2 > b2e. Setting s = be/a and s = b give the solutions
in Cases 1L and 2L, respectively. (Note here that by (3) ba = (a/e)(be).)

To show that (M) is satis�ed for P 2/W , assume that (a, e)W > (b, e)W ,
so that a > b. Since ac > bc by (M), (a, e)W (c, e)W > (b, e)W (c, e)W . The
converse is also valid. We next provide three cases to prove (a, e)W (e, c)W >
(b, e)W (e, c)W .

Case 1. ae, be > c: Since (ae/c)e > (be/c)e by (M) and (D), the required
inequality follows from (a).

Case 2. ae, be < c: Since (c/ae)e 6 (c/be)e by (M) and (D), we obtain
from (b) the required inequality.
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Case 3. ae > c > be: By (6) and (7), (ae, c)W = ((ae/c)e, e)W and
(be, c)W = (e, (c/be)e)W . Since ae/c > e and c/be > e by (D), we
obtain (a, e)W (e, c)W > (b, e)W (e, c)W .

The converse is also seen to be valid. Similarly, we obtain (e, a)W >
(e, b)W ⇔ (e, a)W (c, e)W > (e, b)W (c, e)W ⇔ (e, a)W (e, c)W > (e, b)W (e, c)W.
We further show that (a, e)W > (e, b)W ⇔ (a, e)W (c, e)W > (e, b)W (c, e)W .
If c > be, then by (6) (c, be)W = ((c/be)e, e)W . Since ac > c and be > e by
(M), it follows from (M) and (D) that ac = (ac/e)e > (c/be)e, and hence by
(a) (ac, e)W > (c, be)W . If c < be, then by de�nition (c, be)W < (e, e)W 6
(ac, e)W . The converse is trivial because (a, e)W is always > (e, b)W . A
similar method gives (a, e)W > (e, b)W ⇔ (a, e)W (e, c)W > (e, b)W (e, c)W .
Thus P 2/W is a f.o. quasigroup with left identity.

We show that P 2/W is central. According to the proof of Lemma 3.2
in [9], which addresses the case where P is a quasigroup, a relation Ω on
P 2/W × P 2/W is de�ned by

((a1, a2)W , (b′1, b
′
2)

W )Ω((a′1, a
′
2)

W , (b1, b2)W ) ⇔ (a1, a3)W (a′1, a
′
3), (10)

where (a2, a3)W (b1, b2) and (a′2, a
′
3)W (b′1, b

′
2). However, since P is a groupoid,

a problem arises, i.e., no solution a3 ∈ P exists to (a2, a3)W (b1, b2), for ex-
ample, when b1 > e, b2 = e and b1 > a2. Therefore the de�nition of Ω must
be revised. The following lemma is provided for this purpose.

Lemma 3.8. For any (a1, a2), (b1, b2) ∈ P 2, there exists (x1, x2) ∈ P 2

such that (x1, x2)W (a1, a2) with x1 > b1, x2 > b2.

Proof. Let x1 > a1. By (5), x2 = p(x1, a1, a2) satis�es (x1, x2)W (a1, a2).
Take s ∈ P such that sa1 > b1, sa2 > b2. Set x1 = sa1, so that x1 > b1.
Then x2 = ((sa1)/a1)a2 = sa2 > b2.

With the aid of Lemma 3.8, a relation Ω is introduced on P 2/W ×
P 2/W by setting ((a1, a2)W , (b′1, b

′
2)

W )Ω((a′1, a
′
2)

W , (b1, b2)W ) if there exist
(x1, x2), (x′1, x

′
2) ∈ P 2 such that

(x1, x2)W (a1, a2), x2 > b1 and (x′1, x
′
2)W (a′1, a

′
2), x′2 > b′1, (11)

and such that the relation

((x1, x2)W , (b′1, b
′
2)

W )Ω((x′1, x
′
2)

W , (b1, b2)W ) (12)
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is satis�ed in the sense of (10). The inequalities x2 > b1 and x′2 > b′1 in (11)
are needed only to verify the validity of (12) on the basis of (10). Indeed,
in view of these inequalities, it is seen from (5) that (x2, x3)W (b1, b2) and
(x′2, x

′
3)W (b′1, b

′
2) have solutions x3 = p(x2, b1, b2) and x′3 = p(x′2, b

′
1, b

′
2). We

will examine whether this de�nition of Ω is consistent with (10). Assume
that (10) is satis�ed, i.e.,

(a1, a3)W (a′1, a
′
3), (a2, a3)W (b1, b2) and (a′2, a

′
3)W (b′1, b

′
2).

Let x3, x
′
3 ∈ P be such that (x2, x3)W (b1, b2) and (x′2, x

′
3)W (b′1, b

′
2). By the

transitivity of W we have (x2, x3)W (a2, a3) and (x′2, x
′
3)W (a′2, a

′
3). Since

(11) is satis�ed, it follows from (RT) for W that (x1, x3)W (a1, a3) and
(x′1, x

′
3)W (a′1, a

′
3). From the �rst assumption and transitivity we obtain

(x1, x3)W (x′1, x
′
3), which implies that (12) is satis�ed. Next we examine

whether Ω is a subquasigroup of (P 2/W )4. Let (y1, y2), (y′1, y
′
2) ∈ P 2 be

such that (y1, y2)W (c1, c2), y2 > d1 and (y′1, y
′
2)W (c′1, c

′
2), y′2 > d′1, and

such that
((y1, y2)W , (d′1, d

′
2)

W )Ω((y′1, y
′
2)

W , (d1, d2)W )

is satis�ed in the sense of (10), which implies that ((c1, c2)W , (d′1, d
′
2)

W )Ω
((c′1, c

′
2)

W , (d1, d2)W ). Accordingly we use the proof of Lemma 3.2 [9] to
obtain
((x1, x2)W (y1, y2)W, (b′1, b

′
2)

W (d′1, d
′
2)

W )
Ω ((x′1, x

′
2)

W (y′1, y
′
2)

W, (b1, b2)W (d1, d2)W ).

Since (x1, x2)W (y1, y2)W = (a1, a2)W (c1, c2)W and (x′1, x
′
2)

W (y′1, y
′
2)

W =
(a′1, a

′
2)

W (c′1, c
′
2)

W , we have by (11) and (12)

((a1, a2)W (c1, c2)W , (b′1, b
′
2)

W (d′1, d
′
2)

W )
Ω ((a′1, a

′
2)

W (c′1, c
′
2)

W , (b1, b2)W (d1, d2)W ).

It is clearly seen that the de�nition of (10) does not depend on the choices of
representatives of (b1, b2)W , (b′1, b

′
2)

W . Hence we may assume that bi > di,
b′i > d′i for i = 1, 2. Take s ∈ P such that sxi > yi, sx′i > y′i for i = 1, 2, 3.
Since

((s, s)W , (e, e)W )Ω((s, s)W , (e, e)W ),

it follows that

((sx1, sx2)W , (b′1, b
′
2)

W )Ω((sx′1, sx
′
2)

W , (b1, b2)W ).

Note here that this is also valid in the context of (10). Hence the proof of
Lemma 3.2 [9] is used again to obtain
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((sx1, sx2)W /(y1, y2)W , (b′1, b
′
2)

W /(d′1, d
′
2)

W )

Ω ((sx′1, sx
′
2)

W /(y′1, y
′
2)

W , (b1, b2)W /(d1, d2)W ).

Since (sx1, sx2)W /(y1, y2)W = (a1, a2)W /(c1, c2)W , (sx′1, sx
′
2)

W /(y′1, y
′
2)

W =
(a′1, a

′
2)

W /(c′1, c
′
2)

W by (8), we have by (11) and (12)

((a1, a2)W /(c1, c2)W , (b′1, b
′
2)

W /(d′1, d
′
2)

W )

Ω ((a′1, a
′
2)

W /(c′1, c
′
2)

W , (b1, b2)W /(d1, d2)W ).

In view of (9), a similar method gives Ω being closed under left divi-
sion. Using the operations on Ω and ps, we can prove that Ω satis�es
the properties of a centering congruence. Finally, by considering a mapping
P → P 2/W ; a 7→ (a, e)W and by using Lemma 3.5, it is seen that P is
o-isomorphic to the positive cone of P 2/W .

The following corollary corresponds to Corollary 3.7 in [9].

Corollary 3.9. If P is a central r-naturally f.o. groupoid with left identity,

then it satis�es identities (2), (3), and (4).

A f.o. quasigroup Q with left identity is said to be generated by P if
it is a quasigroup generated by P on which a full order is introduced such
that it is an extension of the full order of P . If, in addition, identities (2)
to (4) are satis�ed, then Q is the f.o. central quasigroup with left identity
generated by P . Henceforth B(P ) denotes an algebra (P,+, e) where + is a
binary operation de�ned by (1). Since a > e for all a ∈ P (Lemma 3.5), by
right solvability we have a/e ∈ P , and thus B(P ) is actually a subgroupoid
of Q, or B(Q).

Proposition 3.10. Let P be an r-naturally f.o. groupoid with left identity

and let Q be the f.o. central quasigroup with left identity generated by P .

Then every element x ∈ Q is written in the form x = (a/b)e where a, b ∈ P .

Proof. Let (A,+, e) be the subgroup of B(Q) generated by B(P ). Since
B(Q) is an abelian group, every element x ∈ A can be written in the form
x = a − b, where a, b ∈ B(P ). Using the fact that Re is an automorphism
of B(Q), we can write xe = (a− b)e = ae− be. Hence xe ∈ A. Analogously,
x/e ∈ A. Since xy = xe + y, x/y = (x− y)/e, and y\x = x− ye, it follows
that xy, x/y, y\x ∈ A for all x, y ∈ A. Thus A is a subquasigroup of Q
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that contains P . This means that A = Q because Q is generated by P .
Therefore for every x ∈ Q we have x = (a/b)e, where a, b ∈ P .

In view of Proposition 3.10, it is easy to see that an extended order on
Q from the full order on P is uniquely determined.

Proposition 3.11. An r-naturally f.o. groupoid P with left identity is

central if and only if it is the positive cone of the f.o. central quasigroup Q
with left identity generated by P .

Proof. Assume that P = Q+. Then it is obvious that P is an r -naturally
f.o. groupoid with left identity for which (2) to (4) are satis�ed. According
to [9], de�ne the subtraction mapping F : P 2 → Q by

F (a, a′) = a− a′.

With the aid of (4), F is a homomorphism with respect to groupoid mul-
tiplication and the two partial divisions. We show only the homomorphic
property with groupoid multiplication. Since ab = Re(a)+ b, it follows that

F ((a, a′)(b, b′)) = (Re(a) + b)− (Re(a′) + b′)
= Re(a− a′) + (b− b′) (Re is an automorphism)

= (a− a′)(b− b′) (by (1))

= F (a, a′)F (b, b′).

Hence ker F is a congruence, and it must have the diagonal P̂ as a congru-
ence class. This means that P is central.

Assume that P is central. By Corollary 3.9, P has the same algebraic
properties (i.e., (2) to (4)) as Q, and hence P is embedded o-isomorphically
in Q. From Lemma 3.5 we conclude that P is o-isomorphic to Q+.

Note that the quotient P 2/W of Theorem 3.7 is o-isomorphic to this
Q. Indeed, in view of Proposition 3.10, it can be veri�ed that the mapping
P 2/W → Q; (a, b)W 7→ (a/b)e(= a− b) is an o-isomorphism.

4. Embedding in the non-negative real numbers

Henceforth assume that a central r -naturally f.o. groupoid P with left
identity has no smallest strictly positive element. We will use the fact
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that P is o-isomorphic to the positive cone of the f.o. central quasigroup
generated by P (Proposition 3.11) to prove the lemmas and theorem in this
section.

A relaxed version [7] of the Archimedean property is required for the
embedding of P in the non-negative real numbers. Let a ∈ P be an arbitrary
element. We will de�ne the n-th left multiplication of a as an = a · an−1

for n = 2, 3, . . . and a1 = a. An r -naturally f.o. groupoid P is called
left Archimedean if for every strictly positive elements a, b ∈ P there is a
positive integer n such that an > b.

By (3), we may de�ne the n-th addition of a in the left sided manner:
na = a + (n − 1)a for n = 2, 3, . . . and 1 · a = a. From (1) it is seen that
na = Ln−1

a/e (a) for all n > 1 where L0
a/e = Le.

Lemma 4.1. Let P be a central r-naturally f.o. groupoid with left identity.

If P is left Archimedean, then B(P ) is an Archimedean f.o. monoid.

Proof. As was stated in Section 2, it is clear that B(P ) is a (commutative)
monoid. Note that by (M) and (D) of P

x > y ⇔ (x/e)z > (y/e)z and x > y ⇔ (z/e)x > (z/e)y.

Hence B(P ) is a f.o. monoid. We show that B(P ) is Archimedean. Let
a, b ∈ P be strictly positive. Without loss of generality we can assume that
b > a. Since a/e > e if a > e, the left Archimedean property guarantees the
existence of n > 1 such that Ln−1

a/e (a/e) > b. Since the map Ln−1
a/e is order

preserving, it follows from the r -positivity property that Ln−1
a/e ((a/e)a) > b,

or (n + 1)a > b, as required.

Theorem 4.2. Let P be a left Archimedean, central r-naturally f.o. groupoid

with left identity. Then P is o-isomorphic to a subgroupoid of the groupoid

of all non-negative real numbers of Example 3.1.

Proof. Since B(P ) is an Archimedean f.o. monoid by Lemma 4.1, it is seen
from Hölder's [6] theorem that there exists an o-isomorphism f of B(P ) to
a submonoid of the additive f. o. monoid of all non-negative real numbers.
Since ab = ae + b, f(ab) = f(ae) + f(b). To complete the proof, it su�ces
to show that f(ae) = αf(a) for some α > 1. For this the following lemma
is provided.

Lemma 4.3. Let Pe = {ae |a ∈ P }. Then Pe is equal to P , and hence

B(Pe) = (Pe,+, e) is an Archimedean f.o. monoid.



Central r -naturally fully ordered groupoids 299

Proof. Since it is obvious that Pe ⊂ P , we show only that P ⊂ Pe. Let
x > e be an arbitrary element of P . Then since x = ae where a = x/e ∈ P
by right solvability, we have x ∈ Pe. It is clear from Lemma 4.1 that B(Pe)
is an Archimedean f.o. monoid.

Combining this lemma with Hölder's theorem, we obtain the result that
f(B(Pe)) is a submonoid of the additive f.o. monoid of all non-negative
real numbers. Since f((a + b)e) = f(ae) + f(be) by (4), there is a strictly
positive real number α such that f(ae) = αf(a) (e.g. see the proof of
Proposition 2.2.1 in [8]). Moreover, since a 6 ae for all a ∈ P by r -
positivity, f(a) 6 f(ae) = αf(a). Thus α > 1.

The hypothesis of the following corollaries is that P is a left Archimedean,
central r -naturally f.o. groupoid with left identity.

Corollary 4.4. If P = R+, then ab = αa + b (α > 1) for all a, b ∈ R+.

Proof. It su�ces to show that the o-isomorphism f in the proof of Theorem
4.2 is continuous. Indeed, if so, then since f is additive and continuous on
R+, it is well known [1] that f(a) = sa for some s ∈ R. Setting s = 1, we
obtain f(ab) = αa + b. To prove continuity, assume that a > b. By right
solvability a = xb for some x ∈ P . Since P has no smallest strictly positive
element, we have a > x′b > b for x′ < x, and hence f(a) > f(x′b) > f(b).
This means that f has no gap in its range. Hence we conclude from Debreu's
[2] open gap lemma that f is continuous.

Corollary 4.5. If e is a two-sided identity, then P is o-isomorphic to a

submonoid of the additive f.o. monoid of all non-negative real numbers.

Proof. Since a/e = a, identities (2) and (3) reduce to (ab)c = a(bc) and ab =
ba, respectively. Also it is obvious that P satis�es (M) and the Archimedean
property.
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