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Right product quasigroups and loops

Michael K. Kinyon, Aleksandar Krapeº and J. D. Phillips

Abstract. Right groups are direct products of right zero semigroups and groups and they
play a signi�cant role in the semilattice decomposition theory of semigroups. Right groups
can be characterized as associative right quasigroups (magmas in which left translations
are bijective). If we do not assume associativity we get right quasigroups which are not
necessarily representable as direct products of right zero semigroups and quasigroups. To
obtain such a representation, we need stronger assumptions which lead us to the notion
of right product quasigroup. If the quasigroup component is a (one-sided) loop, then we
have a right product (left, right) loop.

We �nd a system of identities which axiomatizes right product quasigroups, and use
this to �nd axiom systems for right product (left, right) loops; in fact, we can obtain each
of the latter by adjoining just one appropriate axiom to the right product quasigroup
axiom system.

We derive other properties of right product quasigroups and loops, and conclude by
showing that the axioms for right product quasigroups are independent.

1. Introduction

In the semigroup literature (e.g., [1]), the most commonly used de�nition
of right group is a semigroup (S; ·) which is right simple (i.e., has no proper
right ideals) and left cancellative (i.e., xy = xz =⇒ y = z). The struc-
ture of right groups is clari�ed by the following well-known representation
theorem (see [1]):

Theorem 1.1. A semigroup (S; ·) is a right group if and only if it is iso-
morphic to a direct product of a group and a right zero semigroup.

There are several equivalent ways of characterizing right groups. One
of particular interest is the following: a right group is a semigroup (S; ·)
which is also a right quasigroup, that is, for each a, b ∈ S, there exists a
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unique x ∈ S such that ax = b. In a right quasigroup (S; ·), one can de�ne
an additional operation \ : S × S → S as follows: z = x\y is the unique
solution of the equation xz = y. Then the following equations hold.

x\xy = y (Q1) x(x\y) = y (Q2)

Conversely, if we now think of S as an algebra with two binary operations
then we have an equational de�nition.

De�nition 1.2. An algebra (S; ·, \) is a right quasigroup if it satis�es (Q1)
and (Q2). An algebra (S; ·, /) is a left quasigroup if it satis�es

xy/y = x (Q3) (x/y)y = x (Q4)

An algebra (S; ·, \, /) is a quasigroup if it is both a right quasigroup and a
left quasigroup.

(We are following the usual convention that juxtaposition binds more
tightly than the division operations, which in turn bind more tightly than
an explicit use of ·. This helps avoid excessive parentheses.)

From this point of view, a group is an associative quasigroup with x\y =
x−1y and x/y = xy−1. If (S; ·, \) is a right group viewed as an associative
right quasigroup, then its group component has a natural right division
operation /. This operation can be extended to all of S as follows. We easily
show that x\x = y\y for all x, y ∈ S, and then de�ne e = x\x, x−1 = x\e,
and x/y = xy−1. Note that in the right zero semigroup component of S,
we have xy = x\y = x/y = y.

If one tries to think of a right quasigroup as a �nonassociative right
group�, one might ask if there is a representation theorem like Theorem 1.1
which expresses a right quasigroup as a direct product of a quasigroup and
a right zero semigroup. This is clearly not the case.

Example 1.3. On the set S = {0, 1}, de�ne operations ·, \ : S × S → S
by x · 0 = x\0 = 1 and x · 1 = x\1 = 0. Then (S; ·, \) is a right quasigroup
which is neither a quasigroup nor a right zero semigroup, and since |S| = 2,
(S; ·, \) is also not a product of a quasigroup and right zero semigroup.

For another obstruction to a representation theorem, note that if an
algebra which is a direct product of a quasigroup and a right zero semigroup
possesses a right neutral element, then the right zero semigroup component
is trivial and the algebra is, in fact, a right loop (see below). However, there
are right quasigroups with neutral elements which are not right loops.
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Example 1.4. Let N be the set of natural numbers and de�ne

x · y = x\y =

{
y if x < y

x− y if x ≥ y

Then (N; ·, \) is a right quasigroup, 0 is a neutral element, and 0 · 1 = 1 =
2 · 1. Since · is not a quasigroup operation, it follows from the preceding
discussion that (N; ·, \) is not a direct product of a quasigroup and a right
zero semigroup.

Simply adjoining a right division operation / to a right quasigroup does
not �x the problem; for instance, in either Example 1.3 or 1.4, de�ne x/y = 0
for all x, y.

In this paper, we will investigate varieties of right quasigroups such that
there is indeed a direct product decomposition.

De�nition 1.5. A quasigroup (S; ·, \, /) is a {left loop, right loop, loop} if
it satis�es the identity { x/x = y/y, x\x = y\y, x\x = y/y }.

An algebra (S; ·, \, /, e) is a pointed quasigroup if (S; ·, \, /) is a quasi-
group. A pointed quasigroup is a {quasigroup with an idempotent, left loop,
right loop, loop} if the distinguished element e is {an idempotent (ee = e),
left neutral (ex = x), right neutral (xe = x), neutral (ex = xe = x)}.

De�nition 1.6. Let T = {·, \, /} be the language of quasigroups and M
a further (possibly empty) set of operation symbols disjoint from T . The
language T̂ = T ∪M is an extended language of quasigroups.

The language T1 = {·, \, /, e}, obtained from T by the addition of a
single constant, is the language of loops.

Note that we have two di�erent algebras under the name �loop". They
are equivalent and easily transformed one into the other. When we need to
distinguish between them we call the algebra (S; ·, \, /) satisfying x\x = y/y
�the loop in the language of quasigroups" while the algebra (S; ·, \, /, e)
satisfying identities ex = xe = x is called �the loop in the language of
loops�. Analogously we do for left and right loops.

De�nition 1.7. Let V be a class of quasigroups. An algebra is a right
product V�quasigroup if it is isomorphic to Q×R, where Q ∈ V and R is a
right zero semigroup.

In particular, when V is the class {Q,LΛ,RΛ,Λ} of all {quasigroups,
left loops, right loops, loops} (in the language of quasigroups) then {RPQ,
RPLΛ,RPRΛ,RPΛ} denote the class of all right product V�quasigroups.
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If V is the class {pQ,Qi, eQ,Qe,Q1} of all {pointed quasigroups, quasi-
groups with an idempotent, left loops, right loops, loops} (in the language
of loops), then {RPpQ, RPQi, RPeQ, RPQe, RPQ1} denote the class
of all right product V�quasigroups.

We wish to view these classes as varieties of algebras. In order to make
sense of this, we need to adjust the type of right zero semigroups to match
that of (equational) quasigroups. We adopt the convention suggested above.

Convention 1.8. A right zero semigroup is considered to be an algebra in
T̂ satisfying x\y = x/y = xy = y for all x, y.

This convention agrees with the one used in [7, 8]. Di�erent de�nitions
of \ and / in right zero semigroups would a�ect the form of the axioms for
right product quasigroups.

We also denote the class of all (pointed) right zero semigroups byR (pR).
Then, in the language of universal algebra, the variety of all right product
V�quasigroups is a product V ⊗ R of independent varieties V and R (see
[20]).

De�nition 1.9. If t is a term, then {head(t), tail(t)} is the {�rst, last}
variable of t.

The following is an immediate consequence of De�nition 1.7 and Con-
vention 1.8.

Theorem 1.10. Let u, v be terms in a language extending {·, \, /}. Then
the equality u = v is true in all right product V�quasigroups if and only if
tail(u) = tail(v) and u = v is true in all V�quasigroups.

In particular:

Corollary 1.11. Let s, t, u be terms in a language extending {·, \, /}. If
s = t is true in all V�quasigroups then s ◦ u = t ◦ u (◦ ∈ {·, \, /}) is true in
all right product V�quasigroups.

We conclude this introduction with a brief discussion of the sequel and
some notation conventions. In �2, we will consider the problem of axiomatiz-
ing the varieties introduced by the De�nition 1.7. In �3 we consider various
properties of right product (pointed) quasigroups and loops. Finally, in �4,
we verify the independence of the axioms.

We should mention some related work by Tamura et al and others.
[18, 19, 4, 21]. An �M -groupoid�, de�ned by certain axioms, turns out to
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be a direct product of a right zero semigroup and a magma with a neutral
element. The axiomatic characterization of these in [18, 19] is of a somewhat
di�erent character than ours; besides the fact that they did not need to
adjust signatures since they did not consider quasigroups, their axioms are
also not entirely equational.

2. Axioms

We now consider the problem of axiomatizing RPQ, the class of all right
product quasigroups. One approach to axiomatization is the standard
method of Knoebel [6], which was used in [7, 8]. It turns out that the
resulting axiom system consists of 14 identities, most of which are far from
elegant. Another way is via independence of Q and R. Using the term
α(x, y) = xy/y (see [20, Proposition 0.9]), we get these axioms:

xx/x = x

(xy/y)(uv/v)/(uv/v) = xv/v (xy · uv)/uv = (xu/u)(yv/v)
(x\y)(u\v)/(u\v) = (xu/u)\(yv/v) (x/y)(u/v)/(u/v) = (xu/u)/(yv/v)

which we also �nd to be somewhat complicated. Instead, we propose a
di�erent scheme, which we call system (A):

x\xy = y (A1)

x · x\y = y (A2)

x/y · y = xy/y (A3)

(x/y · y)/z = x/z (A4)

xy/z · z = x(y/z · z) (A5)

We now prove that system (A) axiomatizes the variety of right product
quasigroups. It is not di�cult to use the results of [5] to prove this, but
instead we give a somewhat more enlightening self-contained proof. We
start with an easy observation.

Lemma 2.1. Every right product quasigroup satis�es system (A).

Proof. The quasigroup axioms (Q3) and (Q4) trivially imply (A3)�(A5),
and so quasigroups satisfy (A). For each (Ai), the tails of both sides of the
equation coincide. By Theorem 1.10, we have the desired result.
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In an algebra (S; ·, \, /) satisfying system (A), de�ne a new term oper-
ation ? : S × S → S by

x ? y = xy/y = x/y · y (?)

for all x, y ∈ S. Here the second equality follows from (A3), and we will
use it freely without reference in what follows.

Lemma 2.2. Let (S; ·, \, /) be an algebra satisfying system (A). Then for
all x, y, z ∈ S,

(xy) ? z = x(y ? z) (1)

(x\y) ? z = x\(y ? z) (2)

(x/y) ? z = x/(y ? z) (3)

Proof. Equation (1) is just (A5) rewritten. Replacing y with x\y and using
(A1), we get (2). Finally, for (3), we have

x/(y ? z) = (x ? y ? z)/(y ? z) = [(x/y · y) ? z]/(y ? z)
= [(x/y)(y ? z)]/(y ? z) = (x/y) ? y ? z = (x/y) ? z ,

using (A4) in the �rst equality, (1) in the third, and the rectangular property
of ? in the �fth.

Lemma 2.3. Let (S; ·, \, /) be an algebra satisfying system (A). Then (S; ?)
is a rectangular band.

Proof. Firstly,

(x ? y) ? z = (x/y · y)/z · z = x/z · z = x ? z , (4)

using (A4). Replacing x with x/(y ? z) in (1), we get

[(x/(y ? z))y] ? z = x/(y ? z) · (y ? z) = x ? (y ? z) . (5)

Thus,

x?z = (x?(y?z))?z = ([(x/(y?z))y]?z)?z = [(x/(y?z))y]?z = x?(y?z) , (6)

using (4), (5), (4) again and (5) once more. Together, (4) and (6) show that
(S; ?) is a semigroup satisfying x ? y ? z = x ? z.
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What remains is to show the idempotence of ?. Replace x with x/x in
(1) and set y = z = x, we have

(x/x)(x ? x) = (x/x · x) ? x = (x ? x) ? x = x ? x ,

using (4), and so

x ? x = (x/x)\(x ? x) = (x/x)\(x/x · x) = x ,

using (A1) in the �rst and third equalities.

Let (S; ·, \, /) be an algebra satisfying system (A). By Lemma 2.3, (S; ?)
is a rectangular band, and so (S; ?) is isomorphic to the direct product of a
left zero semigroup and a right zero semigroup [1]. It will be useful to make
this explicit. Introduce translation maps in the semigroup (S; ?) as follows

`x(y) := x ? y =: (x)ry ,

so that the left translations `x : S → S act on the left and the right
translations ry : S → S act on the right. Let L = 〈`x|x ∈ S〉 and R =
〈rx|x ∈ S〉. Then L is a left zero transformation semigroup, that is, `x`y =
`x, while R is a right zero transformation semigroup, that is, rxry = ry.
Since `x = `x?y and ry = rx?y for all x, y ∈ S, it follows easily that the map
S → L×R;x 7→ (`x, rx) is an isomorphism of semigroups.

Now we de�ne operations ·, \ and / on R and L. Firstly, we de�ne
·, \, / : R×R → R by

rx · ry := rx\ry := rx/ry := ry .

For later reference, we formally record the obvious.

Lemma 2.4. Let (S; ·, \, /) be an algebra satisfying system (A). With the
de�nitions above, (R; ·, \, /) is a right zero semigroup.

It follows from Lemma 2.1 that (R; ·, \, /) is an algebra satisfying system
(A).

Lemma 2.5. Let (S; ·, \, /) be an algebra satisfying system (A). The map-
ping S → R;x 7→ rx is a surjective homomorphism of such algebras.

Proof. Firstly,

(x)ryz = x ? (yz) = x ? [y(z ? z)] = x ? (yz) ? z = x ? z = xrz = (x)(ry · rz) ,

using (1) in the third equality and (S; ?) being a rectangular band in the
fourth equality. Similar arguments using (2) and (3) give ry\z = ry\rz and
ry/z = ry/rz, respectively. The surjectivity is clear.
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Next, we de�ne ·, \, / : L× L → L by

(`x · `y)(z) = `x(z) · `y(z)
(`x\`y)(z) = `x(z)\`y(z)
(`x/`y)(z) = `x(z)/`y(z)

for all x, y, z ∈ S.

Lemma 2.6. Let (S; ·, \, /) be an algebra satisfying system (A). With the
de�nitions above, (L; ·, \, /) is a quasigroup.

Proof. Equations (Q1) and (Q2) follow immediately from the de�nitions
together with (A1) and (A2). By (A3), it remains to prove, say, (Q3). For
all x, y, z ∈ S,

((`x · `y)/`y)(z) = (`x(z) · `y(z))/`y(z) = (x ? z) ? (y ? z) = x ? z = `x(z) ,

where we have used the fact that (S; ?) is a rectangular band in the third
equality.

Lemma 2.7. Let (S; ·, \, /) be an algebra satisfying system (A). The map-
ping S → L;x 7→ `x is a surjective homomorphism of such algebras.

Proof. For all x, y, z ∈ S, we compute

`x(z) · `y(z) = (x ? z)(y ? z) = (x ? y ? z)(y ? z) = [(x(y ? z))/(y ? z)](y ? z)
= (x(y ? z)) ? y ? z = x(y ? z ? y ? z) = x[y ? z] = (xy) ? z

= `xy(z) ,

where we use rectangularity of ? in the second equality, (1) in the �fth,
idempotence of ? in the sixth and (1) in the seventh. Next, if we replace y
with x\y and use (A1), we get `x\y(z) = `x(z)\`y(z). Finally,

`x(z)/`y(z) = (x ? z)/(y ? z) = ((x ? z)/y) ? z = (x/y) ? z = `x/y(z) ,

using (3) in the second equality and (A5) in the third.

We now turn to the main result of this section.

Theorem 2.8. An algebra (S; ·, \, /) is a right product quasigroup if and
only if it satis�es (A).
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Proof. The necessity is shown by Lemma 2.1. Conversely, if (S; ·, \, /) satis-
�es (A), then by Lemmas 2.5 and 2.7, the mapping S → L×R;x 7→ (`x, rx)
is a surjective homomorphism. This map is, in fact, bijective, since as al-
ready noted, it is an isomorphism of rectangular bands. By Lemmas 2.4
and 2.6, L×R is a right product quasigroup, and thus so is S.

Remark 2.9. There are other choices of axioms for right product quasi-
groups. For instance, another system equivalent to (A) consists of (A1),
(A2), (A3) and the equations

xx/x = x (B1) (xy · (z/u))/(z/u) = x(yu/u) (B2) .

Call this system (B). We omit the proof of the equivalence of systems (A)
and (B). One can use the results of [5] to prove the system (B) variant of
Theorem 2.8 as follows: (A1) and (A2) trivially imply the equations

x(x\y) = x\xy (A3′)

x\xx = x (B1′) (x\y)\((x\y) · zu) = (x\xz)u (B2′) .

By [5], (A3), (A3′), (B1), (B1′), (B2′) and (B2′) axiomatize the variety
of rectangular quasigroups, each of which is a direct product of a left zero
semigroup, a quasigroup and a right zero semigroup. By (A1) and (A2),
the left zero semigroup factor must be trivial, and so a system satisfying
system (B) must be a right product quasigroup.

We conclude this section by considering other varieties of right product
quasigroups. Utilizing [9] we get:

Theorem 2.10. Let V be a variety of quasigroups axiomatized by additional
identities:

si = ti (Vi)

(i ∈ I) in an extended language T̂ and let z be a variable which does not
occur in any si, ti. Then the variety RPV of right product V�quasigroups
can be axiomatized by system (A) together with (for all i ∈ I):

siz = tiz . ( �Vi)

Proof. Both V�quasigroups and right zero semigroups satisfy system (A)
and all ( �Vi), i ∈ I, and thus so do their direct products i.e., right product
V�quasigroups.
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Conversely, if an algebra satis�es system (A), it is a right product quasi-
group by Theorem 2.8. Since all ( �Vi) are satis�ed, the quasigroup factor has
to satisfy them, too. But in quasigroups, the identities ( �Vi) are equivalent
to the identities (Vi) and these de�ne the variety V.

Theorem 2.11. Theorem 2.10 remains valid if we replace ( �Vi) by any of
the following families of identities:

si\z = ti\z
si/z = ti/z

z/(si\z) = (z/ti)\z
si = (ti · tail(si))/ tail(si)
si = (ti/ tail(si)) · tail(si)

si = ti (if tail(si) = tail(ti)). �

Example 2.12. Adding associativity x ·yz = xy ·z to system (A) gives yet
another axiomatization of right groups.

Example 2.13. Right product commutative quasigroups are right product
quasigroups satisfying xy · z = yx · z. However, commutative right product
quasigroups are just commutative quasigroups.

Obviously:

Corollary 2.14. If the variety V of quasigroups is de�ned by the identities
si = ti (i ∈ I) such that tail(si) = tail(ti) for all i ∈ I, then the class of all
right product quasigroups satisfying identities si = ti(i ∈ I) is the class of
all right product V�quasigroups.

If tail(si) 6= tail(ti) for some i ∈ I, then the class of all right product
quasigroups satisfying identities si = ti (i ∈ I) is just the class of all V�
quasigroups.

Example 2.15. The variety RPpQ is de�ned by adding a constant to the
language of quasigroups, not by any extra axioms.

Example 2.16. The variety RPQi of all right product quasigroups with
an idempotent may be axiomatized by system (A) and ee = e.
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Corollary 2.17. A right product quasigroup is a right product left loop i�
it satis�es any (and hence all) of the following axioms:

(x/x)y = y (LL1)

(x/x)z = (y/y)z (LL2)

(x ◦ y)/(x ◦ y) = y/y (LL3)

where ◦ is any of the operations ·, \, /.

Proof. In a quasigroup, identities (LL1), (LL2) and (LL3) are equivalent to
each other and to x/x = y/y, and so a quasigroup satisfying either axiom
is a left loop. Conversely, in a left loop with left neutral element e, we have
e = x/x, and so (LL1), (LL2) and (LL3) hold. Thus a quasigroup satis�es
either (and hence all) of (LL1), (LL2), (LL3) if and only if it is a left loop.

On the other hand, (LL1), (LL2) and (LL3) trivially hold in right zero
semigroups by Convention 1.8. Putting this together, we have the desired
result.

In the language of loops we have:

Corollary 2.18. A right product quasigroup is a right product left loop if
and only if it satis�es the identity ex = x.

Similarly:

Corollary 2.19. A right product quasigroup is a right product right loop if
and only if it satis�es any (and hence all) of the following axioms:

x(y\y) · z = xz

(x\x)z = (y\y)z
(x ◦ y)\(x ◦ y) = y\y

where ◦ is any of the operations ·, \, /.

Corollary 2.20. A right product quasigroup is a right product right loop
(in the language of loops) i� it satis�es the identity xe · y = xy.
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Corollary 2.21. A right product quasigroup is a right product loop if and
only if it satis�es any (and hence all) of the following axioms:

(x\x)y = y (L)

x(y/y) = xy/y

x(y/y) = (x/y)y
(x\x)z = (y/y)z

(x ◦ y)\(x ◦ y) = y/y

(x ◦ y)/(x ◦ y) = y\y

where ◦ is any of the operations ·, \, /.

Corollary 2.22. A right product quasigroup is a right product loop (in the
language of loops) i� it satis�es both ex = x and xe · y = xy.

3. Properties of right product (pointed) quasigroups

Calling upon the tools of universal algebra, we now examine some properties
of right product quasigroups. We will use the following standard notation.

De�nition 3.1.
ES � the subset of all idempotents of S.
Sub(S) � the lattice of all subalgebras of S.
Sub0(S) � the lattice of all subalgebras of S with the empty set

adjoined as the smallest element (used when two sub�
algebras have an empty intersection).

Con(S) � the lattice of all congruences of S.
Eq(S) � the lattice of all equivalences of S.
Hom(S, T ) � the set of all homomorphisms from S to T .
End(S) � the monoid of all endomorphisms of S.
Aut(S) � the group of all automorphisms of S.
Free(V, n) � the free algebra with n generators in the variety V.
Var(V) � the lattice of all varieties of a class V of algebras.

In addition, Rn will denote the unique n-element right zero semigroup �
which also happens to be free. However, note that in the language of loops,
the free right zero semigroup generated by n elements is Rn+1.
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3.1. The word problem

Using a well-known result of Evans [3] we have the following corollary of
Theorem 1.10:

Corollary 3.2. The word problem for right product V�quasigroups is solv-
able if and only if it is solvable for V�quasigroups.

In particular:

Corollary 3.3. The word problem for {RPQ,RPLΛ,RPRΛ,RPΛ} is
solvable.

Likewise:

Corollary 3.4. The word problem for {RPpQ,RPQi,RPeQ,RPQe,
RPQ1} is solvable.

3.2. Properties of right product quasigroups and loops

The following corollaries are special cases of results in universal algebra (see
[20]).

Corollary 3.5. For all Q,Q′ ∈ Q and R,N ∈ R:

1. EQ×R = EQ ×R,
in particular:

� Q×R have idempotents if and only if Q have them.

� EQ×R is subalgebra of Q×R if and only if EQ is subalgebra of Q.

� Q×R is a groupoid of idempotents if and only if Q is.

2. Sub0(Q×R) = (Sub(Q)× (2R r {∅})) ∪ {∅}.

3. Con(Q×R) = Con(Q)× Eq(R).

4. Hom(Q×R, Q′ ×N) = Hom(Q,Q′)×NR.

5. End(Q×R) = End(Q)×RR.

6. Aut(Q×R) = Aut(Q)× S|R|.
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Having a distinguished element changes the properties of a variety rad-
ically. For example, if e = (i, j) is a distinguished element of the right
product pointed quasigroup Q × R then there is always the smallest sub-
algebra < i > ×{j}. So, in case of right product pointed quasigroups,
the results analogous to Corollary 3.5 are actually somewhat di�erent in
character.

Corollary 3.6. For all Q,Q′ ∈ pQ and R,N ∈ R with a distinguished
element j:

1. EQ×R = EQ ×R,
in particular:

� Q×R has idempotents if and only if Q has them.

� EQ×R is subalgebra of Q×R if and only if EQ is subalgebra of Q.

� Q×R is a groupoid of idempotents if and only if Q is.

2. Sub(Q×R) = Sub(Q)× {Y ⊆ R | j ∈ Y } ' Sub(Q)× 2Rr{j}.

3. Con(Q×R) = Con(Q)× Eq(R).

4. Hom(Q × R, Q′ × N) = Hom(Q,Q′) × {f : R → N | f(j) = j} '
Hom(Q,Q′)×NRr{j}.

5. End(Q×R) = End(Q)×{f : R → R | f(j) = j} ' End(Q)×RRr{j}.

6. Aut(Q×R) = Aut(Q)×{f ∈ SR | f(j) = j} ' Aut(Q)× S|R|−1.

Corollary 3.7. If V is one of Q,LΛ,RΛ,Λ, then
Free(RPV, n) ' Free(V, n)×Rn.

Corollary 3.8. If V is one of pQ,Qi, eQ,Qe,Q1, then
Free(RPV, n) ' Free(V, n)×Rn+1.

Corollary 3.9. If V is one of the above varieties of (pointed) quasigroups,
then Var(RPV) ' Var(V)× 2.

All cases suggested by Corollary 3.5(1) can actually occur. In the ex-
amples below, right product quasigroups are in fact quasigroups and thus
we display the Cayley tables of the multiplication only.

Example 3.10. Tables 1 give a right product quasigroup with no idem-
potents (on the left) and an idempotent right product quasigroup (on the
right).
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· 0 1 2
0 1 0 2
1 0 2 1
2 2 1 0

· 0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

Table 1: A right product quasigroup with no idempotents and an idempo-
tent right product quasigroup.

Example 3.11. Tables 2 give a right product quasigroup in which ES is
not a subalgebra (on the left) and a right product quasigroup in which ES

is a nontrivial subalgebra (on the right).

• 0 1 2 3
0 0 2 1 3
1 3 1 2 0
2 1 3 0 2
3 2 0 3 1

• 0 1 2 3 4 5
0 0 2 1 3 5 4
1 2 1 0 5 4 3
2 1 0 2 4 3 5
3 3 5 4 0 2 1
4 5 4 3 2 1 0
5 4 3 5 1 0 2

Table 2: ES is not closed, ES is a nontrivial subalgebra.

Moreover, we have the following. These are immediate consequences of
well understood properties of quasigroups and semigroups.

Theorem 3.12. Let S = Q×R be a right product quasigroup. Then:

1. If Qm (m ∈ M) is the (possibly empty) family of all maximal sub-
quasigroups of Q then Qm × R (m ∈ M), Q × (R \ {r}) (r ∈ R) is
the family of all maximal right product subquasigroups of S.

2. There are |R| maximal subquasigroups of S. They are all mutually
isomorphic and of the form Q× {r} (r ∈ R).

From now on we assume ES 6= ∅ (i.e., EQ 6= ∅).

3. If ES is subalgebra then it is the largest subalgebra of idempotents of
S.

4. There are |ES | maximal left zero subsemigroups of S. They are all
singletons {e} (e ∈ ES).
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5. There are |EQ| maximal right zero subsemigroups of S. They are all
mutually isomorphic and of the form {i} ×R (i ∈ EQ).

From now on we assume EQ = {i}.

6. ES = {i} ×R is the unique largest subband of S, which happens to be
a right zero semigroup.

7. If the quasigroup Q is a left loop then the left neutral i of Q is the
only idempotent of Q and:

� ES = {a/a | a ∈ S}.
� The element e ∈ S is a left neutral if and only if it is an idempotent.

� The maximal subquasigroups

Q× {r} = Se = {x ∈ S | x/x = e} (e ∈ ES , e = (i, r))

are maximal left subloops of S.

� For all e ∈ ES S ' Se× ES and the isomorphism is given by

f(x) = (xe/e, x/x).

8. If the quasigroup Q is a right loop then the right neutral i of Q is the
only idempotent of Q and:

� ES = {a\a | a ∈ S}.
� S has a right neutral if and only if |R| = 1 and then the right neutral

is unique. In this case S is a right loop.

� The maximal subquasigroups

Q× {r} = Se = {x ∈ S | x\x = e} (e ∈ ES , e = (i, r))

are maximal right subloops of S.

� For all e ∈ ES S ' Se× ES and the isomorphism is given by

f(x) = (xe, x\x).

9. If the quasigroup Q is a loop then:

� The element e ∈ S is a left neutral if and only if it is an idempotent.

� S has a right neutral if and only if |R| = 1 and then the right neutral

is unique. In this case S is a loop.

� The maximal subquasigroups
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Q× {r} = Se = {x ∈ S | x\x = x/x = e} (e ∈ ES , e = (i, r))

are maximal subloops of S.

� For all e ∈ ES S ' Se× ES and the isomorphism is given by

f(x) = (xe, x/x).

Theorem 3.13. Let S = Q×R be a right product pointed quasigroup with
a distinguished element e = (i, j). Then:

1. If Qm (m ∈ M) is the (possibly empty) family of all maximal pointed
subquasigroups of Q then Qm ×R, Q× (R \ {r}), where r ∈ R \ {j},
is the family of all maximal right product pointed subquasigroups of S.

2. Se = Q× {j} is the largest pointed subquasigroup of S.

From now on we assume ES 6= ∅ (i.e., EQ 6= ∅).

3. If ES is subalgebra then it is the largest subalgebra of idempotents of
S.

4. Se∩ES = {e} is the largest pointed left zero subsemigroup of S if and
only if e ∈ ES.

5. ES = {i} × R is the largest pointed right zero subsemigroup of S if
and only if i ∈ EQ.

6. S ' Se× ES and the isomorphism is given by f(x) = (xe/e, ex/x).

From now on we assume EQ = {i}.

7. ES = {i}×R is the unique largest pointed subband of S, which happens
to be a pointed right zero semigroup.

8. If the element i is the left neutral of Q, it is the only idempotent of Q
and:

� ES = {a/a | a ∈ S}.

� The element a ∈ S is a left neutral if and only if it is an idempotent.

� Se = {x ∈ S | x/x = e} is the largest left subloop of S.

� The isomorphism S ' Se× ES is given by f(x) = (xe/e, x/x).



256 M. K. Kinyon, A. Krapeº and J. D. Phillips

9. If the element i is the right neutral of Q, it is the only idempotent of
Q and:

� ES = {a\a | a ∈ S}.
� S has a right neutral if and only if |R| = 1 and then the right neutral

is e. In this case S is a right loop.

� Se = {x ∈ S | x\x = e} is the largest right subloop of S.

� The isomorphism S ' Se× ES is given by f(x) = (xe, x\x).

10. If the element i is the two�sided neutral of Q, it is the only idempotent
of Q and:

� The element a ∈ S is a left neutral if and only if it is an idempotent.

� S has a right neutral if and only if |R| = 1 and then the right neutral

is e. In this case S is a loop.

� Se = {x ∈ S | x\x = x/x = e} is the largest subloop of S.

� The isomorphism S ' Se× ES is given by f(x) = (xe, x/x).

3.3. The equation xa=b

Since a right product quasigroup is a right quasigroup the equation ax = b
has the unique solution x = a\b. For the equation xa = b, the situation is
not so clear.

We solve the equation xa = b using the notion of reproductivity. The
related notion of reproductive general solution was de�ned by E. Schröder
[17] for Boolean equations and studied by L. Löwenheim [10, 11] who also
introduced the term �reproductive". More recently, S. B. Pre²i¢ made sig-
ni�cant contributions to the notion of reproductivity [13, 14, 15]. For an
introduction to reproductivity, see S. Rudeanu [16].

De�nition 3.14. Let S 6= ∅ and F : S −→ S. The equation x = F (x) is
reproductive if for all x ∈ S F (F (x)) = F (x).

The most signi�cant properties of reproductivity are:

Theorem 3.15. A general solution of the reproductive equation x = F (x)
is given by: x = F (p) (p ∈ S).

Theorem 3.16 (S. B. Pre²i¢). Every consistent equation has an equiva-
lent reproductive equation.
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We now apply these results to our equation xa = b.

Theorem 3.17.

1. In right product quasigroups, the equation xa = b is consistent if and
only if (b/a)a = b.

2. In right product {left, right} loops, the consistency of xa = b is equiv-
alent to {a/a = b/b, a\a = b\b}.

3. If the equation xa = b consistent, then it is equivalent to the repro-
ductive equation x = (b/a)x/x, and thus its general solution is given
by x = (b/a)p/p (p ∈ S). There are exactly |R| distinct solutions.

4. If a right product quasigroup S = Q × R has idempotents, then the
general solution of the consistent equation xa = b may be given in the
form x = (b/a)e/e (e ∈ ES).

5. If the quasigroup Q has a unique idempotent, then any idempotent
e ∈ ES de�nes the unique solution x = (b/a)e/e of xa = b.

6. In a right product right loop, the general solution of xa = b may be
simpli�ed to x = (b/a)e (e ∈ ES).

Proof. (1) If the equation is consistent then there is at least one solution
x = c. It follows that b = ca and (b/a)a = (ca/a)a = ca = b. If we assume
that (b/a)a = b then x = b/a is one solution of the equation xa = b, which
therefore must be consistent.

(2) Assume S is a right product left loop. If xa = b is consistent then
b/b = xa/xa = a/a. For the converse assume S = Q×R for some left loop
Q with the left neutral i and a right zero semigroup R. Let a = (a1, a2) and
b = (b1, b2). Then (i, a2) = (a1/a1, a2/a2) = a/a = b/b = (b1/b1, b2/b2) =
(i, b2) i.e., a2 = b2 which is equivalent to the consistency of xa = b.

Now assume S is a right product right loop. If xa = b is consistent
then b\b = xa\xa = a\a. For the converse assume S = Q × R for some
right loop Q with the right neutral i and a right zero semigroup R. Let
a = (a1, a2) and b = (b1, b2). Then (i, a2) = (a1\a1, a2\a2) = a\a = b\b =
(b1\b1, b2\b2) = (i, b2) i.e., a2 = b2 which is equivalent to the consistency of
xa = b.

(3) Let the equation xa = b be consistent. Then (b/a)x/x = (xa/a)x/x
= xx/x = x. Conversely, if x = (b/a)x/x then xa = ((b/a)x/x)a =
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(b/a)a = b. Therefore, equations xa = b and x = (b/a)x/x are equiva-
lent. The form of the later equation is x = F (x) where F (x) = (b/a)x/x.
Also, F (F (x)) = ((b/a) · F (x))/F (x) = ((b/a)((b/a)x/x))/((b/a)x/x) =
(b/a)x/x = F (x) so equation x = F (x) is reproductive. Its general solution
is x = F (p) = (b/a)p/p(p ∈ S).

Without loss of generality we may assume that S is Q×R for some quasi-
group Q and a right zero semigroup R. Let a = (a1, a2), b = (b1, b2), x =
(x1, x2) and p = (p1, p2). The consistency of xa = b reduces to (b1, b2) =
(b/a)a = ((b1/a1)a1, a2) = (b1, a2) i.e., a2 = b2. In that case, the solutions
of xa = b are x = (b/a)p/p = ((b1/a1)p1/p1, (b2/a2)p2/p2) = (b1/a1, p2).
Evidently, the number of di�erent solutions of xa = b is |R|.

(4) Let S = Q × R and let i be an idempotent of Q. For every p =
(p1, p2) there is an idempotent e = (i, p2) of S such that x = (b/a)p/p =
(b1/a1, p2) = ((b1/a1)i/i, (b2/a2)p2/p2) = (b/a)e/e.

(5) If the idempotent i ∈ Q is unique then ES has exactly |ES | = |R|
idempotents, just as many as the equation xa = b has solutions.

(6) Let S be a right product right loop and e = (i, r). Then

x = (b/a)e/e = ((b1/a1)i/i, (b2/a2)r/r) = (b1/a1, r)
= ((b1/a1)i, (b2/a2)r) = (b1/a1, b2/a2)(i, r) = (b/a)e .

The proof is complete.

3.4. Products of sequences of elements including idempotents

We use %(ai, ai+1, . . . , aj) to denote the right product i.e., the product of
ai, . . . , aj with brackets associated to the right. More formally, %(ai) = ai

(1 6 i 6 n) and %(ai, ai+1, . . . , aj) = ai · %(ai+1, . . . , aj) (1 6 i < j 6 n).
Further, we de�ne %(±an) = an and

%(ai, ai+1, . . . , aj ,±an) =

{
%(ai, . . . , aj); if j = n

%(ai, . . . , aj , an); if j < n.

In short, an should appear in the product %(ai, . . . , aj ,±an), but only once.
The following is an analogue of Theorem 2.4 from [7].

Theorem 3.18. Let a1, . . . , an (n > 0) be a sequence of elements of the
right product left loop S, such that ap1 , . . . , apm (1 6 p1 < . . . < pm 6 n;
0 6 m 6 n) comprise exactly the idempotents among a1, . . . , an. Then
%(a1, . . . , an) = %(ap1 , . . . , apm ,±an).
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Proof. The proof is by induction on n.
(1) n = 1.
If m = 0 then %(a1) = a1 = %(±a1).
If m = 1 then %(a1) = a1 = %(a1,±a1).
(2) n > 1.
If a1 ∈ ES (i.e., 1 < p1) then %(a1, . . . , an) = a1·%(a2, . . . , an) = %(a2, . . . , an)
which is equal to %(ap1 , . . . , apm ,±an) by the induction argument.
If a1 /∈ ES (i.e., 1 = p1) then, using induction argument again, we get
%(a1, . . . , an) = a1·%(a2, . . . , an) = ap1 ·%(ap2 , . . . , apm ,±an) = %(ap1 , ap2 , . . . ,
apm ,±an).

Analogously to %(. . .), we use λ(ai, . . . , aj−1, aj) to denote the left prod-
uct i.e., the product of ai, . . . , aj with brackets associated to the left. For-
mally, λ(ai) = ai (1 6 i 6 n) and λ(ai, . . . , aj−1, aj) = λ(ai, . . . , aj−1) · aj

(1 6 i < j 6 n).
Further, we de�ne λ(±a1,±an) = a1 if n = 1, λ(±a1,±an) = a1an if

n > 1 and

λ(±a1, ai, . . . , aj ,±an) =


λ(ai, . . . , aj); if 1 = i 6 j = n

λ(ai, . . . , aj , an); if 1 = i 6 j < n

λ(a1, ai, . . . , aj); if 1 < i 6 j = n

λ(a1, ai, . . . , aj , an); if 1 < i 6 j < n.

Therefore, both a1 and an should appear in the product λ(±a1, ai, . . . , aj ,
± an), but just once each. If n = 1 then a1 = an should also appear just
once.

Of course, there is an analogue of Theorem 3.18.

Theorem 3.19. Let a1, . . . , an (n > 0) be a sequence of elements of the
right product right loop S, such that ap1 , . . . , apm (1 6 p1 < . . . < pm 6 n;
0 6 m 6 n) and only them among a1, . . . , an are nonidempotents. Then
λ(a1, . . . , an) = λ(±a1, ap1 , . . . , apm ,±an).

Proof. The proof is by induction on n.
(1) n = 1.
If m = 0 then λ(a1) = a1 = λ(±a1,±a1).
If m = 1 then λ(a1) = a1 = λ(±a1, a1,±a1).
(2) n > 1.
(2a) Let 1 = p1 , pm−1 = n−1 , pm = n (i.e., a1, an−1, an /∈ ES). Then, using
induction argument, λ(a1, . . . , an) = λ(a1, . . . , an−1) · an = λ(±a1, ap1 , . . . ,
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apm−1 ,±an−1) · apm = λ(ap1 , . . . , apm−1) · apm = λ(ap1 , . . . , apm−1 , apm) =
λ(±a1, ap1 , . . . , apm ,±an).
(2b) Let 1 = p1 , pm = n − 1 (i.e. a1, an−1 /∈ ES ; an ∈ ES). Then, using
induction argument again, we get λ(a1, . . . , an) = λ(a1, . . . , an−1) · an =
λ(±a1, ap1 , . . . , apm ,±an−1) ·an = λ(ap1 , . . . , apm) ·an = λ(ap1 , . . . , apm , an)
= λ(±a1, ap1 , . . . , apm ,±an).
(2c) Let 1 = p1 , pm−1 < n−1 , pm = n (i.e., a1, an /∈ ES ; an−1 ∈ ES). Then,
by the induction argument and (RL), λ(a1, . . . , an) = λ(a1, . . . , an−1) ·
an = λ(±a1, ap1 , . . . , apm−1 ,±an−1) · an = λ(ap1 , . . . , apm−1 , an−1) · apm =
λ(ap1 , . . . , apm−1)an−1·apm = λ(ap1 , . . . , apm−1)·apm = λ(ap1 , . . . , apm−1 , apm)
= λ(±a1, ap1 , . . . , apm ,±an).
(2d) Let 1 = p1 , pm−1 < n (i.e., a1 /∈ ES ; an−1, an ∈ ES). It follows that
λ(a1, . . . , an) = λ(a1, . . . , an−1) · an = λ(±a1, ap1 , . . . , apm ,±an−1) · an =
λ(ap1 , . . . , apm , an−1) ·an = λ(ap1 , . . . , apm)an−1 ·an = λ(ap1 , . . . , apm) ·an =
λ(ap1 , . . . , apm , an) = λ(±a1, ap1 , . . . , apm ,±an).

The remaining cases of (2) in which p1 6= 1, i.e., a1 ∈ ES can be proved
analogously.

In right product {left, right} loops, Theorems 3.18 and 3.19 give us the
means to reduce {right, left} products. The result is much stronger in right
product loops.

De�nition 3.20. Let (S; ·, \, /) be a right product quasigroup and 1 /∈ S.
By S1 we denote a triple magma with operations extending ·, \, / to S∪{1}
in the following way: x ◦ y (◦ ∈ {·, \, /}) remains as before if x, y ∈ S. If
x = 1 then x ◦ y = y and if y = 1 then x ◦ y = x.

Note that the new, extended operations ·, \, / are well de�ned and that
1 is the neutral element for all three.

Lemma 3.21. Let a1, . . . , an (n > 0) be a sequence of elements of a right
product loop S such that an is an idempotent and p(a1, . . . , an) some product
of a1, . . . , an (in that order) with an arbitrary (albeit �xed) distribution of
brackets. Then p(a1, . . . , an) = p(a1, . . . , an−1, 1) · an.

Proof. First, note that if e is an idempotent then x · ye = xy · e for all
x, y ∈ S. Namely, if e ∈ ES then there is a z ∈ S such that e = z/z (for
example z = e is one). The identity x · y(z/z) = xy · (z/z) is true in all
right product loops as it is true in all loops and all right zero semigroups.

The proof of the lemma is by induction on n.
(1) n = 1.
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a1 = an is an idempotent, so p(a1) = a1 = 1 · a1 = p(1) · a1.
(2) n > 1.
Let p(a1, . . . , an) = q(a1, . . . , ak) · r(ak+1, . . . , an) for some k (1 6 k 6 n).
By the induction hypothesis r(ak+1, . . . , an) = r(ak+1, . . . , an−1, 1) · an. So
p(a1, . . . , an) = q(a1, . . . , ak) · (r(ak+1, . . . , an−1, 1) · an) = (q(a1, . . . , ak) ·
r(ak+1, . . . , an−1, 1)) · an = p(a1, . . . , an−1, 1) · an.

The following result is an improvement of Theorems 3.18 and 3.19.

Theorem 3.22. Let a1, . . . , an and b1, . . . , bn (n > 0) be two sequences of
elements of the right product loop S (with some of bk possibly being 1) such
that

bk =

{
1; if k < n and ak ∈ ES

ak; if k = n or ak /∈ ES

and let p(a1, . . . , an) be as in Lemma 3.21. Then p(a1, . . . , an) = p(b1, . . . , bn).

Proof. The proof of the Theorem is by induction on n.
(1) n = 1.
There is only one product p(a1) = a1 and, irrespectively of whether a1 is
idempotent or not, b1 = a1. Therefore p(a1) = p(b1).
(2) n > 1.
Let p(a1, . . . , an) = q(a1, . . . , ak) · r(ak+1, . . . , an) for some k (1 6 k 6 n).
By the induction hypothesis we have q(a1, . . . , ak) = q(b1, . . . , bk−1, ak) and
r(ak+1, . . . , an) = r(bk+1, . . . , bn).

If ak is nonidempotent then ak = bk and p(a1, . . . , an) = q(b1, . . . , bk) ·
r(bk+1, . . . , bn) = p(b1, . . . , bn).

If ak is idempotent then bk = 1 and by the Lemma 3.21 p(a1, . . . , an) =
q(b1, . . . , bk−1, ak)·r(bk+1, . . . , bn) = (q(b1, . . . , ak−1, 1)·ak)·r(bk+1, . . . , bn) =
q(b1, . . . , bk) · r(bk+1, . . . , bn) = p(b1, . . . , bn).

The following corollary is an analogue of ([7], Theorem 2.4).

Corollary 3.23. Let a1, . . . , an be a sequence of elements of the right prod-
uct loop S, such that at most two of them are nonidempotents. Then all
products of a1, . . . , an, in that order, are equal to the following product of at
most three of them: First � nonidempotents of a1, . . . , an−1 if any (the one
with the smaller index �rst) and then an if it is not used already.

In right product pointed loops we need not use 1.
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Theorem 3.24. Let a1, . . . , an and b1, . . . , bn (n > 0) be two sequences of
elements of the right product pointed loop S with the distinguished element
e such that

bk =

{
e; if k < n and ak ∈ ES

ak; if k = n or ak /∈ ES

and let p(a1, . . . , an) be some product of a1, . . . , an. Then p(a1, . . . , an) =
p(b1, . . . , bn).

4. Independence of axioms

Finally, we consider the independence of the axioms (A) for right product
quasigroups.

It is well-known that the quasigroup axioms (Q1)�(Q4) are independent.
It follows that axioms (A1) and (A2) are independent. To give just one
concrete example, here is a model in which (Q2) = (A2) fails.

Example 4.1. The model (Z; ·, \, /) where x · y = x + y, x/y = x− y and
x\y = max{y− x, 0} is a left quasigroup satisfying (Q1) but not (Q2), and
hence satis�es (A1), (A3), (A4) and (A5), but not (A2).

As it turns out, the independence of the remaining axioms can be easily
shown by models of size 2. These were found using Mace4 [12].

Example 4.2. Table 3 is a model satisfying (A1), (A2), (A4), (A5), but
not (A3).

· 0 1
0 0 1
1 0 1

\ 0 1
0 0 1
1 0 1

/ 0 1
0 1 0
1 1 0

Table 3: (A1), (A2), (A4), (A5), but not (A3).

Example 4.3. Table 4 is a model satisfying (A1), (A2), (A3), (A5), but
not (A4).

Example 4.4. Table 5 is a model satisfying (A1), (A2), (A3), (A4), but
not (A5).
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· 0 1
0 0 1
1 1 0

\ 0 1
0 0 1
1 1 0

/ 0 1
0 1 0
1 0 1

Table 4: (A1), (A2), (A3), (A5), but not (A4).

· 0 1
0 1 0
1 1 0

\ 0 1
0 1 0
1 1 0

/ 0 1
0 1 0
1 1 0

Table 5: (A1), (A2), (A3), (A4), but not (A5).
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