
Quasigroups and Related Systems 19 (2011), 133 − 168Four letures on formal nonassoiative Lie theoryJosé M. Pérez�IzquierdoAbstrat. This survey orresponds to four letures on nonassoiative Lie theory thatwill be held at Workshops Loops'11, T°e²t', July 21 � 23, 2011. In the �rst leture wefous on the importane of the spae of distributions in the algebrai treatment of loalloops. Formal loops replae loal loops in the seond leture, where the lassi�ation offormal loops in terms of Sabinin algebras is presented. The geometrial meaning of thislassi�ation is the topi of the third leture. The non-existene of quantum loops isdisussed in the �nal leture.
1. The bialgebra of distributions of a loal loop1.1. Basi de�nitions and strutures1.1.1. Distributions with support at a point. Let Q be an n-dimensionalsmooth manifold, e ∈ Q and (U, (x1, . . . , xn)) a oordinate neighborhoodof e. Let ∂i = ∂/∂xi and for any I = (i1, . . . , in) ∈ N

n de�ne elements
∂I |e in the dual spae C∞(Q)∗ of C∞(Q) by ∂I |e = ∂i1

1 · · · ∂in
n |e if |I| =

i1 + · · ·+ in > 1, and ∂I |e : f 7→ f(e) the Dira delta δe in ase that |I| = 0.Linear ombinations of {∂I |e | I ⊆ N
n} are alled distributions on Q withsupport at e, and they form a vetor spae that we will denote by D′

e(Q).1.1.2. Exerises.
(1) Prove that D′

e(Q) does not depend on the partiular hoie of theoordinate neighborhood of e.
(2) Prove that {∂I |e | I ⊆ N

n} is a basis of D′
e(Q).

(3) Let (U, (x1, ..., xn)), (V, (y1, ..., ym)) and (U×V, (x1, ..., xn, y1, ..., ym))be oordinate neighborhoods of e1 ∈ Q1, e2 ∈ Q2 and (e1, e2) ∈2010 Mathematis Subjet Classi�ation: 17D99, 22E60, 20N05Keywords: Nonassoiative Lie theory, loop, loal loop, bialgebra.The author would like to thank support from Spanish Ministerio de Eduaión yCienia and FEDER (MTM2010-18370-C04-03) and the University of La Rioja.
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Q1 × Q2 respetively. Prove that the map

∂I |x=e1 ⊗ ∂J |y=e2 7→ ∂I∂J |(x,y)=(e1,e2)indues a linear isomorphism D′
e1

(Q1)⊗D′
e2

(Q2) ∼= D′
(e1,e2)(Q1×Q2).

(4) Prove that D′
e(e) = Rδe for the zero-dimensional manifold {e}.1.1.3. The linearization funtor. By the Chain rule, any smooth map

ϕ : Q1 → Q2 indues a orresponding linear map
ϕ′ : D′

e(Q1) → D′
ϕ(e)(Q2) ,

µ 7→ ϕ′(µ) : f 7→ µ(f ◦ ϕ) .The assignment
(Q, e) 7→ D′

e(Q), ϕ 7→ ϕ′de�nes a ovariant funtor from the ategory of smooth manifolds with basepoint to the ategory of vetor spaes.1.1.4. Examples.
(1) (Twist map) With the identi�ation in Exerise 1.1.2 (3), the map

σ : Q1 × Q2 → Q2 × Q1

(x, y) 7→ (y, x)indues a orresponding map
σ′ : D′

e1
(Q1) ⊗D′

e2
(Q2) → D′

e2
(Q2) ⊗D′

e1
(Q1)

µ ⊗ ν 7→ ν ⊗ µon distributions.
(2) (Inlusion map) The inlusion ι : e → Q indues

ι′ : Rδe → D′
e(Q) ,

δe 7→ δe.

(3) (Constant map) The onstant map κ : Q → e indues
κ′ : D′

e(Q) → Rδe

∂I |e 7→
{

0 if |I| 6= 0
δe if |I| = 0.The map ǫ = κ′ will be alled the ounit of D′

e(Q).
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(4) (Projetion) With the natural identi�ations, the projetion

π1 : Q1 × Q2 → Q1

(x, y) 7→ xindues a orresponding map
π′

1 : D′
e1

(Q1) ⊗D′
e2

(Q2) → D′
e1

(Q1)

(µ ⊗ ν) 7→ ǫ(ν)µ,where ǫ denotes the ounit of D′
e2

(Q2).
(5) (Diagonal map) The diagonal map δ : Q 7→ Q×Q x 7→ (x, x) indues

δ′ : D′
e(Q) → D′

e(Q) ⊗D′
e(Q)

∂I |e 7→
∑

I=I′+I′′

I!

I ′!I ′′!
∂I′ |e ⊗ ∂I′′ |e, (1.1)where (i1, . . . , in)! = i1! · · · in! The map ∆ = δ′ will be alled theomultipliation of D′

e(Q).1.1.5. The oalgebra of distributions with support at a point. A oassoia-tive oalgebra (or simply oalgebra) is a k-vetor spae C endowed with twolinear maps ∆: C → C ⊗ C (omultipliation) and ǫ : C → k (ounit) suhthat the following diagrams ommute
C ⊗ C - C ⊗ C ⊗ C

△⊗ I
?

C - C ⊗ C
△

?
△ I⊗△ and

C ¾ ǫ ⊗ I
C ⊗ C

#
#

#
##

+
I ⊗ ǫ-

I

?

△
I

C

c
c

c
cc

s
CFollowing Sweedler sigma notation, the linear ombination of homoge-neous tensors that represents ∆(µ) will be written as

∑

µ(1) ⊗ µ(2).The oalgebra (C,∆, ǫ) is alled oommutative if ∆ = ∆op where
∆op(µ) =

∑

µ(2) ⊗ µ(1).



136 J. M. Pérez�IzquierdoGiven two oalgebras (C1, ∆1, ǫ1) and (C2, ∆2, ǫ2), a oalgebra morphism isa linear map ψ : C1 → C2 that veri�es ∆2 ◦ψ = (ψ⊗ψ)◦∆1 and ǫ2 ◦ψ = ǫ1.The linearizations of the the di�erent ommutative diagrams in the �rstolumn of Table 1 show that (D′
e(Q), ∆, ǫ) is a oommutative oalgebra.
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′
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′
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∆ I⊗∆
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′
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D

′

e(Q)⊗D
′

e(Q)

´
´

´
´́+

I⊗ ǫ-

I
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∆

I

D
′

e(Q)
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Q
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D
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Q × Q -

½
½

½
½= σ

δ δ

Q
Z

Z
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Z~
Q × Q D

′

e(Q) ⊗D
′

e(Q) -

½
½

½
½½= σ′

∆ ∆

D
′

e(Q)

Z
Z

Z
ZZ~

D
′

e(Q) ⊗D
′

e(Q)Table 1.1.1.6. Exerises.
(1) Given a oassoiative oalgebra (C,∆, ǫ) let ∆i : C ⊗ C ⊗ · · · ⊗ C →

C ⊗ C ⊗ · · · ⊗ C be the map that ats as ∆ on the ith slot andas the identity on the others. Prove that for a �xed r, the map
∆r = ∆ir · · ·∆i2∆ does not depend on the partiular values i2, . . . , ir.The image of µ under ∆r is denoted by ∑

µ(1) ⊗ · · · ⊗ µ(r+1).
(2) Given a oassoiative oalgebra (C,∆, ǫ) prove that

(a) the dual spae C∗ is a unital assoiative algebra with the onvo-lution produt
f ∗ g(µ) =

∑

f(µ(1))g(µ(2))and identity element ǫ;
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(b) any oalgebra morphism ψ : C1 → C2 indues an algebra homo-morphism ψ∗ : C∗

2 → C∗
1 f 7→ f ◦ ψ.

(3) Prove that in the oalgebra (D′
e(Q), ∆, ǫ) we have

∆(δe) = δe ⊗ δe and ǫ(δe) = 1.

(4) Prove that the tangent spae TeQ of Q at e is
TeQ = R〈∂1|e, . . . , ∂n|e〉 = {µ ∈ D′

e(Q) | ∆(µ) = µ ⊗ δe + δe ⊗ µ}.1.1.7. Loal loops. A loal loop (Q, xy, e) is a smooth manifold Q with adistinguished point e suh that on a neighborhood U of e there is de�neda smooth binary produt U × U → Q (x, y) 7→ xy with xe = x = ex forall x ∈ U . The Inverse Funtion Theorem ensures that around e there arede�ned a left and a right division, denoted by x\y and x/y respetively,suh that
x\(xy) = y = x(x\y) and (xy)/y = x = (x/y)yfor any x, y in a neighborhood of e.1.1.8. The bialgebra of distributions with support at the identity. A (uni-tal) bialgebra is a oalgebra (B,∆, ǫ) endowed with two extra linear maps

m : B⊗B → B (produt) and u : k → B (unit) that make ommutative thefollowing diagrams:
B -
?

≅

B ⊗ k - B ⊗ B

¡
¡

¡
¡¡ª

k ⊗ B
≅

I⊗u

?

u⊗Im

b -
?

m

B ⊗ B - B ⊗ B ⊗ B ⊗ B

B ⊗ B
∆

(I⊗σ ⊗ I)(∆ ⊗ ∆)

?

m⊗m

B -
?

m

B ⊗ B - k ⊗ k

k
ǫ

ǫ ⊗ ǫ

?

produtThe identity element of B is 1B = u(1k). Elements x ∈ B with ∆(x) =
x ⊗ 1B + 1B ⊗ x are alled primitive and they form a subspae Prim(B).



138 J. M. Pérez�IzquierdoGiven a loal loop (Q, xy, e, \, /), the maps m : (x, y) → xy and ι : e → Qindue orresponding maps on distributions, that we will denote by m and
ι respetively. The ommutativity of the diagrams

Q -
?

π1

Q × e - Q × Q

¡
¡

¡
¡¡ª

e × Q
π2

I × ι

?

ι × Im

Q -
?

m

Q × Q - Q × Q × Q × Q

Q × Q
δ

(I×σ × I)(δ × δ)

?

m×m

Q -
?

m

Q × Q - e × e

e
κ

κ × κ

?shows that (D′
e(Q), ∆, ǫ, m, ι) is a bialgebra with identity element 1D′

e(Q) =
δe. The left an right divisions \ and / also indue left and right divisionmaps \ and / on distributions. The linearization of the identities

x\(xy) = y = x(x\y) and (xy)/y = x = (x/y)y ∀x, y ∈ Qleads to
∑

µ(1)\(µ(2)ν) = ǫ(µ)ν =
∑

µ(1)(µ(2)\ν) (1.2)
∑

(µν(1))/ν(2) = ǫ(ν)µ =
∑

(µ/ν(1))ν(2) (1.3)for all µ, ν ∈ D′
e(Q), where µν = m(µ, ν). By Exerise 1.1.6 (4) the tangentspae of Q is reovered as

TeQ = Prim(D′
e(Q))1.1.9. Exerises.

(1) Prove that in D′
e(Q)

∆(µ\ν) =
∑

µ(1)\ν(1) ⊗ µ(2)\ν(2) and
∆(µ/ν) =

∑

µ(1)/ν(1) ⊗ µ(2)/ν(2).
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(2) Given a unital bialgebra B and a, b ∈ Prim(B) prove that [a, b] =

ab − ba ∈ Prim(B).1.1.10. Poinaré-Birkho�-Witt type bases for D′
e(Q). Given a loal loop

(Q, xy, e) and ∂i1 |e · · · ∂ir |e the produt in D′
e(Q) of ∂i1 |e, . . . , ∂ir |e with anunspei�ed order of parentheses then the Chain rule implies that

∂i1 |e · · · ∂ir |e = ∂i1 · · · ∂ir |e+ linear ombination of ∂I |e with |I| < r. (1.4)Reall that a �ltration of an algebra A is an inreasing hain of subspaes
A0 ⊆ A1 ⊆ · · · suh that A = ∪∞

i=0An and ApAq ⊆ Ap+q for any p, q > 0.Any �ltration of A indues a graded algebra Gr(A) = ⊕∞
i=0Ai/Ai−1 (where

A−1 = 0) with the produt
(xp + Ap−1)(yq + Aq−1) = xpyq + Ap+q−1.The subspaes D′
e(Q)r = R〈∂I |e | |I| 6 r〉 (r > 0) de�ne a �ltration of

D′
e(Q) and (1.4) is equivalent to fat that the assoiated graded algebrais isomorphi to the symmetri algebra k[TeQ]. The set of ordered rightnormed monomials

{((∂i1 |e∂i2 |e) · · · )∂ir |e | r > 0 and i1 6 · · · 6 ir}is a basis of D′
e(Q).1.2. Examples of algebrai struturesindued on the tangent spaes of loal loops1.2.1. Lie groups. A loal Lie group (G, xy, e) is a loal analyti loop thatsatis�es the assoiative identity

(xy)z = x(yz).In terms of diagrams this identity is written as
G × G - G

m
?

G × G × G - G × G
I×m

?
m×I m



140 J. M. Pérez�Izquierdowhere m(x, y) = xy. The linearization of this diagram shows that the pro-dut on D′
e(G) is assoiative. The inverse map x 7→ x−1 on G indues amap

S : D′
e(G) → D′

e(G)with
∑

S(µ(1))µ(2) = ǫ(µ)1D′

e(G) =
∑

µ(1)S(µ(2)) (1.5)so (D′
e(G), ∆, ǫ, m, ι, S) is a unital Hopf algebra (i.e., an assoiative bialgebrawith a map S, the antipode, satisfying (1.5)).The ommutator produt [x, y] = xy − yx in any assoiative algebrasatis�es(Skew-ommutativity) [x, y] = −[y, x] and(Jaobi identity) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.Algebras with a skew-ommutative produt [ , ] that satis�es the Jaobiidentity are alled Lie algebras. Exerise 1.1.9 (2) shows that the tangentspae of a loal Lie group at the identity element is a Lie algebra.1.2.2. Exerises.

(1) Prove that any assoiative algebra with the ommutator produt is aLie algebra.
(2) Prove that a loal loop (Q, xy, e) is a loal Lie group if and only if

D′
e(Q) is assoiative.

(3) Prove that a loal Lie group (G, xy, e) is abelian if and only if Te(G)is an abelian Lie algebra (i.e., [α, β] = 0 for all α, β ∈ TeG).1.2.3. Moufang loops. A loal Moufang loop is a loal loop (Q, xy, e) thatsatis�es any of the following equivalent identities
x(y(xz)) = ((xy)x)z, (xy)(zx) = x((yz)x) and ((xy)z)y = x(y(zy)).The linearization of these identities shows that in D′

e(Q)

∑

µ(1)(ν(µ(2)η)) =
∑

((µ(1)ν)µ(2))η, (1.6)
∑

(µ(1)ν)(ηµ(2)) =
∑

µ(1)((νη)µ(2)), (1.7)
∑

((µν(1))η)ν(2) =
∑

µ(ν(1)(ην(2))). (1.8)



Four letures on formal nonassoiative Lie theory 141Unital oommutative bialgebras with left and right division satisfying (1.2)and (1.3) that also satisfy any of the equivalent identities (1.6), (1.7) or (1.8)are alled unital oommutative Moufang-Hopf algebras.For any algebra A the (generalized) alternative nuleus of A is de�nedas
Nalt(A) = {a ∈ A | (a, x, y) = −(x, a, y) = (x, y, a)}where (x, y, z) = (xy)z − x(yz) denotes the assoiator. A Malev algebrais a vetor spae M endowed with a skew-symmetri bilinear produt [ , ]suh that

J(x, y, [x, z]) = [J(x, y, z), x]where J(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y] denotes the jaobian of
x, y and z.Proposition 1.1. For any algebra A, Nalt(A) is a Malev algebra with theommutator produt. ¤Identities (1.7) and (1.8) imply that Prim(D′

e(Q)) ⊆ Nalt(D′
e(Q)). Propo-sition 1.1 and Exerise 1.1.9 (2) then show that the tangent spae at theidentity element of any loal Moufang loop is a Malev algebra.1.2.4. Exerises. La, Ra will denote the left and right multipliation opera-tors by a. Reall that a derivation of an algebra A is a linear map d : A → Asuh that d(xy) = d(x)y + xd(y) for all x, y ∈ A.

(1) Prove that any ommutative loal Moufang loop is a ommutative lo-al Lie group. It is essential that the harateristi of the ground �eld,the real numbers, is di�erent from 3 sine over �elds of harateristi
3 there exist (formal) ommutative Moufang loops that are not groups[1℄.

(2) Given an algebra A, triples (d1, d2, d3) ∈ End(A)3 suh that
d1(xy) = d2(x)y + xd3(y) ∀x, y ∈ Aare alled ternary derivations of A. Prove that the set Tder(A) ofall ternary derivations of A is a Lie algebra with the omponentwiseommutator produt and that

a ∈ Nalt(A) ⇔ (La, La + Ra,−La), (Ra,−Ra, La + Ra) ∈ Tder(A).
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(3) Prove that in any Moufang loop there exists a map x 7→ x−1 suh that

x\y = x−1y and y/x = yx−1. Conlude that for any loal Moufangloop (Q, xy, e) there exists a map S : D′
e(Q) → D′

e(Q), the antipode,with S2 = I and suh that
∑

S(µ(1))(µ(2)ν) = ǫ(µ)ν =
∑

(νµ(1))S(µ(2)) .

(4) Prove that for any algebra A, a, b ∈ Nalt(A) and x ∈ A we have that(i) Lax = LaLx + [Ra, Lx], Lxa = LxLa + [Lx, Ra],(ii) Rax = RxRa + [Rx, La], Rxa = RaRx + [La, Rx],(iii) [La, Rb] = [Ra, Lb],(iv) [La, Lb] = L[a,b] − 2[Ra, Lb], [Ra, Rb] = −R[a,b] − 2[La, Rb],(v) The map Da,b = [La, Lb]+[La, Rb]+[Ra, Rb] is a derivation of A,
Da,b = ad[a,b] − 3[La, Rb] and 2Da,b = ad[a,b] + [ada, adb], where
ada denotes the map x 7→ [a, x].1.2.5. Bol loops. A loal right Bol loop is a loal loop (Q, xy, e) that satis�esthe right Bol identity

((xy)z)y = x((yz)y).The linearization of this identity shows that D′
e(Q) satis�es

∑

((µν(1))η)ν(2) =
∑

µ((ν(1)η)ν(2)). (1.9)A vetor spae V equipped with a trilinear operation [a, b, c] is alled a Lietriple system if
[a, b, b] = 0 ,

[a, b, c] + [b, c, a] + [c, a, b] = 0 ,

[[a, b, c], x, y] = [[a, x, y], b, c] + [a, [b, x, y], c] + [a, b, [c, x, y]]for all x, y, a, b, c ∈ V. A right Bol algebra (V, [ , , ], [ , ]) is a Lie triple sys-tem (V, [ , , ]) with an additional bilinear skew-symmetri operation [a, b]satisfying
[[a, b], c, d] = [[a, c, d], b] + [a, [b, c, d]] + [[c, d], a, b] + [[a, b], [c, d]]. (1.10)Given an arbitrary algebra A, the right alternative nuleus is de�ned as

RNalt(A) = {a ∈ A | (x, y, a) = −(x, a, y) ∀x, y ∈ A} .



Four letures on formal nonassoiative Lie theory 143Proposition 1.2. For any algebra A, RNalt(A) is a Lie triple system withthe triple produt
[a, b, c] = (ab)c − (ac)b − (bc − cb)a.Any subspae V of RNalt(A) losed under the triple produt [ , , ] and theopposite 〈a, b〉 = ba − ab of the ommutator produt is a right Bol algebrawith these operations. ¤Identity (1.9) implies that Prim(D′

e(Q)) ⊆ RNalt(D′
e(Q)) so the tangentspae to any loal right Bol loop is a right Bol algebra.1.2.6. Exerises.

(1) Prove that in any right Bol loop R−1
x = Re/x where e denotes theidentity element.

(2) A loal right Bruk loop is a loal right Bol loop with the automorphiinverse property
(xy)−1 = x−1y−1where x−1 = e/x. Prove that the binary produt [ , ] of the right Bolalgebra TeQ vanishes for any loal right Bruk loop (Q, xy, e).1.3. Appliations1.3.1. Linear loal loops. Any �nite-dimensional unital algebra (A, ∗, 1A)over the real numbers de�nes a loal loop in a neighborhood of the identityelement 1A. By translation x 7→ x − 1A we obtain a loal loop around 0.The produt xy of this loal loop is related with the produt x ∗ y of A by

xy = x + y + x ∗ y.Even in ase that A is nonunital this formula still de�nes a loal loop
(A, xy, 0). We say that a loal loop (Q, xy, e) is linear if there exists a �nite-dimensional algebra A and homomorphism of loal loops ϕ : (Q, xy, e) →
(A, xy, 0) suh that the di�erential of ϕ at e is nonsingular.Let us �x a basis {x1, . . . , xm} of A and the orresponding dual basis
{x1, . . . , xm} that de�nes loal oordinates on A around 0. Let (A#, ∗) bethe algebra obtained by adding a formal identity element to A, that weidentify as a vetor spae with the subspae R〈δ0, ∂1|0, . . . , ∂m|0〉 of D′

0(A)in the natural way. De�ne the map
πA# : D′

e(Q) → A#



144 J. M. Pérez�Izquierdowhih assigns to a distribution µ the omponent of ϕ′(µ) of degree 6 1 in
D′

0(A), i.e., its projetion on R〈δ0, ∂1|0, . . . , ∂m|0〉 parallel to R〈∂I|0 | |I| > 2〉,and �nally �x the salars ci
kl determined by

xk ∗ xl = ci
klxiwhere Einstein summation onvention is assumed. Sine

ϕ′(µν)(xi) = µν(ϕi) = (µ ⊗ ν)(ϕi(xy))

= (µ ⊗ ν)(ϕi(x) + ϕi(y) + ci
klϕ

k(x)ϕl(y))and ǫ(ϕ′(µν)) = ǫ(µ)ǫ(ν) then
πA#(µν) = πA#(µ) ∗ πA#(ν).This proves the �only if� part ofTheorem 1.3. A loal loop (Q, xy, e) is linear if and only if there exists a�nite-odimensional ideal I of the algebra D′

e(Q) with I∩Prim(D′
e(Q)) = 0.In [13℄ it was proved that for any simple loal Bruk loop (Q, xy, e) of

dim > 2, D′
e(Q) has no �nite-odimensional proper ideals di�erent from

ker(ǫ) so those loal loops are not linear. By ontrast, in [14℄ it was provedusing Ado's theorem for Lie algebras that any loal Moufang loop is linear.2. Formal loops and Sabinin algebras2.1. Formal loops2.1.1. Formal maps. Let V be a vetor spae over a �eld k of harateristizero, k[V ]i the ith symmetri power of V and k[V ] the symmetri algebraon V . By the universal property of the symmetri algebra, the assignments
x 7→ x ⊗ 1 + 1 ⊗ x and x 7→ 0 extend to homomorphisms of algebrasomultipliation ∆: k[V ] → k[V ] ⊗ k[V ] and ounit ǫ : k[V ] → k.Unital bialgebras with underlying oalgebra struture isomorphi to k[V ]for some V are alled onneted. By (1.1), for any loal loop (Q, xy, e) thebialgebra D′

e(Q) is a onneted bialgebra with oalgebra struture isomor-phi to k[TeQ].By analogy, elements of the dual spae k[V ]∗ will be referred to as formalfuntions on V , and those of k[V ] as formal distributions on V . Reall that



Four letures on formal nonassoiative Lie theory 145by Exerise 1.1.6 (2) k[V ]∗ is a unital assoiative and ommutative algebrawith the onvolution produt ∗. A formal map from V to W is a linear map
θ : k[V ] → Wwith θ(1) = 0. The projetion of k[V ] onto its primitive part k[V ]1 = Vwill be denoted by πV .2.1.2. Exerises.

(1) Prove that Prim(k[V ]) = V .
(2) (Taylor series) Prove that if {x1, . . . , xn} is a basis of V , {x∗

1, . . . , x
∗
n}is the orresponding dual basis, xI = xi1

1 · · ·xin
n , x∗

I = (x∗
1)

i1 ∗ · · ·
∗(x∗

n)in if I = (i1, . . . , in), then the algebra k[V ]∗ is isomorphi to thealgebra of formal power series k[[x∗
1, . . . , x

∗
n]] by

f 7→
∑

I∈Nn

f(xI)

I!
x∗

I .2.1.3. Coalgebra morphisms indued by formal maps. The following iden-ti�ation will be useful
{f ∈ k[W ]∗ | f(k[W ]i) = 0 ∀i 6= 1} ∼= W ∗

f 7→ f |WBy Exerise 1.1.6 (2), any oalgebra morphism ψ : k[V ] → k[W ] induesan algebra homomorphism ψ∗ : k[W ]∗ → k[V ]∗. This homomorphism isdetermined by its restrition to W ∗. Hene, ψ itself is determined by theformal map πW ◦ ψ. Conversely, any formal map θ : k[V ] → W indues a(unique) oalgebra morphism θ′ : k[V ] → k[W ] with πW θ′ = θ, namely
θ′(µ) =

∞
∑

n=0

1

n!
θ(µ(1)) · · · θ(µ(n)) = ǫ(µ)1 + θ(µ) + · · · (2.1)2.1.4. Exerises.

(1) Prove that for any formal map θ : k[V ] → W the map θ′ is a oalgebramorphism.
(2) Prove that the oalgebra morphism indued by the projetion

πV : k[V ] → V is the identity map on k[V ].
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(3) Prove that the oalgebra morphism indued by the null map k[V ] → Vis µ 7→ ǫ(µ)1.2.1.5. Notation. The algebra k[V1 × · · · × Vn] is anonially isomorphi to

k[V1] ⊗ · · · ⊗ k[Vn]. The formal map πVi
: k[Vi] → Vi will be denoted by xiand the null map k[Vi] → Vi will be denoted by 0. The indued oalgebramorphism x′

i is the identity map on k[Vi], and 0
′(µ) = ǫ(µ)1. Given aformal map

G : k[V1 × · · · × Vn] → Wand formal maps θi : k[Ui] → Vi for 1 6 i ≤ n we write G(θ1, . . . , θn) forthe map G ◦ (θ′1 ⊗ · · · ⊗ θ′n).With this notation xi an be treated as variables. In partiular, G anbe also written as G(x1, . . . ,xn). If
G(x1, . . . ,xi−1, xi, xi+1, . . . ,xn) = G(x1, . . . ,xi−1,0, xi+1, . . . ,xn)we say that G does not depend on xi and we omit this variable altogether.Notie that in this ase

G(µ1, . . . , µn) = ǫ(µi)G(µ1, . . . , µi−1, 1, µi+1, . . . , µn).If V1 = · · · = Vn = V the notation G(x, . . . ,x) stands for the ompo-sition of G with the map k[V ] → k[V × · · · × V ] indued by the diagonal
V → V × · · · × V :

µ 7→
∑

G(µ(1), . . . , µ(n)).Similarly one de�nes G(xi1 , . . . ,xin) when there are various groups of re-peating indies among the ik.2.1.6. Formal multipliations. A formal multipliation on V is a formalmap
F : k[V × V ] → V.A formal multipliation on V is said to be a formal loop or a formal unitalmultipliation if

F |k[V ]⊗1 = πV = F |1⊗k[V ].Any unital formal multipliation F (x, y) indues a oalgebra morphism
F ′ : k[V ] ⊗ k[V ] → k[V ].Moreover,

F ′(µ, 1) = (πV )′(µ) = µ = F ′(1, µ) for any µ ∈ k[V ].



Four letures on formal nonassoiative Lie theory 147The unital onneted bialgebra (k[V ], ∆, ǫ, F ′, u) with u : k → k[V ] 1 7→ 1will be denoted by k[F ] and will be alled the onneted bialgebra of formaldistributions of F .Sine
Hom(k[V ] ⊗ k[V ], V ) ∼=

∞
∏

p,q=0

Hom(k[V ]p ⊗ k[V ]q, V )we an write any formal unital multipliation F as an in�nite formal sum
F (x, y) = x + y +

∑

p,q>1

Fp,q(x, y) (2.2)with Fp,q(x, y) ∈ Hom(k[V ]p ⊗ k[V ]q, V ), or equivalently
F (µ1 ⊗ µ2) = πV (µ1)ǫ(µ2) + ǫ(µ1)πV (µ2) +

∑

p,q>1

Fp,q(µ1 ⊗ µ2).We will write xy for a unital formal multipliation F (x, y). Reall thatthe produt of any loal analyti loop around 0 ∈ R
n an be expressed bya Taylor expansion of the form (2.2).2.1.7. Poinaré-Birkho�-Witt type bases for k[F ]. Given a unital formalmultipliation F on V , by (2.1) the subspaes ∑n

i=0 k[F ]i (n > 0) de�ne a�ltration of k[F ] whose assoiated graded algebra Gr(k[F ]) is isomorphito the symmetri algebra k[V ]. Therefore, for any totally ordered basis of
V the ordered right normed monomials on elements of that basis is a basisof k[F ] (ompare with Setion 1.1.10).2.1.8. The equivalene of ategories. Let F and H be unital formal multi-pliations on V and W respetively. A formal map θ from V to W is alleda homomorphism from F to H if

H(θ(x), θ(y)) = θ(F (x, y))or, equivalently,
H(θ′(µ1) ⊗ θ′(µ2)) = θ(F ′(µ1 ⊗ µ2))for any µ1, µ2 ∈ k[V ]. Hene, θ 7→ θ′ gives a orrespondene betweenhomomorphisms of unital formal multipliations and homomorphisms oftheir onneted bialgebras of formal distributions.



148 J. M. Pérez�IzquierdoTheorem 2.1. [11℄ The ategory of unital formal multipliations and theategory of onneted unital bialgebras are equivalent.Proof. The produt of any onneted unital bialgebra k[V ] indues a unitalformal multipliation k[V ] ⊗ k[V ] → k[V ]
πV→ V and onversely, any formalunital multipliation F de�nes a onneted unital bialgebra k[F ].2.1.9. Exerises.

(1) Prove that the ategory of formal Moufang loops, i.e. formal loops
xy with ((xy)z)y = x(y(zy)) is equivalent to the ategory of unitalonneted bialgebras that satisfy the (right) Moufang-Hopf identity

∑

((µν(1))η)ν(2) =
∑

µ(ν(1)(ην(2))).

(2) A formal loop is alled right alternative if (xy)y = x(yy). Prove thatfor any formal right alternative loop (xyi)yj = x(yiyj) holds where
yi = ((yy) · · · )y denotes the ith power of y.2.2. Sabinin algebras2.2.1. Primitive operations and Shestakov-Umirbaev's funtor. Let S be aset. Denote by k{S} the unital free non-assoiative algebra generated bythe elements of S over the �eld k of harateristi zero. The algebra k{S}an be given a struture of a bialgebra: the omultipliation is de�ned bythe ondition that all elements of S are primitive, i.e., ∆(x) = x⊗ 1+1⊗xfor all x ∈ S.De�ne by indution on the degree |u| of the nonassoiative monomial ubilinear maps \, / suh that

∑

u(1)\(u(2)v) = ǫ(u)v =
∑

(vu(1))/u(2) .They also satisfy ∑

u(1)(u(2)\v) = ǫ(u)v =
∑

(v/u(1))u(2).Let x1, . . . , xm, y1, . . . , yn, z ∈ S di�erent elements, u = ((x1x2) · · · )xm,
v = ((y1y2) · · · )yn and de�ne the primitive operations

p(x1, . . . , xm; y1, . . . , yn; z) =
∑

(u(1)v(1))\(u(2), v(2), z)where (x, y, z) = (xy)z − x(yz) [17℄. These are nonassoiative polynomi-als that de�ne multilinear operations when evaluated on any algebra. If



Four letures on formal nonassoiative Lie theory 149the evaluation takes plae on primitive elements of a unital oommutativebialgebra then the result is again a primitive element.Consider
〈1; y, z〉 = 〈y, z〉 = −[y, z] = −yz + zy ,

〈x1, . . . , xm; y, z〉 = 〈u; y, z〉 = −p(u; y; z) + p(u, z, y) ,

ΦSU (x1, . . . , xm; y1, . . . , yn) =

1

m!

1

n!

∑

τ∈Sm,σ∈Sn

p(xτ(1), . . . , xτ(m); yσ(1), . . . ; yσ(n))with u = ((x1x2) · · · )xm, u = (x1, . . . , xm), Sm the symmetri group on mletters and m > 1, n > 2.Any nonassoiative algebra A with these operations turns out to be aSabinin algebra, an algebrai struture that we will de�ne in Setion 2.2.3.Thus we have the Shestakov-Umirbaev funtor from non-assoiative algebrasto Sabinin algebras
A 7→ UX(A).The tangent spae TeQ = Prim(D′

e(Q)) of any loal analyti loop (Q, xy, e)is a Sabinin subalgebra of UX(D′
e(Q)). Similarly, for any unital formalmultipliation F on V the vetor spae V of primitive elements of k[F ] isa Sabinin subalgebra of UX(k[F ]).Given any unital formal multipliation F on V, onsider the pair (U(V ), ι)formed by a unital algebra U(V ) and a homomorphism of Sabinin algebras

ι : V → UX(U(V )) with the following universal property: any homomor-phism of Sabinin algebras ϕ : V → UX(A) from V to a unital algebra Aextends to a unique homomorphism of unital algebras ϕ̃ : U(V ) → A with
ϕ = ϕ̃ ◦ ι. By [17℄, U(V ) is a bialgebra isomorphi to k[F ], in fat thehomomorphism U(V ) → k[F ] indued by the inlusion V ⊆ k[F ] is suhan isomorphism.Theorem 2.2. Let F and G be two unital formal multipliations. Thefollowing statements are equivalent:

(i) The loal loops F and G are isomorphi.
(ii) The onneted bialgebras k[F ] and k[G] are isomorphi.

(iii) The Sabinin algebras Prim(k[F ]) and Prim(k[G]) are isomorphi. ¤2.2.2. Exerises.
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(1) Prove that for any x1, . . . , xm, y1, . . . , yn, z ∈ S

p(x1, . . . , xm; y1, . . . , yn; z) ∈ Prim(k{S}) .

(2) Prove that a formal loop F is right alternative if and only if themultioperator ΦSU vanishes.
(3) Prove that a formal loop F is a formal group if and only if any multi-linear operation on the Sabinin algebra Prim(k[F ]) di�erent from thebinary operation 〈 , 〉 vanishes. Conlude that two formal groups areisomorphi if and only if their orresponding Lie algebras are isomor-phi.
(4) Prove that if A is an assoiative algebra then UX(A) is the Lie algebra

A−, i.e., the Shestakov-Umirbaev funtor A 7→ UX(A) generalizes theusual funtor from assoiative algebras to Lie algebras.2.2.3. Sabinin algebras. [16℄ A vetor spae V is alled a Sabinin algebra ifit is endowed with multilinear operations
〈x1, x2, . . . , xm; y, z〉 m > 0 and
Φ(x1, x2, . . . , xm; y1, y2, . . . , yn), m > 1, n > 2whih satisfy the identities

〈x1, x2, . . . , xm; y, z〉 = −〈x1, x2, . . . , xm; z, y〉,
〈x1, x2, ..., xr, a, b, xr+1, ..., xm; y, z〉 − 〈x1, x2, ..., xr, b, a, xr+1, ..., xm; y, z〉

+
∑r

k=0

∑

α〈xα1 , ..., xαk
, 〈xαk+1

, ..., xαr
; a, b〉, ..., xm; y, z〉 = 0,

σx,y,z(〈x1, ..., xr, x; y, z〉
+

∑r
k=0

∑

α〈xα1 , ..., xαk
; 〈xαk+1

, ..., xαr
; y, z〉, x〉) = 0and

Φ(x1, . . . , xm; y1, . . . , yn) = Φ(xτ(1), . . . , xτ(m); yδ(1), . . . , yδ(n)),where α runs the set of all bijetions of the type α :{1, 2, ..., r} → {1, 2, ..., r},
i 7→ αi, α1 < α2 < · · · < αk, αk+1 < · · · < αr, k = 0, 1, . . . , r, r > 0, σx,y,zdenotes the yli sum by x, y, z; τ ∈ Sm, δ ∈ Sn and Sl is the symmetrigroup on l symbols. The operations 〈 ; , 〉 and the so alled multioperator Φare independent and sometimes the term �Sabinin algebra" is used for a ve-tor spae equipped only with operations 〈 ; , 〉 satisfying the orrespondingproperties.



Four letures on formal nonassoiative Lie theory 151With the help of the bialgebra struture on k{S} introdued in Setion2.2.1 we may write the de�nition of a Sabinin algebra very shortly as
〈u; a, b〉 + 〈u; b, a〉 = 0,

〈uabv; c, e〉 − 〈ubav; c, e〉 +
∑

〈u(1)〈u(2); a, b〉v; c, e〉 = 0,

σa,b,c

(

〈uc; a, b〉 +
∑

〈u(1); 〈u(2); a, b〉, c〉
)

= 0 and
Φ(x1, . . . , xm; y1, . . . , yn) = Φ(xτ(1), . . . , xτ(m); yδ(1), . . . , yδ(n)),where u = ((x1x2) · · · )xm), v = ((y1y2) · · · )yn and xi, yj , a, b, c, e ∈ S.2.2.4. Exerises.

(1) Prove that any Lie algebra is a Sabinin algebra where all multilinearoperations vanish with the possible exeption of the bilinear produt
〈y, z〉 = −[y, z].

(2) Prove that any Malev algebra is a Sabinin algebra with
〈1; a, b〉 = −[a, b],

〈c; a, b〉 = −1
3J(a, b, c) and

〈uc; a, b〉 =
∑〈u(1); c, 〈u(2); a, b〉〉 if |u| > 1.

(3) Prove that any right Bol algebra is a Sabinin algebra with
〈1; a, b〉 = −[a, b],

〈c; a, b〉 = −[c, a, b] + [c, [a, b]] and
〈uc; a, b〉 =

∑

〈u(1); c, 〈u(2); a, b〉〉 if |u| > 1.

(4) An Akivis algebra is an algebra with a skew-symmetri bilinear pro-dut [ , ] and a trilinear one { , , } related by
[[x, y], z] + [[y, z], x] + [[z, x], y]

= {x, y, z} + {y, z, x} + {z, x, y} − {x, z, y} − {y, x, z} − {z, y, x}.Prove that any Sabinin algebra with the bilinear map [x, y] = −〈x, y〉and the trilinear map {x, y, z} = −1
2〈x; y, z〉 is an Akivis algebra.2.3. Formal integrationFormal integration of a Sabinin algebra amounts to onstruting an ade-quate universal enveloping algebra for it.



152 J. M. Pérez�Izquierdo2.3.1. Formal integration of Lie algebras. The universal enveloping algebra
U(g) of a Lie algebra (g, [ , ]) is de�ned as the quotient of the free unitalassoiative algebra on g, i.e., nonommutative polynomials on a basis of g,by the ideal I generated by

{xy − yx − [x, y] | x, y ∈ g}.The pair (U(g), ι) with ι : g → U(g), x 7→ x + I veri�es the followinguniversal property: for any unital assoiative algebra A and any homomor-phism of Lie algebras ϕ : g → A− there exists a unique homomorphism
ϕ̃ : U(g) → A of unital algebras suh that the following diagram ommutes:

g - A
¡

¡¡µ
U(g)

?
ι

ϕ̃

ϕTo integrate a Lie algebra (g, [ , ]) to a formal group we need to onstruta unital assoiative onneted bialgebra U(g) with Prim(U(g)) = g and suhthat the Sabinin struture on g given by Exerise 2.2.4 (1) is the one induedon g from UX(U(g)), whih is equivalent to reovering the produt of g as
[x, y] = xy − yx on U(g). The produt on the bialgebra U(g) will indue aformal group

F : U(g) ⊗ U(g) → U(g)
πg→ g.The existene of this bialgebra U(g) is ensured by the Poinaré-Birkho�-Witt Theorem for Lie algebras [4℄.Theorem 2.3. There exists an equivalene of ategories between the ate-gory of formal groups and the ategory of Lie algebras. ¤2.3.2. Formal integration of Malev algebras. Let (m, [ , ]) be a Malev alge-bra. In order to integrate it to a formal Moufang loop we need to onstruta onneted unital bialgebra U(m) with Prim(U(m)) = m satisfying theMoufang-Hopf identity

∑

((µν(1))η)ν(2) =
∑

µ(ν(1)(ην(2)))and suh that the Sabinin struture of m given by Exerise 2.2.4 (2) agreeswith the Sabinin struture indued on m by UX(U(m)). In fat, it is enoughto reover the produt on m as [x, y] = xy − yx ∈ U(m) for any x, y ∈ m[12℄.



Four letures on formal nonassoiative Lie theory 153Let us sketh the method used to onstrut U(m) assumed that U(m)exists [14℄.
(1) The Lie algebra L(m). The assoiative multipliation algebra of analgebra A is the assoiative algebra Mult(A) generated by the leftand right multipliation operators by elements of A. Sine m ⊆

Nalt(U(m)), Exerise 1.2.4 (4) shows that Mult(U(m)) is generatedby left and right multipliation operators by elements of m. Let L(m)be the Lie algebra generated by {λa, ρa | a ∈ m} with relations
λαa+βb = αλa + βλb, ραa+βb = αρa + βρb,

[λa, λb] = λ[a,b] − 2[λa, ρb], [ρa, ρb] = −ρ[a,b] − 2[λa, ρb],

[λa, ρb] = [ρa, λb],

a, b ∈ m, α, β ∈ k. The maps determined by
ζ(λa) = Ta, η(λa) = −λa,

ζ(ρa) = −ρa, η(ρa) = Ta,
(2.3)where Ta = λa + ρa de�ne two automorphisms of L(m). There is aLie homomorphism

L(m) → Mult(U(m))−that extends to a homomorphism U(L(m)) → Mult(U(m)) de�ning aleft U(L(m))-module struture on U(m).
(2) The L(m)-module U(m). U(m) is a yli U(L(m))-module generatedby the identity element 1. The annihilator of 1 in U(L(m)) ontainsthe left ideal K generated by L+ = {λa−ρa, [λa, λa]+[ρa, ρb]+[λa, ρb]}.The Lie algebra L(m) admits a Z2-gradation L(m) = L+ ⊕ L− with

L− = {λa +ρa | a ∈ m} ∼= m as vetor spaes. The Poinaré-Birkho�-Witt for Lie algebras implies that if {ai | i ∈ Ω} is a totally orderedbasis of m then ai1 · · · air 7→ Tai1
· · ·Tair

+ K (ai1 6 · · · 6 air) is anisomorphism θ : k[m]
∼=→ U(L(m))/K as vetor spaes (as oalgebrasin fat). The U(L(m))-module struture of U(L(m))/K is transportedto k[m] by λ ◦ x = θ−1(λθ(x)) for any λ ∈ U(L(m)) and x ∈ k[m].

(3) The produt on k[m] (determination). Having identi�ed U(m) and
k[m], we look for a produt ∗ on k[m] suh that m ⊆ Nalt((k[m], ∗))and a ∗ x = 2λax, x ∗ a = 2ρax and 1 ∗ x = x = x ∗ 1. Sine

a ∗ (x ∗ y) = (a ∗ x + x ∗ a) ∗ y + x ∗ (−a ∗ y)
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(x ∗ y) ∗ a = (−x ∗ a) ∗ y + x ∗ (a ∗ y + y ∗ a),the produt ∗ should be a homomorphism

∗ : k[m]ζ ⊗ k[m]η → k[m]of L(m)-modules where k[m]ζ denotes the vetor spae k[m] with thetwisted ation λ · x = ζ(λ) ◦ x.
(4) The produt on k[m] (onstrution). The indutive de�nition of theprodut ∗ is quite straightforward. Fix a totally ordered basis {ai}i∈Ωof m and onsider the basis

{aI = ai1 · · · ain | I = (i1, . . . , in) ∈ Ωn, ai1 6 · · · 6 ain , n > 0}.For I = (i1, . . . , ir) denote I ′ = (i2, . . . , ir) and l(I) = r. The element
rI = aI − 2λai1

◦ aI′ belongs to k[m]l(I)−1 (in partiular, if l(I) = 1then rI = 0). We set 1 ∗ x = x, and assume that we have de�ned
aJ ∗ x for any aJ with l(J) < l(I). Then we de�ne

aI ∗ x = 2Tai1
◦ (aI′ ∗ x) − 2aI′ ∗ (ρai1

◦ x) + rI ∗ x.Theorem 2.4. There exists an equivalene of ategories between the ate-gory of formal Moufang loops and the ategory of Malev algebras. ¤2.3.3. Exerises.
(1) Prove that for any Malev algebra (m, [ , ]) the algebra U(m) is iso-morphi to the quotient of the unital free nonassoiative k{m} algebraby the ideal generated by

{ab − ba − [a, b], (a, x, y) + (x, a, y), (x, a, y) + (x, y, a)} ,where a ∈ m, x, y ∈ k{m}.
(2) Prove that if a Malev algebra m is a Lie algebra then U(m) is iso-morphi to the universal enveloping algebra of the Lie algebra m.
(3) Given a Malev algebra (m, [ , ]) prove that m with the triple produt

[a, b, c] =
1

3
(2[[a, b], c] − [[b, c], a] − [[c, a], b])is a Lie triple system.



Four letures on formal nonassoiative Lie theory 1552.3.4. Groups, Hopf algebras and Lie algebras with triality. A group withtriality is a group (G, xy, e) with two automorphisms σ, τ that satisfy
(1) σ2 = ρ3 = I, σρσ = ρ2and
(2) (g−1gσ)(g−1gσ)ρ(g−1gσ)ρ2

= e for any g ∈ G.Theorem 2.5. [3℄ Given a group with triality G the set M(G) = {g−1gσ},where g ∈ G, is a Moufang loop with respet to the multipliation law
m·n = m−ρnm−ρ2

= n−ρ2
mn−ρ ∀m, n ∈ M(G) ¤Given two automorphisms ρ, σ of a oommutative Hopf algebra H suhthat σ2 = ρ3 = IH and σρ = ρ2σ, H is alled a oommutative Hopf algebrawith triality relative to ρ and σ if

∑

P (x(1))ρ(P (x(2)))ρ
2(P (x(3))) = ǫ(x)1, (2.4)for all x ∈ H, where P (x) =

∑

σ(x(1))S(x(2)).Theorem 2.6. Let H be a oommutative Hopf algebra with triality relativeto ρ and σ and de�ne P (x) =
∑

σ(x(1))S(x(2)) for any x ∈ H. Then
MH(H) = {P (x) | x ∈ H}is a unital oommutative Moufang-Hopf algebra with the oalgebra strutureand antipode inherited from H, the same unit element and produt de�nedby

u ∗ v =
∑

ρ2(S(u(1)))vρ(S(u(2))) =
∑

ρ(S(v(1)))uρ2(S(v(2)))for any u, v ∈ MH(H). ¤Given a Lie algebra (g, [ , ]), two automorphisms ρ, σ of g suh that
σ2 = ρ3 = Ig, σρ = ρ2σ , g is alled a Lie algebra with triality relative to ρand σ in ase that

a − σ(a) + ρ(a) − ρσ(a) + ρ2(a) − ρ2σ(a) = 0 (2.5)for any a ∈ g. For any Malev algebra (m, [ , ]) the Lie algebra L(m) with theautomorphisms de�ned in (2.3) is an example of Lie algebra with triality.The universal enveloping algebra U(g) of a Lie algebra with triality g is aHopf algebra with triality.The following result presents another approah to the formal integrationof Malev algebras.



156 J. M. Pérez�IzquierdoTheorem 2.7. [2℄ Let (m, [ , ]) be a Malev algebra over a �eld of har-ateristi 6= 2, 3. Then the Moufang-Hopf algebra U(m) is isomorphi to
MH(U(L(m))). ¤2.3.5. Exerises.

(1) Given a loal group (G, xy, e) with triality prove that the bialgebra ofdistributions with support at the identity element is a Hopf algebrawith triality.
(2) Prove that for any onneted Hopf algebra with triality the primitiveelements form a Lie algebra with triality.
(3) Prove that for any Malev algebra (m, [ , ]) the Lie algebra L(m) is aLie algebra with triality.2.3.6. Integration of Sabinin algebras. Let (V, 〈 ; , 〉, Φ) be a Sabinin al-gebra. The formal integration of (V, 〈 ; , 〉, Φ) to a formal loop amountsto onstruting a unital onneted bialgebra U(V ) with Prim(U(V )) = Vand suh that the Sabinin algebra struture of V is the one indued by

UX(U(V )).A natural andidate for the underlying vetor spae of U(V ) is a quotientof the unital free assoiative algebra T(V ) on a basis of V

S̃(V ) = T(V )/k〈xaby − xbay +
∑

x(1)〈x(2); a, b〉y |x, y ∈ T(V ), a, b ∈ V 〉.With this hoie the seond axiom of the operations 〈 ; , 〉 is automatiallysatis�ed. Even more, S̃(V ) is a oalgebra isomorphi to k[V ]. Using aPoinaré-Birkho�-Witt basis it an be de�ned a (bialgebra) produt on
S̃(V ) suh that the Sabinin struture on V agrees with the one indued by
UX(S̃(V )) [12℄.Theorem 2.8. There exists an equivalene of ategories between the ate-gory of formal loops and the ategory of Sabinin algebras. ¤3. The geometry of formal loops3.1. Geodesi loops and similarity3.1.1. A�ne onnetions and loal loops. Given a �at a�ne onnetion ona smooth manifold Q and e ∈ Q, the parallel transportation τx

y from x to yalong a urve does not depend on the urve itself. Around e we may de�ne
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x(exp−1

e (y))) that extends the usual sumon R
n.

e - x
¡

¡¡µ

y

¡
¡¡µ

x × y

exp−1
e

(y) τe

x(exp−1
e

(y))Clearly e × y = expe(τ
e
e (exp−1

e (y))) = y and x × e = expx(τ e
x(0)) =

expx(0) = x so (Q, x×y, e) is a loal loop, the geodesi loop at e. For v ∈ TeQsmall enough, both (x× expe(tv))× expe(sv) and x× (expe(tv)× expe(sv))are geodesis γt(s) with γt(0) = x × expe(tv) and γ̇t(0) = τ e
γt(0)

(v) so
(x × y) × y = x × (y × y),i.e., (Q, x × y, e) is right alternative. Conversely, given any loal loop

(Q, xy, e)
τx
y (v) = dLy|e(dLx|e)−1(v)de�nes around e the parallel transportation of the so alled anonial �ata�ne onnetion. The geodesi loop (Q, x × y, e) obtained from this a�neonnetion might not be isomorphi to the original loop (Q, xy, e). However,both loops are related through a ertain map Φ by

x × Φ(x, y) = xy (3.1)that veri�es
Φ(e, y) = y, Φ(x, e) = e and dΦ(x, y)|y=e = ITeQ. (3.2)Any map Φ: Q × Q → Q satisfying (3.2) is alled a similarity. Two loalloops (Q, xy, e) and (Q, x × y, e) that de�ne the same anonial �at on-netion are similar. This is equivalent to the existene of a similarity thatrelates both produts by (3.1).Mikheev and Sabinin proved that a loal loop is similar to a uniqueright alternative loal loop. The lassi�ation of right alternative loalloops is equivalent to the lassi�ation of loal �at a�ne onnetions. Anysuh onnetion is determined by its torsion whih is enoded in the 〈 ; , 〉operations

〈x1, . . . , xn; y, z〉F = ∇x∗

1
· · ·∇x∗

n
T (y∗, z∗)(e).The multioperator Φ enodes the similarity needed to pass from the geodesiloop to the target loop [16℄.



158 J. M. Pérez�Izquierdo3.1.2. Right alternative loops. Given a loal loop (Q, xy, e), any similarity
Φ: Q×Q → Q indues a orresponding map Φ′ : D′

e(Q)⊗D′
e(Q) → D′

e(Q)on distributions with
Φ′(e, ν) = ν, Φ′(µ, e) = ǫ(µ)e and Φ′(µ, α) = ǫ(µ)αfor any µ, ν ∈ D′

e(Q) and α primitive. A formal map Φ: k[V ] ⊗ k[V ] → Vsuh that
Φ|1⊗k[V ] = πV and Φ|k[V ]>1⊗(1⊕V ) = 0is alled a similarity. Two formal loops F1 and F2 on V are similar if thereexists a similarity Φ: k[V ]⊗k[V ] → V suh that F1(x, y) = F2(x, Φ(x, y)).Notie that in this ase

F ′
1(µ, α) = F ′

2(µ, α) (3.3)for any primitive α.Lemma 3.9. Eah formal loop is similar to a unique formal right alterna-tive loop.Proof. In Setion 2.1.7 we saw that the graded algebra Gr(k[F ]) of thethe bialgebra of formal distributions k[F ] of a formal unital multipliation
F on V is isomorphi to the symmetri algebra k[V ]. Hene given a to-tally ordered basis {ai | i ∈ Ω} of V , the elements sym(ai1 , . . . , air) =
1
r!

∑

σ∈Sr
((aiσ(1)

aiσ(2)
) · · · )aiσ(r)

(r > 0) form a basis of k[V ].We may de�ne a new produt × on k[V ] by
x × sym(ai1 , . . . , air) =

1

r!

∑

σ∈Sr

((xaiσ(1)
) · · · )aiσ(r)for any x ∈ k[V ]. With this new produt k[V ] is a unital onneted bial-gebra and it indues a formal right alternative unital multipliation x × y.Both formal loops x × y and the original formal loop xy are related by

x × Φ(x, y) = xy for ertain formal map Φ. The de�nition of the produt
× on k[V ] implies that Φ is a similarity. The uniqueness is a onsequeneof (3.3) and the right alternativity.Proposition 3.10. Let k[V ] be a bialgebra with respet to two similar prod-uts µν and µ × ν. Then for any α, α1, . . . , αr, β ∈ V

〈α1, . . . , αr; α, β〉 = 〈α1, . . . , αr; α, β〉×. ¤



Four letures on formal nonassoiative Lie theory 159Using a basis formed by elements sym(ai1 , . . . , air) as in the proof ofLemma 3.9, the similarity that relates a formal loop on V with its for-mal right alternative loop an be expressed by a set of multilinear oper-ations Φm,n(x1, . . . , xm; y1, . . . , yn) on V symmetri on x1, . . . , xm and on
y1, . . . , yn.3.1.3. Formal �at a�ne onnetions. In this setion the ommutative andassoiative produt of the symmetri algebra k[V ] plays a ruial role. Wewill denote this produt by µ · ν. Juxtaposition is reserved for produts in-dued by other formal unital multipliations on V . The onvolution produton k[V ]∗ will be denoted by fg instead of f ∗ g sine we adopt it as thenatural produt of k[V ]∗.A formal vetor �eld is a linear map A : k[V ] → V . The produt of aformal vetor �eld A with a formal funtion f is given by

fA : µ 7→
∑

f
(

µ(1)

)

A
(

µ(2)

)

.This ation provides the formal vetor �elds with the struture of a free
k[V ]∗�module. In fat, any set {Ai}i of formal vetor �elds suh that
{Ai(1)} is a basis of V gives a k[V ]∗�basis of Hom(k[V ], V ).A formal vetor �eld A gives a derivation DA of the algebra k[V ]∗ offormal funtions into itself:

DA(f) = A(f) : µ 7→
∑

f
(

µ(1) · A(µ(2))
)

.We have (fA)(g) = fA(g). Formal vetor �elds form a Lie algebra with theLie braket [A, B] given by
[A, B] : µ 7→

∑

B
(

µ(1) · A(µ(2))
)

− A
(

µ(1) · B(µ(2))
)

.Clearly [DA, DB] = D[A,B]. We also have that
[A, fB] = A(f)B + f [A, B].A formal �at a�ne onnetion is a linear map k[V ] ⊗ V → V whoserestrition to 1⊗V is the identity. For a given formal onnetion, µ ∈ k[V ]and v ∈ V , we write µ∗v for the image of µ⊗v. The vetor �eld v∗ : µ 7→ µ∗vis said to be adapted to the tangent vetor v. There always exists a unique�inverse� map k[V ] ⊗ V → V sending µ ⊗ u to an element that we denoteby µ\∗u and suh that ∑

µ(1)\∗(µ(2) ∗ v) = ǫ(µ)v =
∑

µ(1) ∗ (µ(2)\∗v).



160 J. M. Pérez�IzquierdoThe ovariant di�erentiation with respet to the formal vetor �eld Ais de�ned as
∇A(B) : µ 7→

∑

B
(

µ(1) · A(µ(2))
)

−
(

µ(1) · A(µ(2))
)

∗
(

µ(3)\∗B(µ(4))
)

.Proposition 3.11. Let A, B be formal vetor �elds, f a formal funtionand v, w ∈ V . Then
(1) ∇fA(B) = f∇A(B),
(2) ∇A(fB) = A(f)B + f∇A(B),
(3) ∇v∗(w∗) = 0.Given a formal loop F on a vetor spae V , the formal anonial on-netion of F is the restrition of F to the subspae

k[V ] ⊗ V ⊂ k[V ] ⊗ k[V ].In fat, this is all one needs to onstrut a right alternative produt on k[V ]as in the proof of Lemma 3.9.Exerises.
(1) Prove that the formal vetor �elds form a free k[V ]∗-module.
(2) Prove that DA is a derivation of the algebra k[V ]∗ of formal funtions.
(3) Prove that the spae of formal vetor �elds is a Lie algebra with theprodut

[A, B] : µ 7→
∑

B
(

µ(1) · A(µ(2))
)

− A
(

µ(1) · B(µ(2))
)

.

(4) Prove Proposition 3.11.
(5) Let {vi | i ∈ Ω} a basis of V and ∇ the ovariant derivative of aformal �at a�ne onnetion. Given a formal vetor �eld A =

∑

i fiv
∗
iprove that

∇v∗(A) =
∑

i

v∗(fi)v
∗
i .

(6) Prove that two formal loops on the vetor spae V are similar if andonly if their formal anonial onnetions agree.
(7) Prove that the set of formal �at a�ne onnetions is a group with theprodut

C ∗ C ′ : µ ⊗ v 7→
∑

C(µ(1) ⊗ C ′(µ(2) ⊗ v)).



Four letures on formal nonassoiative Lie theory 1613.1.5. The torsion of a formal �at a�ne onnetion. The torsion of twoformal vetor �elds A and B is de�ned in the usual way
T (A, B) = ∇A(B) −∇B(A) − [A, B].In the ase of adapted vetor �elds x∗, y∗ with x, y ∈ V we get

T (x∗, y∗) = −[x∗, y∗].Setting
〈x1, . . . , xn; y, z〉F = ∇x∗

1
· · · ∇x∗

n
T (y∗, z∗)(1)we obtain an n + 2-linear operation on V for all n > 0.Proposition 3.12. Assigning the set of operations 〈x1, . . . , xn, y, z〉F to aformal multipliation F gives a funtor from the ategory of formal loops tothat of Sabinin algebras with trivial multioperator. ¤Given a formal unital multipliation F on V , the torsion tensor of theformal anonial onnetion of F admits a simple interpretation in terms ofthe produt on k[F ].Lemma 3.13. For any x, y ∈ V and µ ∈ k[V ] we have that

. T (x∗, y∗)(µ) = πV ((µy)x − (µx)y) . ¤This provides the geometrial interpretation of the multilinear opera-tions involved in the de�nition of the Shestakov-Umirbaev funtor.Theorem 3.14. [11℄ The multilinear operations 〈x1, . . . , xn; y, z〉 of Shes-takov and Umirbaev identially oinide with the operations 〈x1, . . . , xn; y, z〉Fof Mikheev and Sabinin. ¤3.1.6. Exerises.
(1) Use Exerise 3.1.4 (5) to prove that the torsion of a formal �at a�neonnetion is determined by the multilinear operations 〈x1, . . . , xn; y, z〉(n > 0).
(2) Given a loal group and its anonial formal �at onnetion, provethat the ommutator of two adapted vetor �elds is an adapted vetor�eld. Conlude that any ovariant derivative of the orrespondingtorsion with respet to any adapted vetor �eld vanishes.
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(3) [15℄ Prove that the adapted vetor �elds on a right Bol loop (Q, xy, e)form a Lie triple system with the produt

[x∗, y∗, z∗] = [x∗, [y∗, z∗]].Take a basis {x1, . . . , xn} of TeQ and de�ne Rl
i,jk and al

ij by
[x∗

i , [x
∗
j , x

∗
k]] = Rl

i,jkx
∗
l and [x∗

i , x
∗
j ](1) = al

ijxl.Prove that the tangent spae TeQ with the operations determined by
[xi, xj , xk] = Rl

i,jkxl and [xi, xj ] = al
ijxlis a right Bol algebra. This Bol algebra struture is the same as theone provided by Proposition 1.2.

(4) [15℄ Let (Q, xy, e) be a right Bol algebra, {x1, . . . , xn} a basis of TeQand denote x∗
i (f) by ∇i(f) for any formal funtion f . De�ne formalfuntions C l

jk suh that [x∗
j , x

∗
k] = C l

jkx
∗
l and T l

jk = −C l
jk so that

T (x∗
j , x

∗
k) = T l

jkx
∗
l . Use Exerise 3.1.6 (3) to prove that

∇r(∇lT
i
jk + T s

jkT
i
sl) = 0. (3.4)

(5) [15℄ Let F be a formal geodesi loop on V . Prove that if the torsionsatis�es (3.4) then the right multipliation operators by primitive ele-ments of k[F ] form a Lie triple system. Use [12, Proof of Proposition32℄ to onlude that the Sabinin struture inherited by V orrespondsto that of a right Bol algebra (Exerise 2.2.4 (3)). Conlude that Fis a formal right Bol loop.4. Beyond Lie's theorems4.1. Quantum loops4.1.1. Hopf algebra deformations. A topologially free Hopf algebra H overthe ring of formal power series K = k[[h]] with oe�ients in the base �eld kis a topologially free K-module equipped with a produt, oprodut, unit,ounit and antipode whih satisfy the axioms of a Hopf algebra over K withtensor produts understood in a omplete sense. If H/hH ∼= U(g) as Hopfalgebras over k for some Lie algebra (g, [ , ]) then H is alled a quantizeduniversal enveloping algebra or Hopf algebra deformation of U(g).



Four letures on formal nonassoiative Lie theory 1634.1.2. Rigidity of universal enveloping algebra of the traeless otonions.Given a Malev algebra m over a �eld k, a oassoiative bialgebra deforma-tion of U(m) over K = k[[h]] is a topologially free K-module B endowedwith four maps of K-modules(unit) ιh : K → B, 1 7→ 1B, (produt) mh : B⊗̃B → B,(ounit) ǫh : B → K, (oprodut) ∆h : B → B⊗̃B,where ⊗̃ stands for the ompleted tensor produt in the h-adi topology,suh that
(1) (B,∆h, ǫh, mh, ιh) satis�es the axioms of bialgebra over the ommu-tative ring K but with the algebrai tensor produts replaed by theirompletions,
(2) B/hB ∼= U(m) as a k-vetor spae and, with this identi�ation,
(3) mh ≡ m(mod h) and ∆h ≡ ∆(mod h)with µ and ∆ the multipliation and omultipliation of U(m) respetively.Sine B is topologially free and B/hB ∼= U(m), we an identify B with

U(m)[[h]] as a K-module. The produt µh and the omultipliation ∆hare uniquely determined by their restritions to U(m) ⊗ U(m) and U(m)respetively. We an write mh|U(m)⊗U(m) = m + hm1 + h2m2 + · · · and
∆h|U(m) = ∆+h∆1+h2∆2+· · · for some k-linear maps mi : U(m)⊗U(m) →
U(m) and ∆i : U(m) → U(m) ⊗ U(m) (i > 1). The null deformation of
U(m) is obtained by extending K-linearly the struture maps of U(m).Trivial deformations are those isomorphi to the null deformation under a
K-linear bialgebra isomorphism whih is the identity modulo h.Proposition 4.1. De�ne δ : U(m) → U(m) ⊗ U(m) by

δ(x) = ∆1(x) − ∆op
1 (x) =

∆h(a) − ∆op
h (a)

h
(modh)for any a ∈ B that redues to x(modh). Theni) δ is skew-symmetri and ∑

cyclic(δ ⊗ I)δ = 0;ii) (∆ ⊗ I)δ = (I ⊗ δ) + σ23(δ ⊗ I)∆;iii) δ(x1x2) = δ(x1)∆(x2) + ∆(x1)δ(x2) for all x1, x2 ∈ U(m). ¤Proposition 4.2. Let δ = ∆1 − ∆op
1 . Then δ(m) ⊆ m ⊗ m and δm = δ|msatis�es:



164 J. M. Pérez�Izquierdoi) δ∗m : m
∗ ⊗ m

∗ → m
∗ is a Lie braket on m

∗ andii) δm([x, y]) = (adx ⊗ Im + Im⊗ adx)δm(y)− (ady ⊗ Im + Im⊗ ady)δm(x)for all x, y ∈ m. ¤The traeless otonions [18℄ M(α, β, γ) = {x ∈ O(α, β, γ) | t(x) = 0}(α, β, γ 6= 0) with the ommutator produt are up to isomorphism the onlyentral simple Malev algebras whih are not Lie algebras. In ontrast with�nite-dimensional semisimple Lie algebras (or symmetrizable Ka-Moodyalgebras) for whih non oommutative quantized universal enveloping al-gebras exist, the simple Malev algebras M(α, β, γ) show an exeptionalbehavior.Theorem 4.3. [6℄ We have that δM(α,β,γ) = 0. ¤Corollary 4.4. Any oassoiative bialgebra deformation of U(M(α, β, γ))is oommutative. ¤Corollary 4.5. Any oassoiative bialgebra deformation of U(M(α, β, γ))satisfying
∑

((xy(1))z)y(2) =
∑

x(y(1)(zy(2)))is trivial. ¤4.2. Nilpotent loops4.2.1. The dimension �ltration. Let k be a �eld of harateristi zero,
(Q, xy, e) a loop and kQ the loop algebra of Q over k, whih is a unitaloommutative bialgebra with the omultipliation and ounit determinedby ∆: x 7→ x⊗ x and ǫ : x 7→ 1 for any x ∈ Q. Let I = ker ǫ be the ideal of
kQ spanned by elements of the form x − e. The bialgebra struture of kQindues a bialgebra struture on the graded spae I(Q,k) = ⊕∞

n=0I
n/In+1(I0 = kQ by onvention).The unital bialgebra I(Q,k) is onneted so it determines a formal loopon the spae of primitive elements. This spae admits a beautiful desriptionin terms of the so alled dimension subloops. The nth dimension subloopof Q over k is the intersetion

Dn(Q,k) = Q ∩ (e + In).The �ltration D1(Q,k) ⊇ D2(Q,k) ⊇ · · · is alled the dimension �ltrationof Q over k. The quotient Dn(Q,k)/Dn+1(Q,k) is an abelian group so we



Four letures on formal nonassoiative Lie theory 165an extend salars to get a vetor spae
D =

∞
⊕

n=1

k ⊗ (Dn(Q,k)/Dn+1(Q,k)).The map
D → I(Q,k)

xDn+1(Q,k) 7→ x − e + In+1is an inlusion of D into I(Q,k).Theorem 4.6 ([10℄). I(Q,k) is a unital onneted bialgebra and the imageof D in I(Q,k) oinides with the subspae of primitive elements. ¤4.2.2. The ommutator-assoiator �ltration. Given a group (G, xy, e), the
ith term Gi of its lower entral series

G = G1 ⊇ G2 ⊇ · · ·is the subgroup generated by all ommutators [x, y]=x−1y−1xy with x ∈Gpand y ∈ Gq, p + q > i. In ase that Gn+1 = {e} for some n then G is allednilpotent.Sine [xpxq, xr] ∈ Gp+q+r for any xp ∈ Gp, xq ∈ Gq and xr ∈ Gr then theommutator of G indues a bilinear produt on the abelian group⊕iGi/Gi+1by
[x̄p, x̄q] = [xq, xq]Gp+q+1.This produt de�nes a graded Lie ring struture on ⊕iGi/Gi+1.Given a loop (Q, xy, e), the ommutator of x, y is de�ned as

[x, y] = (yx)\(xy)and the assoiator of x, y and z is
(x, y, z) = (x(yz))\((xy)z).To de�ne a series with abelian group fators so that the ommutator andthe assoiator indue multilinear produt one introdues the assoiator de-viations of level one

(x, y, z, t)1 = ((x, z, t)(y, z, t))\(xy, z, t),

(x, y, z, t)2 = ((x, y, t)(x, z, t))\(x, yz, t),

(x, y, z, t)3 = ((x, y, z)(x, y, t))\(x, y, zt).



166 J. M. Pérez�IzquierdoGiven a deviation A : Ql+2 → Q of level l − 1 and 1 6 αl 6 l + 2, anassoiator deviation of level l is de�ned by
Aαl

(. . . , xαl
, xαl+1

, . . . ) =
(A(. . . , xαl

, . . . , )A(. . . , xαl+1
, . . . ))\A(. . . , xαl

xαl+1
, . . . ).Hene, for any α1, . . . , αl with 1 6 αi 6 i+2 there exist assoiator deviations

(x1, . . . , xl+3)α1,...,αlof level l. The assoiator is thought of as the assoiator deviation of levelzero.De�ne γ1Q = Q and for n > 1 de�ne γnQ to be the minimal normalsubloop of Q ontaining
• [γpQ, γqQ] with p + q > n;
• (γpQ, γqQ, γrQ) with p + q + r > n;
• (γp1Q, . . . , γpl+3

Q)α1,...,αl
with p1 + · · · + pl+3 > n.The subloop γnQ is alled the nth ommutator-assoiator subloop of Q and

γ1Q ⊇ γ2Q ⊇ · · · is the ommutator-assoiator �ltration of Q [7℄. We saythat Q is nilpotent if there exists n suh that γn+1Q = {e}.4.2.3. Jennings Theorem. Let F be the free loop on a single generator x and
δ : F → Z the homomorphism that sends x to 1. The degree of an element
w(x) ∈ F is de�ned to be the integer δ(w(x)). Given a loop (Q, xy, e),the isolator √

K of a normal subloop K is the minimal normal subloop of
Q ontaining all x ∈ Q suh that w(x) ∈ K for some word w of non-zerodegree.Theorem 4.7 ([8℄). For any �eld k of harateristi 0 and for any loop
(Q, xy, e), the isolator √

γnQ in Q oinides with the dimension subloop
Dn(Q,k). ¤The assoiative version of this theorem is due to Jennings [5℄.4.2.4. Coqueigrues. A Leibniz algebra is a vetor spae equipped witha bilinear produt [ , ] that satis�es the identity [[x, y], z] + [[y, z], x] +
[[z, x], y] = 0. In ase that [ , ] is skew-symmetri we reover the de�ni-tion of a Lie algebra.In the same way that Lie algebras are the tangent spaes of Lie groupsat the identity element, it has been suggested that Leibniz algebras ouldbe integrated to some hypotheti objets alled oqueigrues. One of theseveral attempts of �nding these oqueigrues is based on formal integrationof Lie algebra to formal group in the so alled Loday-Pirashvili ategory [9℄.
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