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Centrally nilpotent �nite loops

Markku Niemenmaa and Miikka Rytty

Abstract. We discuss the connection between centrally nilpotent �nite loops and their
multiplication groups and inner mapping groups.

1. Introduction

The purpose of this survey is to explore the connection between centrally
nilpotent �nite loops and their multiplication groups and inner mapping
groups. In section 2, we describe the classical approach by Bruck [3] from
1946 and we show that if Q is a centrally nilpotent �nite loop, then M(Q)
(and I(Q)) is a solvable group. In section 3 we start from groups and show
that if I(Q) is abelian, then Q is centrally nilpotent (we give a modern-
ized and simpli�ed version of the original proof by Kepka and Niemenmaa
[17] from 1994). Loops with abelian inner mapping groups have drawn a
lot of attention during the last �ve years - main reason for this being the
invention by Csörg® [5]: there exist loops whose inner mapping groups are
abelian and whose nilpotency class is higher than two. We try to cover
some of the most interesting results by Csörg®, Drápal, Kinyon, Nagy and
Vojt¥chovský. One of the interesting recent results is the following: if I(Q)
is nilpotent, then a �nite loop Q is centrally nilpotent [15]. We shall discuss
loops with nilpotent inner mapping groups in section 4 based on the results
by Mazur, Niemenmaa and Rytty. Finally, in section 5 we introduce an
example by Vesanen: the inner mapping group of a centrally nilpotent loop
is not necessarily nilpotent although it has to be solvable.
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2. From loops to groups

This section is for the most part based on the article by Bruck [3, pp.
278 − 283]. At some points we have tried to modernize the presentation �
we hope that the readers will accept this.

If Q is a loop, then the multiplication group M(Q) is the permutation
group of Q generated by all left and right translations. The inner mapping
group I(Q) is the stabilizer of the neutral element in Q. The centre Z(Q)
consists of all elements a such that the equations (ax)y = a(xy), (xa)y =
x(ay), (xy)a = x(ya) and ax = xa are satis�ed for all x, y ∈ Q. As the inner
mapping group I(Q) is generated by the mappings R−1

yx RxRy, L
−1
xy LxLy and

L−1
x Rx (x, y ∈ Q), we conclude that a ∈ Z(Q) if and only if U(a) = a for

every U ∈ I(Q). The classical result by Albert [1] is

Lemma 2.1. If Q is a loop, then Z(Q) ∼= Z(M(Q)). �

If we write Z0 = 1, Z1 = Z(Q) and Zi+1/Zi = Z(Q/Zi), then we get
a series of normal subloops of Q. If Zn−1 is a proper subloop of Q and
Zn = Q, then we say that Q is centrally nilpotent of class n.

For every normal subloop N of Q, the mapping f : I(Q) → I(Q/N)
de�ned by

f(P )(xN) = P (x)N

is a surjective homomorphism. We shall write

K(N) = Ker(f) = {P ∈ I(Q) | P (x)N = xN for every x ∈ Q}.

Now we have the isomorphism

I(Q)/K(Z(Q)) ∼= I(Q/Z(Q)).

If U ∈ K(Z(Q)), then U(x) = xz, where z ∈ Z(Q). If y = xc, where
c ∈ Z(Q), then U(y) = U(xc) = U(x)c = xz.c = xc.z = yz. If Q =
Z(Q) ∪ x1Z(Q) ∪ . . . ∪ xr−1Z(Q), then U is uniquely determined by the
elements U(x1), . . . , U(xr−1). It follows that the mapping g : K(Z(Q)) →
Z(Q) × . . . × Z(Q) (with r − 1 components), g(U) = (c1, . . . , cr−1), where
U(xi) = xici, is a homomorphism. Since Ker(g) = 1, we have the following

Theorem 2.2. Let Q be a �nite loop with centre Z(Q) and let |Q/Z(Q)| =
r. Then K(Z(Q)) is an abelian normal subgroup of I(Q) and K(Z(Q)) is

isomorphic to a subgroup of Z(Q) × . . . × Z(Q), where the direct product

has r − 1 components. �
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We write Li = K(Zi) and thus Li+1/Li = K(Zi+1/Zi) = K(Z(Q/Zi)).
If Q is a nilpotent loop with central series

1 = Z0 ⊂ Z1 ⊂ . . . ⊂ Zn = Q,

then we get a series 1 < L1 < . . . < Ln−1 = I(Q) with the following
properties:

1. Li is a normal subgroup of I(Q),

2. I(Q)/Li
∼= I(Q/Zi),

3. Li+1/Li
∼= D 6 Zi+1/Zi× . . .×Zi+1/Zi, where the direct product has

|Q/Zi+1| − 1 components.

As L1 = K(Z1) is abelian and all factor groups Li+1/Li are abelian, we
have the following

Theorem 2.3. If Q is a �nite nilpotent loop, then I(Q) is a solvable group.

�

By looking at the orders of the factor groups Li+1/Li we have

Corollary 2.4. If |Q| = n, then |I(Q)| and |M(Q)| divide some power of

n. �

Corollary 2.5. If p is a prime number such that p divides |I(Q)|, then p
divides |Q|. �

Corollary 2.6. If |Q| = pm, then I(Q) and M(Q) are both p-groups. �

We shall now recall another nilpotency criterion given by Bruck [3, p.
281]. We �rst write I0 = I(Q) and Ii = NM(Q)(Ii−1) for each i > 1. Then

Ii = {RxU | x ∈ Zi and U ∈ I(Q)}.

Theorem 2.7. A necessary and su�cient condition that Q be centrally

nilpotent of class n is that In = M(Q) but In−1 6= M(Q). �

Corollary 2.8. If M(Q) is a nilpotent group of class n, then Q is centrally

nilpotent of class at most n. �

By Theorem 2.3, I(Q) is solvable and as the factor groups Ii+1/Ii are
all abelian, we get
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Theorem 2.9. If Q is a �nite centrally nilpotent loop, then M(Q) is a

solvable group. �

Corollary 2.10. Let |Q| = pm, where p is a prime number. Now Q is

centrally nilpotent if and only if M(Q) is a p-group. �

If Q is centrally nilpotent of class 2, then NM(Q)(I(Q)) = I(Q) ×
Z(M(Q)) is normal in M(Q), hence I(Q) is abelian group. The converse of
this result naturally holds in group theory but, as we can see in the following
section, it does not hold in loop theory.

3. From groups to loops: abelian case

The multiplication group of a loop can be characterized in purely group
theoretic terms by using the notion of connected transversals. Let G be
a group, H 6 G and let A,B be two left transversals to H in G. If the
commutator a−1b−1ab ∈ H for every a ∈ A and every b ∈ B, then we say
that A and B are H-connected transversals in G. Kepka and Niemenmaa
[16] proved the following

Theorem 3.1. A group G is isomorphic to the multiplication group of a

loop if and only if there exist a subgroup H of G satisfying HG = 1 and

H-connected transversals A and B such that G = 〈A,B〉. �

In the Theorem H corresponds to the inner mapping group of the loop
and A and B are the sets of left and right transversals respectively. By HG

we denote the largest normal subgroup of G contained in H. A thorough
exposition of connected transversals can be found in [18].

In the following, we shall assume that H 6 G and there exist H-
connected transversals A and B in G. In this section we need the following
two results on connected transversals.

Lemma 3.2. If C ⊆ A ∪B and K = 〈H,C〉, then C ⊆ KG. �

Lemma 3.3. Let H ∩ Ha = 1 for some a ∈ A. If G = 〈A,B〉, then G is

an abelian group and H = 1. �

The proof of Lemma 3.2 can be found in [16] whereas Lemma 3.3 is a
result which most probably appears for the �rst time in this article. The
kind reader is encouraged to construct the proof.

We shall now deal with the case where H (and, in fact, I(Q)) is abelian.
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Theorem 3.4. If G = 〈A,B〉 and H is abelian, then H is subnormal in G.

Proof. We can assume that G is not an abelian group. If HG > 1, then
we use induction and it follows that H/HG is subnormal in G/HG and the
claim follows.

Assume that H is a maximal subgroup of G. By Lemma 3.3, L =
H ∩ Ha > 1 for some 1 6= a ∈ A. Then CG(L) > 〈H,Ha〉 = G, hence
L 6 Z(G) and HG > 1.

Thus we may assume that H < T < G, where H is a maximal subgroup
of T . By Lemma 3.2, TG > 1. We can use induction again and get that
T/TG is subnormal in G/TG, hence T is subnormal in G. If H is maximal
in E < G, then E is subnormal in G. If E 6= T , then H = E ∩ T is
subnormal in G. Therefore we may assume that E = T . Assume that T is
a proper normal subgroup of F 6 G. If P is the Sylow p-subgroup of H and
also a Sylow p-subgroup of T , then by Frattini lemma, F = TNF (P ) and
thus T 6 NF (P ). If Q is the Sylow q-subgroup of H but Q is not a Sylow
q-subgroup of T , then NT (Q) = T . We may conclude that T 6 NG(H) and
this means that H is subnormal in G.

Corollary 3.5. If Q is a �nite loop and I(Q) is an abelian group, then Q
is centrally nilpotent.

Proof. By previous theorem, Z(M(Q)) > 1 and Z(Q) > 1. Now I(Q/Z(Q))
is isomorphic with I(Q)/K(Z1) (where K(Z1) is as in Theorem 2.2). Again
Z(Q/Z(Q)) > 1 and it follows that Q is centrally nilpotent.

How about the nilpotency class of Q in the case that I(Q) is abelian?
The results by Csörg®, Kepka and Niemenmaa [4, 17] indicate that if I(Q) ∼=
Cp ×Cp or I(Q) ∼= Cp ×Cp ×Cp, then Q is centrally nilpotent of class two.
In 2007 Csörg® [5] constructed an example of a �nite group G of order 213

with an elementary abelian subgroup H of order 26 and with H-connected
transversals A and B such that G = 〈A,B〉 and the derived subgroup G′ is
not a subgroup of the normalizer NG(H). Thus this construction gives us a
loop Q of order 27 and with nilpotency class of 3. Drápal, Kinyon, Nagy and
Vojt¥chovský have given more explicit constructions of other Csörg®-type
loops [7, 8, 13]. All the initial examples had elementary abelian 2-groups
as inner mapping groups. Drápal and Vojt¥chovský [9] have constructed
Csörg®-type loops with C4 × C4 × C2 × C2 as the inner mapping group.

On the other hand, we know that certain classes of loops may not contain
loops of Csörg®-type. Nagy and Vojt¥chovský have showed that if Q is a
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Moufang loop of odd order and with abelian I(Q), then Q has nilpotency
class at most two (this is not true for Moufang loops of even order, see [13]).
Also left conjugacy closed loops with commuting inner mappings may not
be of nilpotency class greater than two by the result of Csörg® and Drápal
[6].

4. From groups to loops: nilpotent case

The previous section showed that Q is centrally nilpotent provided that
I(Q) is abelian. In this section we explore the case where I(Q) is nilpotent.
Before starting to work with the general case, we �rst assume that I(Q) is
a dihedral 2-group. We shall need the following lemma from [14].

Lemma 4.1. Let G = PSL(2, q), where q = 2n±1 > 17 is a prime. If H is

a maximal subgroup of G and H is a dihedral 2-group of order q ± 1, then
there exist no H-connected transversals in G. �

Then let G be a �nite group, H 6 G a dihedral 2-group and assume
that there exist H-connected transversals in G. If G is not solvable, then by
Thompson [20] we have two possibilities. If G is simple, then G ∼= PSL(2, q),
where q = |H|±1 > 17 is a prime. By Lemma 4.1, we have a contradiction.
If G is not simple but nonsolvable, then G = NH, where [G : N ] = 2, N∩H
is a dihedral 2-group and N ∼= PSL(2, q), where q is a prime number or
p = 9. After somewhat technical calculations we again reach a contradiction
and we conclude that G is solvable. We thus have

Theorem 4.2. Let G be a �nite group and H 6 G a dihedral 2-group. If

there exist H-connected transversals in G, then G is solvable. �

If we further assume that G is generated by the connected transversals,
then H is subnormal in G and we get

Theorem 4.3. If Q is a �nite loop such that I(Q) is a dihedral 2-group,
then Q is centrally nilpotent. �

We shall now extend the results of Theorems 4.2 and 4.3 to the case
where H is nilpotent (I(Q) is nilpotent).

Theorem 4.4 (Mazur [11]). Let H be a nilpotent subgroup of a �nite

group G which has H-connected transversals. Then G is solvable. �
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The proof follows the usual strategy in �nite group theory. Mazur starts
with the assumption that G is a minimal counterexample. Thus G is a
non-solvable �nite group with a nilpotent subgroup H and H-connected
transversals. It then follows that H is a maximal subgroup of G and
G = DH, where D is a minimal normal subgroup of G. Furthermore,
H is a Sylow 2-subgroup of G and D is a nonabelian simple group. Then
Mazur uses the classi�cation of �nite simple groups and concludes that
D ∼= PSL(2, q), where q = 2n ± 1 > 7 is a prime number (at this point we
wish to remark that Baumann [2] has described the structure of nonsolvable
�nite groups with nilpotent maximal subgroups without the classi�cation of
�nite simple groups and Baumann's result gives us directly the structure of
D). After this somewhat technical calculations (as in the proof of Theorem
4.2) lead us to the conclusion that G has to be solvable.

It remains to show that H is subnormal provided that G is generated
by H-connected transversals. Recall that a loop Q is solvable if it has a
series 1 = Q0 ⊂ . . . ⊂ Qn = Q, where Qi−1 is a normal subloop of Qi and
Qi/Qi−1 is an abelian group. In 1996 Vesanen [21] proved the following
result: if Q is a �nite loop and M(Q) is solvable group, then Q is a solvable
loop.

Theorem 4.5. Let H be a nilpotent subgroup of a �nite group G and let

A,B be H-connected transversals in G. If G = 〈A,B〉, then H is subnormal

in G.

Proof. Let G be a minimal counterexample. We may conclude that HG = 1
and thus G ∼= M(Q) and H ∼= I(Q) for some loop Q. By Theorem 4.4,
M(Q) is a solvable group and by using Vesanen's result we see that Q is a
solvable loop. If H ∼= I(Q) is a maximal subgroup of G ∼= M(Q), then Q
may not have a nontrivial normal subloop (otherwise M(Q) is imprimitive
on Q and I(Q) is not a maximal subgroup of M(Q)). It follows that Q is
both simple and solvable, hence a cyclic group of prime order and I(Q) = 1.

Thus we may assume that H is not maximal in G. But then we have
such a proper subgroup T of G that H is a maximal subgroup of T and we
can continue as in the proof of Theorem 3.4.

Corollary 4.6. If Q is a �nite loop and I(Q) is nilpotent, then Q is a

centrally nilpotent loop. �

The connection between the nilpotency class of Q and the structure of
I(Q) is mainly unknown, but by a result from Niemenmaa and Rytty [19]
the question can be reduced to p-groups.
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Theorem 4.7. Let H1 and H2 be �nite nilpotent groups, gcd(|H1| , |H2|) =
1 and assume the following: if Q is a �nite loop with I(Q) ∼= Hi, then Q
is centrally nilpotent of class at most ni (for i = 1, 2). Now if Q is a �nite

loop with I(Q) ∼= H1 × H2, then Q is centrally nilpotent of class at most

max(n1, n2). �

5. An example by Vesanen

Let C be a loop of order six given by the table

1 2 3 4 5 6
2 1 4 3 6 5
3 4 5 6 1 2
4 3 6 5 2 1
5 6 1 2 4 3
6 5 2 1 3 4

The loop C is commutative and centrally nilpotent of class two. Let
(Q, ·) = (C × Z3, ·), where (Z3,+) is the group of residue classes modulo
three (with elements 0, 1 and 2) and

(x, a) · (y, b) =

{
(xy, a + b + 1), if x 6= 1, y 6= 1 and xy 6= 1;
(xy, a + b), if x = 1 or y = 1 or xy = 1.

Now Q is a commutative loop of order 18 and Q is centrally nilpotent of
class three. Furthermore, I(Q) ∼= C3 ×C3 ×C3 ×S3 ×S3 is not a nilpotent
group (the computations were checked by using GAP [10] and its package
LOOPS [12]).
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