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Para-associative groupoids

Dumitru I. Pushkashu

Abstract. We study properties of left (right) division (cancellative) groupoids with
associative-like identities: x · yz = zx · y and x · zy = xy · z.

1. Introduction

A quasigroup can be de�ned as an algebra (Q, ·) with one binary operation
in which some equations are uniquely solvable or as an algebra (Q, ·, \, /)
with three binary operations satisfying some identities. The �rst de�nition
is motivated by Latin squares, the second � by universal algebras. In the
case of quasigroups various connections between these three operations are
well described.

In this note we describe connections between these three operations
in para-associative division groupoids, i.e., left (right) division groupoids
satisfying some identities similar to the associativity.

By the proving of many results given in this paper we have used Prover9-
Mace4 prepared by W. McCune [7].

2. Basic facts and de�nitions

By a binary groupoid (Q, ·) we mean a non-empty set Q together with a
binary operation denoted by juxtaposition. Dots will be only used to avoid
repetition of brackets. For example, the formula ((xy)(zy))(xz) = (xz)z
will be written in the abbreviated form as (xy · zy) · xz = xz · z. In this
notion the associative law has the form

x · yz = xy · z. (1)
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If we permute the arguments in each side of (1) we can obtain 16 new
equations. Hosszú observed (see [5]) that all these equations can be reduced
to one of the following four cases: (1),

x · yz = z · yx, (2)

x · yz = y · xz, (3)

x · yz = zx · y. (4)

Unfortunately Hosszú gives only two examples of such reductions.

Example 2.1. The equation yz · x = yx · z is equivalent to x ∗ (z ∗ y) =
z ∗ (x ∗ y), where t ∗ s = st. 2

Example 2.2. If in the identity

x · zy = xy · z (5)

(called by Hosszú � Tarki's associative law) we put z = x and replace xy
by t, we obtain xt = tx. Hence, in groupoids (Q, ·) in which each element
t ∈ Q can be written in the form xy, x, y ∈ Q, (5) implies each of the
equations (1)− (4). 2

M. A. Kazim and M. Naseeruddin considered in [6] the following laws:

xy · z = zy · x (6)

x · yz = z · yx. (7)

Groupoids satisfying (6) are called left almost semigroups (LA-semigroups),
groupoids satisfying (7) are called right almost semigroups (RA-semigroups).

All these identities are strongly connected with para-associative rings.
Namely, a non-associative ring R is para-associative of type (i, j, k) (cf. [2]
or [4]) or an(i, j, k)-associative ring, if x1x2 · x3 = xi · xjxk is valid for all
x1, x2, x3 ∈ R, where (i, j, k) is a �xed permutation of the set {1, 2, 3}.

As usual, the map La : Q → Q, Lax = ax for all x ∈ Q, is a left

translation, the map Ra : Q → Q, Rax = xa, is a right translation.
A groupoid (Q, ·) is a left cancellation groupoid, if ax = ay implies x = y

for all a, x, y ∈ Q, i.e., if La is an injective map for every a ∈ Q. Similarly,
(Q, ·) is a right cancellation groupoid, if xa = ya implies x = y for all
a, x, y ∈ G, i.e., if Ra is an injective map for every a ∈ Q. A cancellation

groupoid is a groupoid which is both a left and right cancellation groupoid.
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By a left division groupoid (shortly: ld-groupoid) we mean a groupoid
in which all left translations Lx are surjective. A right division groupoid

(shortly: rd-groupoid) is a groupoid in which all right translations Rx are
surjective. If all Lx and all Rx are surjective, then we say that such groupoid
is a division groupoid.

Example 2.3. Let (Z,+, ·) be the ring of integers. Consider on Z two
operations: x ◦ y = x + 3y and x ∗ y = [x/2] + 3y. It is possible to check
that (Z, ◦) is a left cancellation groupoid, (Z, ∗) is a left cancellation right
division groupoid. 2

De�nition 2.4. A groupoid (Q, ◦) is called a right quasigroup (a left quasi-

group) if, for all a, b ∈ Q, there exists a unique solution x ∈ Q of the equation
x◦a = b (respectively: a◦x = b), i.e., if all right (left) translations of (Q, ◦)
are bijective maps of Q.

A groupoid which is a left and right quasigroup is called a quasigroup.
A quasigroup with the identity is called a loop.

T. Evans [3] proved that a quasigroup (Q, ·) can be considered as an
equationally de�ned algebra. Namely, he proved

Theorem 2.5. A groupoid (Q, ·) is a quasigroup if and only if (Q, ·, \, /)
is an algebra with three binary operations ·, \ and / satisfying the following

four identities:

x · (x\y) = y, (8)

(y/x) · x = y, (9)

x\(x · y) = y, (10)

(y · x)/x = y. (11)

Another characterization of quasigroups was given by G. Birkho� in [1].

Theorem 2.6. A groupoid (Q, ·) is a quasigroup if and only if (Q, ·, \, /)
is an algebra with three binary operations ·, \ and / satisfying the identities

(8)− (11) and

(x/y)\x = y, (12)

y/(x\y) = x. (13)

In the case of groupoids connections between these three operations are
described in [8] and [9]. Namely, the following theorem is true.
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Theorem 2.7. Let (Q, ·) be an arbitrary groupoid. Then

1. (Q, ·) is a left division groupoid if and only if there exists a left can-

cellation groupoid (Q, \) such that an algebra (Q, ·, \) satis�es (8),

2. (Q, ·) is a right division groupoid if and only if there exists a right

cancellation groupoid (Q, /) such that an algebra (Q, ·, /) satis�es (9),

3. (Q, ·) is a left cancellation groupoid if and only if there exists a left

division groupoid (Q, \) such that an algebra (Q, ·, \) satis�es (10),

4. (Q, ·) is a right cancellation groupoid if and only if there exists a right

division groupoid (Q, /) such that an algebra (Q, ·, /) satis�es (11).

3. Cyclic associative law

In this section we study various groupoids satisfying the cyclic associative
law (4).

Theorem 3.1. A right division groupoid (Q, ·, /) satisfying (4) is an asso-

ciative and commutative division groupoid.

Proof. By Theorem 2.7 such groupoid satis�es (9). Hence

yz · (x/y)
(4)
= z · (x/y)y

(9)
= zx.

Using just proved identity, we obtain

xy · z (4)
= y · zx = y · (yz · (x/y))

(4)
= (x/y)y · yz

(9)
= x · yz,

which proves the associativity. Moreover, for all x, y ∈ Q we have

xy
(9)
= x · (y/z)z

(4)
= zx · (y/z)

(1)
= z · x(y/z)

(4)
= (y/z)z · x (9)

= yx.

So, (Q, ·) is associative and commutative division groupoid.

Corollary 3.2. A right cancellation rd-groupoid (Q, ·, /) satisfying (4) is a

commutative group with respect to the operation · and satis�es the identities

(2)− (4).

Proof. By the previous theorem such groupoid is a commutative division
groupoid. Since it also is a cancellation groupoid, it is a commutative group.
Obviously it satis�es (2)− (4).
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Theorem 3.3. A left cancellation rd-groupoid (Q, ·, \, /) satisfying (4) is a

commutative group with respect to the operation · and satis�es the identities

(2)− (4).

Proof. By Theorem 2.7 such groupoid satis�es (9) and (10). Hence

xy
(9)
= (x/x)x · y (4)

= x · y(x/x).

from this we obtain x\(xy) = y(x/x), which, in view of (9), gives

y = y(x/x). (14)

So, for all x, y ∈ Q, we have

y\y = x/x (15)

Thus

y
(9)
= (y/y)y

(15)
= (x\x)y

(15)
= (x/x)y.

This, together with (14), shows that e = x/x = x\x is the identity of (Q, ·).
Since

xy = xy · e (4)
= y · ex = yx.

(Q, ·) is a commutative loop. Hence xy · z = yx · z = x · zy = x · yz, which
means that it is a commutative group. Obviously it satis�es (2)− (4).

Theorem 3.4. A left division groupoid (Q, ·, \) satisfying (4) is a commu-

tative division groupoid.

Proof. By Theorem 2.7, such groupoid satis�es (8). Hence

zx
(8)
= y(y\z) · x (4)

= (y\z) · xy.

Using just proved identity, we obtain

x · yz
(4)
= zx · y = ((y\z) · xy) · y (4)

= xy · y(y\z)
(8)
= xy · z,

which proves the associativity. Moreover, for all x, y ∈ Q we have

xy
(8)
= z(z\x) · y (4)

= (z\x) · yz
(1)
= (z\x)y · z (4)

= y · z(z\x)
(8)
= yx.

So, (Q, ·) is associative and commutative division groupoid.
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Corollary 3.5. A left cancellation ld-groupoid (Q, ·, \) satisfying (4) is a

commutative group with respect to the operation · and satis�es the identities

(2)− (4).

Proof. By the previous theorem such groupoid is a commutative division
groupoid. Since it also is a cancellation groupoid, it is a commutative group.
Obviously it satis�es the identities (2)− (4).

Theorem 3.6. A right cancellation ld-groupoid (Q, ·, \, /) satisfying (4) is a
commutative group with respect to the operation · and satis�es the identities

(2)− (4).

Proof. The proof is very similar to the proof of Theorem 3.3.

4. Groupods in which x·zy = xy·z
Lemma 4.1. A left division groupoid (Q, ·, \) satisfying (5) is commutative

and associative.

Proof. By Theorem 2.7 such groupoid satis�es (8). Hence

xy
(8)
= y(y\x) · y (5)

= y · y(y\x)
(8)
= yx

for all x, y ∈ Q. The associativity is obvious.

Theorem 4.2. A left cancellation ld-groupoid (Q, ·, \) satisfying (5) is a

commutative group with the identity e = x\x and satis�es (2)− (4).

Proof. Indeed, xy
(8)
= x(x\x) ·y (5)

= x ·y(x\x), which implies y = y(x\x).

Corollary 4.3. In a right cancellation ld-groupoid (Q, ·, \, /) satisfying (5)
we have x\y = y/x for all x, y ∈ Q.

Proof. By Lemma 4.1 such groupoid is commutative. Hence y = xz = zx
implies x\y = y/x.

Theorem 4.4. A right cancellation ld-groupoid (Q, ·, \, /) satisfying (5) is a
commutative group with respect to the operation · and satis�es the identities

(2)− (4).

Proof. By Lemma 4.1 such groupoid is associative and commutative. Hence
it also is left cancellative. Theorem 4.2 completes the proof.
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Lemma 4.5. A left cancellation groupoid (Q, ·, \) satisfying (5) is associa-

tive and commutative.

Proof. In fact, using (5), we obtain

u(xy · z) = uz · xy = (uz · y)x = (u · yz)x = u(x · yz).

This, by the left cancellativity, implies the associativity. Therefore,

x · yz = xy · z (5)
= x · zy,

which shows that (Q, ·) is also commutative.

Theorem 4.6. A left cancellation rd-groupoid (Q, ·, \) satisfying (5) is a

commutative group with respect to the operation · and satis�es the identities

(2)− (4).

Proof. By Lemma 4.5 such groupoid is commutative. Hence it is a left
division groupoid, too. Theorem 4.2 completes the proof.

Theorem 4.7. A right division groupoid (Q, ·, /) satisfying (5) is associa-

tive and satis�es the identity x(y/y) = x.

Proof. By Theorem 2.7 it satis�es (9). Hence

y
(9)
= (x/y)y

(9)
= (x/y) · (y/y)y

(5)
= (x/y)y · (y/y)

(9)
= x(y/y).

Let e = y/y. Then xe = x for every x ∈ Q and

xy · z = (xy · z)e
(5)
= xy · ez (5)

= x(ez · y)
(5)
= x(e · yz)

(5)
= (x · yz)e = x · yz,

which completes the proof.

Note that a right cancellation rd-groupoid satisfying (5) may not be
a group. A non-empty set Q with the multiplication de�ned by xy = x
is a simple example of a non-commutative right cancellation rd-groupoid
without two-sided identity.

Acknowledgment: The author thanks to V. A. Shcherbacov for their use-
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