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Cryptoschemes over hidden conjugacy

search problem and

attacks using homomorphisms

Dmitriy N. Moldovyan and Nikolay A. Moldovyan

Abstract. There are considered attacks on cryptoschemes based on the recently pro-
posed hard problem called hidden conjugacy search problem (HCSP), de�ned over �nite
non-commutative groups. It is shown that using homomorphisms of the non-commutative
�nite group into �nite �elds GF (ps), s > 1, in some cases the HCSP can be reduced to
two independent problems: discrete logarithm and conjugacy search problem. Two meth-
ods for preventing such attacks are proposed. In the �rst method there are used elements
of the order p. The second method uses non-invertible elements and relates to de�ning
the HCSP over the �nite non-commutative ring.

1. Introduction

Since the factorization and �nding discrete logarithm problems (DLP) can
be solved in polynomial time on a quantum computer [6] new hard prob-
lems attracts attention of the researchers in the cryptology area. One of such
problems called conjugacy search problem (CSP) [1, 2] is de�ned over �nite
non-commutative groups as follows. Suppose Γ is a �nite non-commutative
group, G, Y ∈ Γ, X ∈ Γc, where Γc is a commutative subgroup of Γ, and
Y = XGX−1. Given G and Y �nd X ∈ Γc. Recently [4] a novel hard prob-
lem that can be called the hidden conjugacy search problem (HCSP) has
been applied to design the key agreement protocol, commutative encryption
algorithm, and public-key encryption algorithm. The HCSP is de�ned as
follows. Given G and Y recover integer x and element X ∈ Γc such that
Y = XGxX−1. If the value x is known, the HCSP is reduced to CSP. If
the element X is known, the HCSP is reduced to DLP.
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Present paper introduces two attacks on the HCSP-based cryptoschemes
that are implemented using �nite non-commutative groups Γ of the m-
dimensional vectors and matrices m×m de�ned over the �nite ground �eld
GF (p). It is described a general homomorphism of the �nite commutative
and non-commutative groups of vectors into GF (p). The �rst attack uses
the homomorphism of the Γ into GF (p) to reduce the HCSP to two inde-
pendent problems, DLP and CSP. The second attack uses the hypothetic
homomorphisms ψ(s) of the Γ into GF (ps), where s 6 m to reduce the
HCSP to two independent problems, DLP and CSP. Methods for prevent-
ing this attack are proposed. To prevent the both attacks there are two
approaches. The �rst approach uses the element G possessing the order
equal to p. The second approach uses the non-invertible element G of the
�nite ring R containing the group Γ. In the �rst case ∀s ∈ {1, . . . ,m} the
homomorphism ψ(s) : Γ → GF (ps) maps the element Y into the unity
element of GF (ps) for all s 6 m. In the second case ∀s ∈ {1, . . . ,m}
the homomorphism ψ(s) : R → GF (ps) maps the element Y into zero of
GF (ps).

2. Homomorphisms of the �nite groups and rings

Finite rings R of m-dimensional vectors are de�ned over the ground �eld
GF (p), where p is a prime. Suppose e, i, . . . , w be some m basis vectors
and a, b, . . . , z ∈ GF (p) are coordinates. Then the vectors are denoted as
ae + bi + · · ·+ zw or as (a, b, . . . , z). The terms like τv, where τ ∈ GF (p)
and v ∈ {e, i, . . . ,w}, are called components of the vector. The addition of
two vectors is de�ned in the natural way, the multiplication by the formula

(ae+bi+· · ·+zw)◦(a′e+b′i+· · ·+z′w) = aa′e◦e+ba′i◦e+· · ·+za′w◦e+
+ab′e ◦ i + bb′i ◦ i + · · ·+ cb′z ◦ i + . . .

· · ·+ az′e ◦w + bz′i ◦w + · · ·+ zz′w ◦w,

where in the last expression each product of two basis vectors should be
replaced by some basis vector v or by a vector τv in accordance with some
given table called the basis-vector multiplication table (BVMT) such that
operation ◦ is associative. There are possible di�erent types of the BVMTs
de�ning commutative [3] and non-commutative rings R [4]. In general case
there exists the homomorphism R → GF (ps). Indeed, suppose the vector
A is invertible, then the vector equation

A ◦X = V (1)
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with unknown X has unique solution for arbitrary vector V : X = A−1 ◦V .
Equation (1) can be rewritten as a system of m linear equations over GF (p)
withm unknowns that are coordinates of the vector X. Let ∆A be the main
determinant of the system of equation relating to formula (1). The deter-
minant ∆A is completely de�ned by coordinates of the vector A.

Theorem 1. The determinant ∆A de�nes the multiplicative homomor-

phism ψ(A) = ∆A of the ring R into the �eld GF (p).

Proof. If A is not invertible, then ∆A = 0, i.e., all non-invertible vectors are
mapped into zero of GF (p). Let us consider the vector equation (1) with
invertible vector A and arbitrary vector V . For all vectors V ∈ {V }, where
{V } denotes the considered vector space, equation (1) has unique solution,
therefore ∆A 6= 0 and multiplication of the vector A by all vectors V of the
considered vector space {V } de�nes a linear transformation TA of {V }. The
matrix MA of coe�cients of the system of linear equations corresponding
to the vector equation (1) can be put into correspondence to TA. Another
invertible vector B de�nes the transformation TB corresponding to analo-
gous matrix MB. The vector multiplication operation in R is associative,
therefore we have

(A ◦B) ◦ V = A ◦ (B ◦ V ). (2)

The left part of (2) represents the linear transformation TA◦B corresponding
to the matrix MA◦B. The right part of (2) is the superposition TB ∗ TA of
linear transformations TB and TA, therefore we have

TA◦B = TB ∗ TA ⇒MA◦B = MAMB ⇒ ∆(A ◦B) = ∆A∆B.

The last expression means that the mapping ψ : A→ ∆A is the multiplica-
tive homomorphism of the multiplicative group Γ of the ring R into the �eld
GF (p). Since for arbitrary non-invertible vectors A and B we have ∆A = 0
and ∆B = 0, the last fact means that ψ : A → ∆A is the multiplicative
homomorphism of R into GF (p). Theorem 1 is proved. �

In a particular case when the ring R is a vector �nite �eld GF (pm) [5]
the homomorphism de�ned by Theorem 1 is the same mapping as norm
homomorphism de�ned for the extension �nite �elds. Below it is also used
the following well known fact. If R is a �nite ring of matricesM de�ned over
GF (p), then mapping ψ′ such that ∀M : ψ′(M) → ∆M , where ∆M is the
determinant of the matrix M , represents the multiplicative homomorphism
ψ′ : R → GF (p).
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3. The �st attack

Using the homomorphism ψ in the case of the group of vectors (or ψ′ in
the case of group of matrices) described in Section 2 the following attack on
cryptoschemes based on the HCSP [4] is possible. The homomorphism ψ
maps the equation over the non-commutative group Γ used for computing
the public key Y = XGxX−1, where X and x are the secret key, into the
following equation over the �eld GF (p)

ψ(Y ) = ψ(X) (ψ(G))x (ψ(X))−1 = (ψ(G))x . (3)

There are possible the following three cases.
1. The order of the value ψ(G) ∈ GF (p) is equal to the order of the

element G ∈ Γ. In this case the secret value x can be found solving the
DLP in GF (p). Then the secret element X can be found solving the CSP.
Thus, in this case the HCSP is reduced to two independent well known hard
problems and the attack can be considered as successful one.

2. The order of the value ψ(G) ∈ GF (p) is less than the order of
the element G ∈ Γ. In this case the partial information about the secret
value x can be found solving the DLP in GF (p), i.e., solving the equation

ψ(Y ) = (ψ(G))x
′
one can found the value x′ ≡ x mod ωψ(G), where ωψ(G)

is the order of the value ψ(G) ∈ GF (p). The last means that the di�culty
of the HCSP is reduced.

3. The homomorphism ψ maps the element G to the unity element of
the �eld GF (p) and equation (3) degenerates into trivial equation 1 = 1x,
from which no information about the secret value can be obtained. In this
case the considered attack is not e�cient to reduce the HCSP.

Thus, in the design of the cryptoschemes based on the HCSP it should be
used the element G such that ψ(G) = 1 and the order ωψ(G) is a su�ciently
large prime [4]. Selection of such element G depends on the order of the
concrete group used for constructing a cryptoscheme based on the HCSP.
The following theorem is very useful to select the suitable element G.

Theorem 2. If the element G has the order ωG such that gcd(ωG, p−1) = 1,
then ψ(G) = 1.

Proof. Suppose E is the unity element of the group Γ and ψ(G) 6= 1. Then
ψ (GωG) = ψ(E) = 1 and ψ (GωG) = (ψ(G))ωG imply (ψ(G))ωG = 1. Thus
gcd(ωG, p− 1) 6= 1, which contradicts to the assumption. �

We use Theorem 2 for a selection of the element G in the �nite non-
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commutative group Γ of four-dimensional vectors with multiplication de-
�ned by BVMT presented in Table 1.

◦ −→e −→ı −→
j

−→
k

−→e µe µi µj µk
−→ı µi − µ−1τe k −τ j
−→
j µj −k − µ−1e i
−→
k µk τ j −i − µ−1τe

Table 1. The basis-vector multiplication table (m = 4) [4].

The order of this group is Ω = p(p−1)2(p+1) (cf. [4]). In this case it is
possible to generate a 90-bit prime p = 2q− 1 such that q is a prime. Then
we can generate the vector G having su�ciently large prime order ωG = q
satisfying the condition gcd(ωG, p − 1) = 1 (cf. [4]). In the case of groups
Γ corresponding to matrices m ×m and m-dimensional vectors the choice
of G satisfying Theorem 2 is relatively simple. Such choice prevents the
attacks using the considered homomorphism. However there are potentially
possible some other ways for reducing the HCSP to independent DLP and
CSP, which use multiplicative homomorphisms ψ(s) : Γ → GF (ps), where
s 6 m.

4. The second attack

Taking into account possibility to de�ne the HCSP over di�erent variants
of the �nite non-commutative groups it is reasonable to consider some at-
tack on the HCSP-based cryptoschemes, in which some other potentially
possible multiplicative homomorphisms can be exploited. Such attacks are
also oriented to reducing the HCSP to two independent hard problems each
of which is signi�cantly less di�cult than HCSP. In the second type of
attacks there is assumed existence of some hypothetic multiplicative homo-
morphisms ψ(s) : Γ → GF (ps), where the cases s 6 m provide su�cient
generality for �nite groups of vectors and matrices over the �eld GF (p).
Indeed, in the case of matrices the order group is described by the formula

Ωm×m =
m−1∏
i=0

pi
(
pm−i − 1

)
. (4)

Since order of the multiplicative group of GF (ps) is equal to ps − 1, the
values s = 1, 2, . . . ,m cover all cases that can be used in the second attack.
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Like in the case of the �rst attack described in Section 3 one can formu-
late the following statement.
Theorem 3. If the element G has the order ωG such that gcd(ωG, r) = 1,

where r =
m∏
i=1

(pm − 1), then ∀s 6 m the following formula holds ψs(G) = 1.

Proof. The proof is analogous to the proof of Theorem 2. �

It is remarkable that order of the non-commutative group Γ in the case of
matrices and in many cases of vectors contains the divisor p. This fact pro-
vides the �rst method to provide security of the HCSR-based cryptoschemes
against attacks of the second type. The method consists in using element
G having the order ωG = p. Then, accordingly to Theorem 3 for all s 6 m
the following mappings hold: ψ(s)(G) = 1 and ψ(s)(Y ) = 1, therefore the
considered hypothetic homomorphisms become ine�cient to reduce the dif-
�culty of the HCSP.

The number of elements possessing the order equal to p is comparatively
small and some special properties of the groups Γ are to be exploited to �nd
the elements of such order. In the case of �nite non-commutative group
of four-dimensional vectors with the group operation de�nd with Table 1
di�erent elements having order p can be computed (and applied as element
G) using the following statement.

Statement 1. Suppose Γ is the �nite group of four-dimensional vectors

over the �eld GF (p) and the group operation is de�ned with Table 1. Then

the vectors (µ−1, b, c, d) have order equal to p, if the coordinates b, c, and d
satisfy condition

τb2 + c2 + τd2 ≡ 0 mod p. (5)

Proof. Squaring the vector (µ−1, b, c, d) gives

(µ−1e + bi + cj + dk)2 =
(
µ−1 − µ−1(τb2 + c2 + τd2)

)
e + 2bi + 2cj + 2dk.

Taking into account condition (5) we get (µ−1, b, c, d)2 = (µ−1, 2b, 2c, 2d).
Suppose for integer k > 1 the following formular holds

(µ−1, b, c, d)k = (µ−1, kb, kc, kd). (6)

Then

(µ−1, b, c, d)k+1 = (µ−1, b, c, d)k ◦ (µ−1, b, c, d)
= (µ−1, kb, kc, kd) ◦ (µ−1, b, c, d) =

(
µ−1, (k + 1)b, (k + 1)c, (k + 1)d

)
.
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Therefore formula (6) holds for all k > 1. If k = p, then (µ−1, b, c, d)p =
(µ−1, pb, pc, pd) = E, where E = (µ−1, 0, 0, 0) is the unity element of Γ. If
k < p, then (µ−1, b, c, d)k 6= E. Therefore the value p is the order of the
vector (µ−1, b, c, d). Statement 1 is proved. �

Another method preventing attacks of the second type consists in us-
ing non-invertible elements N of the �nite ring R containing the group
Γ, where as G is used some non-invertible element N such that the set
{N,N2, . . . , N i, . . . } contains su�ciently large number of di�erent elements
N i ∈ R. Actually it is considered the variant of the HCSP de�ned over the
�nite non-commutative ring and it is supposed the HCSP-based cryptosys-
tems exploit the public key Y computed as Y = XNxX−1. Applying the
homomorphisms ψ(s) to the last equation gives ψ(s)(Y ) = 0, since ψ(N) = 0.
Thus, this method is also e�cient to prevent attacks of the second type.

Existence of the elements N suitable for de�ning the HCSP over �-
nite non-commutative rings and designing the public key cryptosystems is
demonstrated in the case of the 2× 2 matrices by the following statement.

Statement 2. For the 2 × 2 matrix N2×2 de�ned over the ground �eld

GF (p) for all positive integers i > 2 the following formula holds

N i
2×2 =

(
a b
c λ− a

)i

=
(
λi−1a λi−1b
λi−1c λi−1(λ− a)

)
, (7)

where a = λ/2±
√

(λ/2)2 − bc.

Proof. It is easy to show that

(
a b
c λ− a

)2

=
(
λa λb
λc λ(λ− a)

)
.

If (7) holds for some i > 2, then for i+ 1 we have(
a b
c λ− a

)i+1

=
(
a b
c λ− a

)i (
a b
c λ− a

)
=

(
λi−1a λi−1b
λi−1c λi−1(λ− a)

) (
a b
c λ− a

)
=

(
λia λib
λic λi(λ− a)

)
,

which completes the proof. �

Suppose the order of λ ∈ GF (p) is ωλ. Then powers of the matrix N2×2

generate ωλ di�erent non-invertible matrices. Selecting a prime p such that
p = 2q + 1, where q is a prime, and λ having the order ωλ = q one can
de�ne di�erent variants of the matrix N2×2 suitable for application in the
method for preventing attacks of the second type.
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Using the ring R2×2 ⊃ Γ of the 2 × 2 matrices and the matrix N2×2

de�ned over the ground �eld with characteristic p > 280 one can de�ne
the key agreement scheme as follows. Some uses A and B computes their
public keys YA = XAN

xA
2×2X

−1
A and YB = XBN

xB
2×2X

−1
B , where (XA, xA) is

the private key of the user A and (XB, xB) is the private key of the user
B. Then the �rst and second users compute the values KAB and KBA,
correspondingly, as follows

KAB = XAY
xA
B X−1

A = XA

(
XBN

xB
2×2X

−1
B

)xAX−1
A = XAXBN

xBxA
2×2 X−1

B X−1
A .

KBA = XBY
xB
A X−1

B = XB

(
XAN

xA
2×2X

−1
A

)xBX−1
B = XBXAN

xAxB
2×2 X−1

A X−1
B .

In this scheme it is assumed that XA and XB are selected from some
speci�ed commutative subgroup Γc ⊂ Γ ⊂ R2×2, therefore K21 = K12 = K,
i.e., each of the users computes the same secret value K. Security of the
described cryptoscheme is de�ned by di�culty of the HCSP over R2×2,
which cannot be reduced with attacks of the second type (note that the
second type attacks cover the case of the �st attack described in Section 3).

5. Discussion and conclusion

Consideration of the multiplicative homomorphisms of the non-commutative
�nite rings R ⊃ Γ (or groups Γ) is an important item of the investigation
of the di�culty of the HCSP de�ned over R (or over Γ), which relates to
security estimation of the HCSP-based cryptoschemes. Using the matrices
and vectors de�ned over the �eld GF (p) for implementing the HCSP-based
cryptoschemes is very attractive. In the case of matrices M the multiplica-
tive homomorphism ψ′ : M → ∆M is well known. A general multiplicative
homomorphism ψ of the vector �nite rings into GF (p) have been described.
If the ring of m-dimensional vectors represents the �eld GF (p) [5] the ho-
momorphism ψ coincide with the norm homomorphism, more detailed con-
sideration of this fact is out of the scope of this paper though. In Section 3
the mentioned homomorphisms have been used in the �rst attack proposed
against the HCSP-based cryptoschemes. To prevent this attack the condi-
tion for selecting parameters of the HCSP have been proposed.

The considered attacks of the second type relates to using hypothetic
homomorphisms ψ(s) : R → GF (ps), where s 6 m. These attacks are more
powerful and cover the case of the �rst attack. While designing concrete
cryptoschemes their parameters are selected depending on the order Ω of the
multiplicative group Γ of the ring R. In the case of matrices the formula
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describing the order Ω is known. However using the m × m matrices is
limited by su�ciently small values m, since the size |Y | of the public key
Y increases approximately as m2|p|, where |p| denotes the size of p, and to
provide the security of the HCSP-based cryptoschemes the order Ω should
contain the prime divisor q having the size |q| > 80 bits. The value of q is
limited by pm−1, therefore |q|(m− 1)|p| and |Y | ≈ m2(m− 1)−1|q| (the last
holds for prime m; for composite m the increase of |Y | is more signi�cant).

In the case of the m-dimensional vectors the parameters of the ring R
can be selected so that the secure size of the public key is approximately
equal to 4|q| ≈ 320 bits for small (m = 4) and large (m = 8, 16, 32) values
ofm. Table 2 presents the comparison of the size of public key in the case of
diferent dimensions of the matrices and vectors. Practical interest to use the
large valuesm is connected with the fact that in the case of vectors the com-
putational di�culty of the multiplication operation decreases signi�cantly
with increasing value of m. However construction of the non-commutative
�nite vector groups for large values ofm relates to less investigated problem.
Table 3 presents an example of the BVMT for the case m = 8. If structural
coe�cient τ ∈ GF (p) is such that equation x2 = τ has no solution in GF (p),
then the order of the group Γ of eight-dimensional vectors, which is de�ned
with this BVMT, contains divisor p2 + 1. It is easy to generate values p
such that q =

(
p2 + 1

)
/2 is prime (for example, for p = 307970789149 and

τ = 2 we have q = 47423003484528908072101). Investigation of di�erent
variants of the vector groups Γ for m = 6, 8, 12, 16, 20, 28, 32 relates to a
separate problem.

Elements of Γ dimension |p|, bits |Y |, bits
matrices 2× 2 80 320
matrices 3× 3 40 360
matrices 4× 4 40 640
matrices 5× 5 20 500
matrices 6× 6 20 720
matrices 7× 7 14 686
vectors 4 80 320
vectors 8 40 320
vectors 16 21 336
vectors 32 11 352

Table 2. A rough estimation of the public-key size of the HCSP-based
cryptoschemes possessing the 80-bit security.
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◦ e i j k u v w x
e e i j k u v w x
i i − e k − j v − u x −w
j j − k − e i w − x − u v
k k j − i − e x w − v − u
u u v w x τe τ i τ j τk
v v − u x −w τ i − τe τk − τ j
w w − x − u v τ j − τk − τe τ i
x x w − v − u τk τ j − τ i − τe

Table 3. The basis-vector multiplication table for case m = 8.
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