
Quasigroups and Related Systems 18 (2010), 149 − 163Identity sieves for quasigroupsSmile Markovski, Vesna Dimitrova and Simona SamardjiskaAbstrat. In this paper we onsider the set Qn of all �nite quasigroups of a givenorder n, where n is a positive integer. Using left and right translations, as well as suitablyhosen quasigroup terms t, we de�ne sets of identities that are satis�ed in the lass Qn.The set Qn an be represented as a union of isomorphism lasses Ci, Qn = ∪h
i=1Ci,and we use sets of identities as sieves for lassifying the isomorphism lasses. In suh away we make a presentation of the set of all isomorphism lasses of Qn in the form ofa disjoint union {C1, . . . , Cp} = ∪s

i=1Q
(i), where Q(i) are unions of isomorphism lasses.We show that these lassi�ations an be used for obtaining quasigroups with speialqualities, that an be applied for designing several kinds of ryptographi primitives(PRNG, hash funtions, stream and blok iphers,. . . ), or for de�ning error detetingand error orreting odes.Also, by using suitably hosen identities, we show the fratal struture of somequasigroups in Q4. 1. IntrodutionA groupoid (G, ·) is a pair of a nonempty set G and a binary operation

· : G2 → G. Given a groupoid (G, ·) and an element a ∈ G, the translations
La and Ra, alled left translation and right translation, are de�ned by
La(x) = ax and Ra(x) = xa, for eah x ∈ G. A groupoid (G, ·) is said tobe a quasigroup if and only if La and Ra are permutations on G for eah
a ∈ G.Note that eah set of translations

S = {La1 , . . . , Lam , Rb1 , . . . , Rbk
}, m > 0, k > 0,on a groupoid (G, ·) generates a semigroup <S >.We have the following result.Theorem 1.1. Let (G, ·) be a �nite quasigroup, and let S = {La1 , . . . , Lan ,

Ra1 , . . . , Ran}, where G = {a1, . . . , an}. Then for eah T ∈<S> there is asmallest integer r = r(T ) suh that T r = 1G.2010 Mathematis Subjet Classi�ation: 20N05Keywords: quasigroup, identity, isomorphism lass, identity sieve, fratal quasigroup.



150 S. Markovski, V. Dimitrova and S. SamardjiskaProof. Sine La and Ra are permutations on G, < S > is a group ofpermutations on G, so r(T ) is the order of the permutation T .If T is a permutation of a set G = {a1, . . . , an}, then for eah element
b ∈ G there is a number rb 6 n suh that T rb(b) = b. (Namely, the set
{b, T (b), T 2(b), . . . } is a subset of G.) Then, for the number

rT = LCM(ra1 , ra2 , . . . , ran) 6 LCM(1, 2, . . . , n)we have T rT (x) = x for eah x ∈ G. Hene, T rT = 1G, and r(T ) is a fatorof rT . So, we have the next theorem:Theorem 1.2. The order r(T ) of eah T ∈ <S>, where S is a set of leftand right translations of a �nite quasigroup G, is a fator of the number
LCM(1, 2, . . . , |G|).We need as well to introdue the notion of a term.A groupoid term, where f denotes a binary funtional symbol and Xdenotes a nonempty set of variables, is de�ned indutively as follows:1) x is a term for eah x ∈ X;2) if t1, . . . , tn are terms, then the expression f(t1, . . . , tn) is a term.Given a term t and di�erent variables x1, . . . , xk ∈ X, by t(x1, . . . , xk)we denote that only the variables x1, . . . , xk may appear in the term t; hene,some variable xj may not appear in t. In the sequel we onsider speialtypes of terms t(x1, . . . , xk), where a variable xi appears exatly one, andwe denote it by t(x̄i, xi), where x̄i denotes a �xed tuple of all other variablesourring in t. For example, the term t(x, y, z, u, v, w) = (y(x((yz)u)))(zy)an be denoted as t = t(x̄, x) or t = t(ū, u). There are several hoies for x̄(x̄ = (y, z, u), or x̄ = (u, z, y), or x̄ = (y, u, z), . . . ) as well as for ū, and forour purposes it does not matter whih one is hosen.Let (G, ·) be a given groupoid. Eah term t = t(x1, . . . , xk) de�nesan s-ary funtion tG on the set G, where s is the number of all di�erentvariables that our in t. Denote by y1, . . . , ys ∈ X all di�erent variables in
t, in some ordering. (Depending on the ordering, di�erent funtions tG anbe de�ned.) The de�nition of tG follows the indutive de�nition of a term.For eah variable x we have that xG is the identity mapping. If t = t1t2,where t1 ontains the di�erent variables yi1 , . . . , yip and t2 ontains thedi�erent variables yj1 , . . . , yjq , then for all ai ∈ G we de�ne tG(a1, . . . , as) =
tG1 (ai1 , . . . , aip) · t

G
2 (aj1 , . . . , ajq).Given a term t(y1, . . . , ys), where yi are di�erent variables that our in t,and given an l-tuple (ai1 , . . . , ail) ∈ Gl, we an de�ne an (s− l)-ary funtion

tGai1
,...,ail

on G by tGai1
,...,ail

(a1, . . . , ai1−1, ai1+1, . . . , ail−1, ail+1, . . . , as) =
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tG(a1, . . . , as). We say that tGai1

,...,ail
is the l-th projetion of t de�ned bythe l-tuple (ai1 , . . . , ail) ∈ Gl.By using the notation t(x̄, x) of a term t with s di�erent variables, where

x ours exatly one in t, we denote by tGā the (s − 1)-th projetion of t,obtained by the (s−1)-tuple ā ∈ Gs−1. So, tGā is the mapping on G de�nedby tGā (x) = tG(ā, x).In the ase of quasigroups, we have that tGā ∈ < S >, where G =
{a1, . . . , an} and S = {La1 , . . . , Lan , Ra1 , . . . , Ran}. For example, when
t = (y(x((yz)u)))(zy) = t(x̄, x), x̄ = (u, y, z) and ā = (b, c, d), we have
tGā = RdcLcR(cd)b. Therefore, Theorem 1.1 and Theorem 1.2 hold for thesemappings too.Given two terms t1 and t2, the expression t1 ≈ t2 is alled an identity. Anidentity t1(x1, . . . , xk) ≈ t2(x1, . . . , xk) is said to be satis�ed in a groupoid
G if for every ai ∈ G we have tG1 (a1, . . . , ak) = tG2 (a1, . . . , ak). An identityis satis�ed in a lass of groupoids C if it is satis�ed in every groupoid of
C. (Note that tG1 and tG2 are not onsidered as k-ary funtions on G, sinesome of the variables x1, . . . , xk may not appear neither in t1 nor in t2.)Further on, if there is no onfusion, instead of tG we will write simply t.2. Sieve onstrutionIn this Setion we onsider �nite quasigroups only.Lately, quasigroups have been intensively studied for use in ryptogra-phy and oding theory. The notion of a shapeless quasigroup was de�nedin [5℄ as a kind of quasigroup suitable for building ryptographi primitives.Aording to this de�nition, a shapeless quasigroup Q should not satisfy anyidentity of the form x(x(. . . (xy) . . . )) = y or (. . . ((yx)x) . . . )x = y, where
x ours n < 2|Q| times. In general, quasigroups may satisfy di�erent typesof laws in the form of identities. Here, we make a wider haraterizationregarding a speial form of identities that re�nes the notion of a shapelessquasigroup.Let t be a term of the form t = t(ȳ, y) suh that ȳ = (x1, . . . , xk), k > 1(and y 6= xi for eah i = 1, . . . , k). A t-sieve is said to be the set Sieve(t)of identities de�ned reursively as follows:

Sieve(t) = {t(1) = t(ȳ, y), t(2) = t(ȳ, t(1)), t(3) = t(ȳ, t(2)), . . . }.Note that t(2) = t(ȳ, t(ȳ, y)), t(3) = t(ȳ, t(ȳ, t(ȳ, y))), . . . .



152 S. Markovski, V. Dimitrova and S. SamardjiskaTheorem 2.1. For eah term t = t(ȳ, y) and for eah �nite quasigroup Q,there is a smallest number r(t, Q) suh that t(r(t,Q)) ≈ y is an identity in Q.Proof. Let t = t(ȳ, y), ȳ = (x1, . . . , xk) and ā = (a1, . . . , ak) ∈ Qk. Then,by Theorem 1.1, there is a smallest number r(tā) suh that t
r(tā)
ā (y) = y foreah y ∈ Q. Note that t

r(tā)
ā = t

(r(tā))
ā , sine t

(p)
ā (y) = t(ā, t(ā, . . . , t(ā, y))) =

t
p
ā(y). It follows that for the number r(t, Q) = LCM{r(tā)| ā ∈ Qk} wehave t

(r(t,Q))
ā (y) = y for every ā ∈ Qk and for eah y ∈ Q. This means that

t(r(t,Q)) ≈ y is an identity in Q.The number r(t, Q) is alled a rang of t in Q.Let Qn denote the set of all quasigroups of order n. We have the fol-lowing.Theorem 2.2. For eah term t = t(ȳ, y) there is a number r(t, n), suhthat t(r(t,n)) ≈ y is an identity in the set Qn.Proof. By Theorem 2.1 we have that for eah Q ∈ Qn there is a num-ber r(t, Q) suh that t(r(t,Q)) ≈ y is an identity in Q. Let r(t, n) =
LCM{r(t, Q)| Q ∈ Qn}. Then t(r(t,n)) ≈ y is an identity in Q for eah
Q ∈ Qn, i.e., it is an identity in Qn as well.The number r(t, n) is alled a rang of t in Qn. It follows, by the de�ni-tion of r(t, n), that it is the smallest number suh that t(r(t,n))(ȳ, y) ≈ yis an identity in Qn. The upper bound of r(t, n) is LCM(2, 3, . . . , n).When onsidering Sieve(t) on Qn in order to produe identities of the type
t(r(t,n)) ≈ y, it is enough to take its restrition, i.e., its �nite subset

Sieve(t, n) = {t(i)| i|LCM(2, 3, . . . , n)}.Using Sieve(t, n), where t = t(ȳ, y), we sieve the quasigroups from Qnvia the isomorphism lasses of Qn. The sieving algorithm SA(t, n) is thefollowing.1. Input: the set Qn.2. Represent the set Qn as (disjoint) union of its isomorphism lasses,
Qn = C1 ∪ C2 ∪ · · · ∪ Ch.3. For j = 1, 2, . . . , h, take a representative quasigroup Qj ∈ Cj .



Identities sieves for quasigroups 1534. For eah i|LCM(2, 3, . . . , n) form families of isomorphism lasses Q(i)as follows. Cj ∈ Q(i) if i is the smallest integer suh that the identity
t(i) ≈ y is satis�ed in Qj .5. Output: representation of the isomorphism lasses of Qn as a disjointunion of families of isomorphism lasses,

{C1, . . . , Ch} =
⋃

{Q(i)| i|LCM(2, 3, . . . , n)}.The de�nition of Q(i) does not depend on Qj , sine if an identity issatis�ed in Qj , then it is satis�ed in eah quasigroup Q ∈ Cj too.Note that the families Q(i) = Q(i)(t) depend on the hosen term t. Fordi�erent terms t1, t2, t3, . . . , we an obtain di�erent families Q(i)(tj), j =
1, 2, 3, . . . . Then by using the intersetion ⋂

{Q(i)(tj)| j = 1, 2, . . . }, we anlassify the isomorphism lasses in several di�erent ways. By this lassi�-ation we an separate isomorphism lasses of quasigroups of given order nsuitable for di�erent purposes. The Setion 3 ontains suh lassi�ationsfor the set Q4 of quasigroups of order 4.3. Classi�ations of quasigroups of order 4In this setion we onsider the set Q4 of all binary quasigroups of order4, onsisting of 576 quasigroups. We order the set Q4 by lexiographiordering, using the presentation of the multipliative table of a quasigroupas a onatenation of the strings of its rows. The set Q4 an be representedas a union of 35 isomorphism lasses Cj , and we take the quasigroups withlexiographi numbers 1, 2, 3, 4, 6, 10, 14, 25, 26, 27, 28, 29, 30, 33, 34, 35,37, 38, 39, 40, 73, 74, 77, 80, 83, 92, 149, 150, 155, 157, 158, 159, 160, 196,213 as representatives for the lasses C1, C2, . . . , C35, respetively.We have LCM(2, 3, 4) = 12, and there are 6 fators of 12: 1, 2, 3, 4, 6and 12. Thus, Sieve(t, 4) = {t(i)| i = 1, 2, 3, 4, 6, 12}. Using the algorithm
SA(t, 4), for di�erent hoies of the terms t, we an obtain di�erent lassi�-ations of the isomorphism lasses. Table 1 and Table 2 present speial typeof sieves onstruted from all terms t = t(ȳ, y) suh that ȳ = (x), and with
m ≤ 3 appearanes of the variable x in t. So, for m = 1 we have two terms
xy, yx, for m = 2 we have 6 terms x(xy), (yx)x, (xy)x, x(yx), (xx)y, y(xx),and so on. Altogether, there are 24 terms of this type. Instead of Cj , theisomorphism lasses in Table 1 (and in all other tables in this setion) aredenoted simply by j.



154 S. Markovski, V. Dimitrova and S. SamardjiskaHow an we read Tables 1 and 2? For m = 3, let us onsider the term
t = x(x(xy)) in Table 2. In olumn 1 we have 6 isomorphism lasses:
C23, C24, C25, C26, C34, C35. This means that the identity t(1) ≈ y, i.e.,
x(x(xy)) ≈ y, is satis�ed in all of these lasses. We note that these lassesalso satisfy the identities t(i) ≈ y for all other values of i, but i = 1 is thesmallest value of i suh that t(i) ≈ y is an identity in these lasses. Next,the identity t(2) ≈ y, i.e., x(x(x(x(x(xy))))) ≈ y, is satis�ed in the lasses
C1, C4, C7, C8, C11, C16, C29, and i = 2 is the smallest value of i suh that
t(i) ≈ y is an identity in these lasses. In all of the other lasses the identity
t(i) ≈ y is satis�ed for i = 4 (and also for i = 12), so they are given inolumn 4. Note that the rang of the term t = x(x(xy)) in Q4 is r(t, 4) = 4,the same rang has the term ((yx)x)x, and the rang of the other terms inTables 1 and 2 is 12, exept of the terms x(xy) and (yx)x, that have rang6.

m t \ i 1 2 3 4 6 121,4,7,8, 23,24,25,26, 2,3,5,6,9, 12,13,14,15,
xy 11,16,29 34,35 10,17,20,30, 18,19,21,22,33 27,28,31,32

6∗1 1,3,9,11, 7,20,25,26, 2,4,8,10,12, 5,6,13,15,
yx 14,23,28 30,35 17,21,24,33, 16,18,19,22,34 27,29,31,32

x(xy) 1,4,7,8, 2,3,5,6,9, 23,24,25,26, 12,13,14,15,11,16,29 10,17,20,30, 34,35 18,19,21,22,33 27,28,31,32
(xy)x 1,11,26 2,3,4,8,9, 7,17,23,25, 15,20,22,24, 13,14,16,19, 5,6,12,18,10,35 33 30,34 27,28,29 21,31,32
x(yx) 1,11,26 2,3,4,8,9, 7,17,23,25, 15,20,22,24, 13,14,16,19, 5,6,12,18,10,35 33 30,34 27,28,29 21,31,32

10∗2 1,3,9,11, 2,4,8,10,12, 7,20,25,26, 5,6,13,15,
(yx)x 14,23,28 17,21,24,33, 30,35 16,18,19,22,34 27,29,31,321,3 2,4,7,8,9, 22,23,24,25, 5,6,17,30, 13,14,19,28 12,18,21,27,
(xx)y 10,11,15,16, 26,34,35 33 31,3220,291,8 2,3,4,9,10, 7,15,20,25, 12,17,21,33, 13,16,19,29 5,6,18,27,
y(xx) 11,14,22,23, 26,30,35 34 31,3224,28Table 1: Appliation of SA(t, 4) on Q4 by using terms t = t(ȳ, y) with

ȳ = (x), for m = 1 and m = 2.We analyze the obtained results in Tables 1 and 2. For that aim, welook at the frequeny of appearane of an isomorphism lass in di�erent
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m t \ i 1 2 3 4 6 1223,24,25,26, 1,4,7,8, 2,3,5,6,9,10,34,35 11,16,29 12,13,14,15,

x(x(xy)) 17,18,19,20,21,22,27,28,30,31,32,33
(x(xy))x 25 1,3,9,11, 7,20,23,26, 2,4,8,10, 5,12,14,15, 6,16,21,28,17,24,34 30,35 13,27,33 18,19,22 29,31,32
x((xy)x) 25 1,3,9,11, 7,20,23,26, 2,4,8,10, 5,12,14,15, 6,16,21,28,17,24,34 30,35 13,27,33 18,19,22 29,31,32
((xy)x)x 25 1,4,8,11, 7,23,24,26, 2,3,9,10, 5,12,15,16, 6,14,21,28,17,20,30 34,35 13,27,33 18,19,22 29,31,32
x(x(yx)) 25 1,3,9,11, 7,20,23,26, 2,4,8,10, 5,12,14,15, 6,16,21,28,17,24,34 30,35 13,27,33 18,19,22 29,31,32
(x(yx))x 25 1,4,8,11, 7,23,24,26, 2,3,9,10, 5,12,15,16, 6,14,21,28,17,20,30 34,35 13,27,33 18,19,22 29,31,32
x((yx)x) 25 1,4,8,11, 7,23,24,26, 2,3,9,10, 5,12,15,16, 6,14,21,28,17,20,30 34,35 13,27,33 18,19,22 29,31,327,20,25,26, 1,3,9,11, 2,4,5,6,8,10,

31∗3 30,35 14,23,28 12,13,15,16,
((yx)x)x 17,18,19,21,22,24,27,29,31,32,33,3417 1,4,7,9,10, 23,24,25,26, 2,3,5,6,8, 12,13,19,31 14,21,22,28
x((xx)y) 20,30,33 34,35 11,15,16,18,27,29,32
((xx)y)x 26,35 1,3,8,10, 7,17,23,25, 2,4,9,11,19, 5,6,12,13, 16,21,22,28,15,20,30 33 24,27,31,34 14,18,32 29
x(y(xx)) 26,35 1,3,8,10, 7,17,23,25, 2,4,9,11,19, 5,12,13,16, 6,14,15,28,22,24,34 33 20,27,30,32 18,21,31 2917 1,4,9,10, 7,20,25,26, 2,3,8,11,12, 5,13,19,32 6,15,16,29
(y(xx))x 23,24,33,34 30,35 14,18,21,22,27,28,311,4,5,6,7,8, 23,24,25,26, 2,3,9,10,18, 12,13,14,19, 15,22,28
(x(xx))y 11,16,17,20, 34,35 31 21,27,3229,30,3323 1,3,9,11,12, 7,20,25,26, 2,4,8,10,21, 5,13,18,19, 6,15,16,22,
y(x(xx)) 14,17,24,28,34 30,35 33 27,31 29,327 1,4,5,8,11, 23,24,25,26, 2,3,6,9,10, 12,13,18,19, 14,15,21,22,
((xx)x)y 16,17,20,29,30 34,35 33 27,32 28,311,3,9,11,12, 7,20,25,26, 2,4,8,10, 5,6,13,16, 15,22,29
y((xx)x) 14,17,21,23, 30,35 18,32 19,27,3124,28,33,34Table 2: Appliation of SA(t, 4) on Q4 by using terms t = t(ȳ, y) with

ȳ = (x), for m = 3.



156 S. Markovski, V. Dimitrova and S. Samardjiskaolumns. For example, the lass C1 appears only in olumns 1 and 2. Itmeans that the identity t(2) ≈ y is satis�ed for eah term t from Tables 1and 2. Consequently, the quasigroups of the lass C1 should not be usedfor ryptographi purposes, sine they allow to be attaked by applyingvery simple identities. Nevertheless, they are suitable for de�ning someerror deteting odes ([1℄). On the other hand, the lasses C31 and C32appear 13 times in olumn 12, 6 times in olumn 6 and 5 times in olumn
4. We onlude that the quasigroups of the lasses C31 and C32 are suit-able for ryptographi purposes. They have better ryptographi propertiesregarding t, beause it would be more unlikely and more di�ult to reahan expression that an be replaed by a simpler one. They belong also tothe lass of shapeless quasigroups. Even more, for any term of the form
t = t(ȳ, y) from Tables 1 and 2, they satisfy the identity t(i) ≈ y only when
mi > 12. One an �nd some identities of type t = t(ȳ, y), where x appearsat least 5 times in t, suh that the inequality mi > 12 is not satis�ed. Nev-ertheless, the inequality mi > 8 was satis�ed in all terms t = t(ȳ, y), where
ȳ = (x), we have heked.The disussion above an help improve the de�nition of a shapelessquasigroup. Now, we de�ne that a shapeless quasigroup should not satisfyany identity of the form t(i) ≈ y, for any term t = t(ȳ, y), where ȳ = (x),for mi < 2n. By this new de�nition, we have that only the quasigroups ofthe lasses C13, C18, C19, C27, C31 and C32 an be onsidered as shapeless.In Tables 1 and 2 we onsidered only speial types of terms, in order toget more omplete piture of the distribution of the isomorphism lasses inthe familiesQ(i). Still, sieves of general type Sieve(t), where t = t(ȳ, y) suhthat ȳ = (x1, . . . , xs), s > 1, an be onsidered as well. For that aim weinvestigate the left and the right translations, whih de�ne the quasigroups.From the properties of these translations, we an derive general onlusionsabout the struture of the quasigroups, and how they an be sieved. Thisgives a di�erent lassi�ation of the lasses of isomorphism.As we said earlier, in a quasigroup Q, for an arbitrary term t = t(ȳ, y),and eah ā ∈ Qs−1, the mapping t

Q
ā ∈< S >, where Q = {a1, . . . , an} and

S = {La1 , . . . , Lan , Ra1 , . . . , Ran}. Even more, eah translation (being apermutation) an be represented as a omposition of disjoint yles. Hene,the permutation t
Q
ā an be given by yles and the order of t

Q
ā depends onthe lengths of these yles. On the other hand, by Theorem 2.1, r(t, Q) =

LCM{r(tQā )| ā ∈ Qs−1}, so r(t, Q) depends on La1 , . . . , Lan , Ra1 , . . . , Ran ,i.e., on the properties of their yles.



Identities sieves for quasigroups 157Example 3.1. Consider the quasigroup (Q, ·) that is a representative ofthe isomorphism lass C2, given by its multipliative table
· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 2 1
4 4 3 1 2Let t = (xy)z = t(ȳ, y), where ȳ = (x, z). Then, for ā = (a, b) ∈ Q2, wehave t

Q
ā = LaRb. Q is ommutative with unit 1, so L1 = R1 = (1)(2)(3)(4),

L2 = R2 = (12)(34), L3 = R3 = (1324) and L4 = R4 = (1423).Now, L1R1 = (1)(2)(3)(4), L1R2 = L2R1 = (12)(34), L1R3 = L3R1 =
(1324), L1R4 = L4R1 = (1423), L2R2 = (1)(2)(3)(4), L2R3 = L3R2 =
(1423), L2R4 = L4R2 = (1324), L2R4 = L4R2 = (1324), L3R3 = (12)(34),
L3R4 = L4R3 = (1)(2)(3)(4), L4R4 = (12)(34).Sine we have yles of lengths 1, 2 and 4, r(t, Q) = LCM(1, 2, 4) = 4.This example shows how we an alulate r(t, Q) for given t and Q. But,of ourse, there are an in�nite number of terms, so suh approah is notalways suitable. Espeially, if we are onsidering the properties of quasi-groups used in some kind of quasigroup transformations in a ryptographiprimitive. Still, the nature of the left and the right quasigroup translationsan show how the mapping t

Q
ā behaves for any t or Q. For ryptographipurposes, a quasigroup Q needs bigger r(t, Q) for any t.Denote by rmax = max{r(t, Q)| t is a term}, whih in fat is the maxi-mal i for any Sieve(t, 4) that sieves the quasigroup Q. Analyzing the ylesof the translations L1, R1, . . . , L4, R4 from Example 3.1 we an onludethat any omposition of these translations, produes only permutationswith yles of lengths 1, 2 and 4. Hene, we have that rmax = 4 for allquasigroups in the lass C2.

rmax Isomorphism lass2 13 7,23,25,26,354 2,3,4,8,9,10,11,17,20,24,30,33,3412 5,6,12,13,14,15,16,18,19,21,22,27,28,29,31,32Table 3: Classi�ation of Q4 by Sieve(t, 4), for any term t.



158 S. Markovski, V. Dimitrova and S. SamardjiskaTable 3 gives the values rmax for all isomorphism lasses in Q4. Theanalysis that led to this lassi�ation is rather umbersome and not espe-ially neat. That is why, here we give only a few examples that prove theorretness of Table 3.Example 3.2. Consider the quasigroup with lexiographi order 1, that is arepresentative of the isomorphism lass C1, and is given by its multipliationtable
· 1 2 3 4
1 1 2 3 4
2 2 1 4 3
3 3 4 1 2
4 4 3 2 1This quasigroup is ommutative with unit 1, so L1 = R1 = (1)(2)(3)(4),

L2 = R2 = (12)(34), L3 = R3 = (13)(24) and L4 = R4 = (14)(23).Let t be an arbitrary term. Then the mapping t
Q
ā , ā ∈ Qs−1 is some �niteomposition of the translations L1 = R1, . . . , L4 = R4. When omposingany two of these translations, we have only the following three possibilities:

(ij)(kl) · (ij)(kl) = (i)(j)(k)(l), (ij)(kl) · (ik)(jl) = (il)(kj) and (ij)(kl) ·
(i)(j)(k)(l) = (ij)(kl) (or (i)(j)(k)(l) · (ij)(kl) = (ij)(kl)), i.e., again we getpermutations of the same type. Hene, an arbitrary omposition produesonly permutations with yles of lengths 1 and 2, whih implies that rmax =
2 for all quasigroups in the lass C1.Example 3.3. Consider the quasigroups with lexiographi orders 92 and213, that are representatives of the isomorphism lasses C26 and C35 respe-tively. The quasigroups from these two di�erent isomorphi lasses haveidential properties regarding the translations that de�ne them. Namely,the left translations of the quasigroup 92 (given in Subsetion 4.2) are
(1)(234), (2)(143), (3)(124), (4)(132), whih on the other hand are the righttranslations of the quasigroup 213. Again, the right translations of thequasigroup 92, (1)(243), (2)(134), (3)(142), (4)(123), are the left transla-tions of the quasigroup 213.Similarly, as in the previous example, it is ruial to disover all of thedi�erent ases of omposing an arbitrary number of the translations thatde�ne these quasigroups. We make several observations.When omposing any two left, or any two right translations, we havethese two possibilities: (i)(jkl) · (i)(jkl) = (i)(jlk) or (i)(jkl) · (j)(ilk) =
(l)(ijk), i.e., again we have permutations of the same type and of order 3.



Identities sieves for quasigroups 159When omposing a left and a right translation (in any order) we have
(i)(jkl) · (i)(jlk) = (i)(j)(l)(k) or (i)(jkl) · (j)(ikl) = (il)(jk), i.e., we geta new permutation of order at most 2. Now, this new type of permutationan be omposed with any of the quasigroup translations yielding (i)(jkl) ·
(il)(jk) = (ijl)(k), (i)(jlk) · (il)(jk) = (ikl)(j), and (il)(jk) · (i)(jkl) =
(ilk)(j), (il)(jk) · (i)(jlk) = (ilj)(k), or two suh permutations an beomposed to give (il)(jk) · (il)(jk) = (i)(l)(j)(k) or (ij)(lk) · (il)(jk) =
(ik)(lj).Hene, an arbitrary omposition produes only permutations with ylesof lengths 1 and 2, or only permutations with yles of lengths 1 and 3. Thismeans that rmax = 3 for the quasigroups in the lasses C26 and C35.Example 3.4. The quasigroup with lexiographi order 158, that is a rep-resentative of the isomorphism lass C31, has the following multipliationtable

· 1 2 3 4
1 2 1 3 4
2 3 4 2 1
3 1 3 4 2
4 4 2 1 3The left translations of this quasigroup are (12)(34), (1324), (1)(234),

(143)(2), while the right ones are (123)(4), (1)(3)(24), (134)(2), (1432). Sinethese permutations have yles of length 12, this immediately implies that
rmax = 12.We ombine Tables 1, 2 and 3 to obtain Table 4, where the values r′maxome only from terms t from Tables 1 and 2, i.e., r′max = max{r(t, Q)| t is aterm from Tables 1 and 2}. The families of isomorphism lasses in Table 4are separated by semi-olumns. So, `1;' denotes the family {C1}, `7,23,35;'denotes the family {C7, C23, C35}, and so on. The family `3,4,8,9,11;' ap-pears in the olumns i = 1, i = 2 and i = 4. It means that for any term
t from Tables 1 and 2, only identities of the form t(i) ≈ y are satis�ed (forthe orresponding value of i). Note that r′max = rmax = 4.Tables 4 gives another information about the appliations of quasi-groups. Generally, the quasigroups from the lasses in the row r′max = 12and olumns i = 4, i = 6 and i = 12 should be used for building ryp-tographi primitives, while those in the rows r′max = 2, 3 and olumns
i = 1, 2, 3 should be used for designing odes. As we have noted before, thefamily `13,18,19,27,31,32;' ontains the best quasigroups for ryptographipurposes. Nevertheless, some other lasses an be used quite as well. They



160 S. Markovski, V. Dimitrova and S. Samardjiskaare denoted by itali letters in the table (6, 21, 28 and 29). Namely, the�itali� lasses have the properties that in at least half of the terms t fromTables 1 and 2, the identity t(i) ≈ y is satis�ed only for i = 12.
r′max \ i 1 2 3 4 6 122 1; 1;3 7,23,35; 7,23,35; 7,23,35;25,26; 25,26;4 2,10; 2,10;3,4,8,9,11; 3,4,8,9,11; 3,4,8,9,11;33; 33; 33;17,20,24,30,34; 17,20,24,30,34; 17,20,24,30,34; 17,20,24,30,34;15,22; 15,22; 15,22; 15,22; 15,22;12 14,16, 14,16, 14,16, 14,16, 14,16,28,29; 28,29; 28,29; 28,29; 28,29;5,12, 5,12, 5,12, 5,12,6,21; 6,21; 6,21; 6,21;13,18,19,27, 13,18,19,27, 13,18,19,27,31,32; 31,32; 31,32;Table 4: Classi�ation of isomorphism lasses by r′max.4. Proving the fratal strutureof quasigroup transformationsThere are several papers [6, 7℄, where quasigroup e- and d-transformationsare onsidered. In [4℄ a method for graphial presentation of sequenesobtained by quasigroup transformations is proposed. Using this method(without mathematial proof) the quasigroups are lassi�ed in two disjointlasses: the lass of fratal quasigroups and the lass of non-fratal quasi-groups. Initiated by the identities sieves, here we give a proof that thequasigroups of order 4 with lexiographi numbers 1 and 92 are fratal (seeFigure 1, where the patterns obtained from quasigroups with lexiographinumbers 1, 92 and 191 are given; 1 and 92 are fratal, 191 is non-fratal).In the same way it an be shown that all fratal quasigroups as lassi�edin [4℄ have really a fratal struture too. The proofs given here use suitablyhosen identities, satis�ed in the quasigroup in question.We onsider here only e-transformations, de�ned on a quasigroup (Q, ∗)as follows. Let Q+ = {a1a2 . . . an|ai ∈ Q, n > 2} denote the set of all �nitesequenes with elements of Q and let us take a �xed element l ∈ Q, alled



Identities sieves for quasigroups 161a leader. The e-transformation el : Q+ → Q+ is de�ned by:
el(a1a2 . . . an) = (b1b2 . . . bn) ⇐⇒

{

b1 = l ∗ a1,

bi+1 = bi ∗ ai+1, 1 6 i 6 n − 1The method of produing images of quasigroup proessed sequenes isde�ned as follows. Take a sequene aaa . . . a, a ∈ Q, and put one under theother the sequenes el(aaa . . . a), e2
l (aaa . . . a), . . . , ek

l (aaa . . . a). For graphi-al presentation, like the one in Figure 1, we take di�erent olors for di�erentelements of Q.
1 92 191

a) b) )Figure 1: Images of e-transformations of the quasigroups 1, 92 and 1914.1 The ase of the quasigroup with lexiographi number 1The quasigroup with lexiographi number 1 is given in Example 3.2. Itan be heked that the following identities are satis�ed by this quasigroup:
I1 : xy ≈ yx, (yx)x ≈ y, y(yx) ≈ x, (yx)2y ≈ y, x2x2 ≈ x2.Let the starting sequene be xxxxxxxxx . . . and let the leader be l = y,where x, y are variables. If we apply the e-transformation ey onseutivelyon eah produed sequene, then, using the identities I1, we obtain thesequenes shown on the table below,where the fratal struture appearslearly.
x x x x x x x x x x . . .

y yx y yx y yx y yx y yx y . . .

y x yx (yx)2 y x yx (yx)2 y x yx . . .

y yx (yx)2 (yx)2 y yx (yx)2 (yx)2 y yx (yx)2 . . .

y x x x yx (yx)2 (yx)2 (yx)2 y x x . . .

y yx y yx (yx)2 (yx)2 (yx)2 (yx)2 y yx y . . .

y x yx (yx)2 (yx)2 (yx)2 (yx)2 (yx)2 y x yx . . .

y yx (yx)2 (yx)2 (yx)2 (yx)2 (yx)2 (yx)2 y yx (yx)2 . . .

y x x x x x x x yx (yx)2 (yx)2 . . .

y yx y yx y yx y yx (yx)2 (yx)2 (yx)2 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



162 S. Markovski, V. Dimitrova and S. Samardjiska4.2 The ase of the quasigroup with lexiographi number 92The quasigroup with lexiographi number 92 is given by its multipliativetable:
· 1 2 3 4
1 1 3 4 2
2 4 2 1 3
3 2 4 3 1
4 3 1 2 4In this quasigroup the following identities are satis�ed:

I92 :
xx ≈ x, ((yx)x)x ≈ y, y(yx) ≈ (yx)x, ((yx)x)y ≈ yx,

(yx)((yx)x) ≈ y, y(y(yx)) ≈ x, x((yx)x) ≈ yx, (yx)y ≈ x,

(yx)x ≈ xy, ((yx)x)(yx) ≈ x, x(yx) ≈ y.We use the same starting sequene and leader as in the ase of thequasigroup 1, and the resulting e-transformations are presented in the tablebelow,where again a fratal struture appears.
x x x x x x x x x x . . .

y yx (yx)x y yx (yx)x y yx (yx)x y yx . . .

y (yx)x (yx)x yx yx y y (yx)x (yx)x yx yx . . .

y x yx yx yx x (yx)x (yx)x (yx)x x y . . .

y yx yx yx yx (yx)x (yx)x (yx)x (yx)x y y . . .

y (yx)x x y (yx)x (yx)x (yx)x (yx)x (yx)x yx x . . .

y x x (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x x x . . .

y yx (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x y yx . . .

y (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x (yx)x yx yx . . .

y x yx y x yx y x yx yx yx . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .The proofs for other fratal quasigroups are similar, and they may bequite ompliated. But, if we try to write the sequenes obtained by e-transformation for non-fratal quasigroups, we get very ompliated terms,and it is almost impossible to obtain suitable identities.Sine if an identity is satis�ed in a quasigroup Q, it is satis�ed in allquasigroups isomorphi to Q, we onlude that all of the quasigroups of theisomorphism lasses C1 and C26 are fratal.Referenes[1℄ V. Bakeva, N. Ilievska, A probabilisti model of error-deteting odes basedon quaisgroups, Quasigroups and Related Systems 17 (2009, 151 − 164.
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