Decompositions of an Abel-Grassmann's groupoid

Madad Khan

Abstract. In this paper we have decomposed AG-groupoids. We have proved that if S is an AG^{*}-groupoid, then S/ρ is isomorphic to S/σ , for $n, m \ge 2$, where ρ and σ are congruence relations. Further it has shown that S/η is a separative semilattice homomorphic image of an AG-groupoid S with left identity, where η is a congruence relation.

1. Introduction

An Abel-Grassmann's groupoid [5], abbreviated as an AG-groupoid, is a groupoid S whose elements satisfy the invertive law:

$$(ab)c = (cb)a, \quad \text{for all } a, b, c \in S.$$
 (1)

It is also called a *left almost semigroup* [3, 4]. In [1], the same structure is called a *left invertive groupoid*. It is a useful non-associative algebraic structure, midway between a groupoid and a commutative semigroup, with wide applications in the theory of flocks.

An AG-groupoid S is medial [3], that is,

$$(ab)(cd) = (ac)(bd), \quad \text{for all } a, b, c, d, \in S.$$
 (2)

If an AG-groupoid satisfies the following property, then it is called an AG^* -groupoid [5].

$$(ab)c = b(ca), \quad \text{for all } a, b, c \in S.$$
 (3)

Then also

$$(ab)c = b(ac), \quad \text{for all } a, b, c \in S.$$
 (4)

It is easy to see that the conditions (3) and (4) are equivalent. In an AG^* -groupoid S holds all permutation identities of a next type [6],

²⁰¹⁰ Mathematics Subject Classification: 20M10, 20N99

Keywords: AG-groupoid, left invertive law, medial law, congruence.

$$(x_1x_2)(x_3x_4) = (x_{\pi(1)}x_{\pi(2)})(x_{\pi(3)}x_{\pi(4)}), \tag{5}$$

where $\{\pi(1), \pi(2), \pi(3), \pi(4)\}$ means any permutation of the set $\{1, 2, 3, 4\}$. It means that if $S = S^2$, then S becomes a commutative semigroup. Many characteristics of a non-associative AG^{*}-groupoid are similar to a commutative semigroup.

As a consequence of (5), we would have $(x_1x_2x_3)^m = (x_{p(1)}x_{p(2)}x_{p(3)})^m$, where $\{p(1), p(2), p(3)\}$ means any permutation of the set $\{1, 2, 3\}$ and $m \ge 2$. The result can be generalized for finite numbers of elements of S.

2. The smallest separative congruences

In an AG^{*}-groupoid S, (ab)c = b(ac) holds for all $a, b, c \in S$. This leads us to (aa)a = a(aa) which implies that $a^2a = aa^2$. Hence it is easy to note that $a^{n+1}a = aa^{n+1}$, $a^ma^n = a^{m+n}$, $(a^m)^n = a^{mn}$, $(ab)^n = a^nb^n$, for all a, b and positive integers m and n.

We define a relation ρ on an AG-groupoid S as follows: $a\rho b$ if and only if there exists a positive integer n such that $ab^n = b^{n+1}$ and $ba^n = a^{n+1}$.

We define a relation σ on an AG-groupoid S as follows: $a\sigma b$ if and only if there exists a positive integer n such that $a^n b = a^{n+1}$ and $b^n a = b^{n+1}$.

A relation ρ on an AG-groupoid S is called separative if $ab\rho a^2$ and $ab\rho b^2$ imply that $a\rho b$.

The following lemma has been proved in [6].

Lemma 1. Let σ be a separative congruence on an AG^* -groupoid S, then for all $a, b \in S$ it follows that $ab\sigma ba$.

In the following two lemmas we have proved that the relations ρ and σ are commutative without using separativity.

Lemma 2. If S is an AG^* -groupoid, then $ab\rho ba$ for all a, b in S.

Proof. By using (5) and (2), we have, $(ab)(ba)^m = (ab)(b^m a^m) = (ab)(a^m b^m) = (aa^m)(bb^m) = (bb^m)(aa^m) = b^{m+1}a^{m+1} = (ba)^{m+1}$. Similarly $(ba)(ab)^m = (ab)^{m+1}$. Hence $ab\rho ba$.

Lemma 3. If S is an AG^* -groupoid, then $ab\sigma ba$ for all a, b in S.

Proof. By using (5), we have, $(ba)^n(ab) = (b^n a^n)(ab) = (b^n b)(a^n a) = b^{n+1}a^{n+1} = (ba)^{n+1}$. Similarly $(ab)^n(ba) = (ab)^{n+1}$. Hence $ab\sigma ba$.

The proofs of the following theorems are available in [6] and [5].

Theorem 1. $S \swarrow \rho$ is a maximal separative commutative image of an AG^* -groupoid S.

Theorem 2. $S \not\subset \sigma$ is a maximal separative commutative image of an AG^* -groupoid S.

Lemma 4. ρ is equivalent to σ for $m, n \ge 2$, on an AG^* -groupoid S.

Proof. Let $a\rho b$, then there exists a positive integer n such that $ab^n = b^{n+1}$ and $ba^n = a^{n+1}$. Now multiply b on both sides of $ab^n = b^{n+1}$, then using (1), we get $b^{n+1}b = (ab^n)b = b^{n+1}a$.

Similarly $ba^n = a^{n+1}$ implies that $a^{n+1}b = a^{n+2}$. Hence $a\sigma b$.

Conversely, assume that $a\sigma b$, then there exists a positive integer m such that $b^m a = b^{m+1}$ and $a^m b = a^{m+1}$. Assume that $m \ge 2$. Now multiply b on both sides of $b^m a = b^{m+1}$, then, using (3) and (5), we get

$$bb^{m+1} = b(b^m a) = (ab)b^m = (ab)(b^{m-1}b) = (ba)(b^{m-1}b) = a(b^m b) = ab^{m+1}.$$

Similarly $a^m b = a^{m+1}$ implies that $ba^{m+1} = a^{m+2}$. Hence $a\rho b$.

Theorem 3. If S is an AG^{*}-groupoid, then S/ρ is isomorphic to S/σ , for $m, n \ge 2$.

Proof. It follows from Lemma 4.

Remark 1. S/ρ is not isomorphic to S/σ for n = m = 1.

If S is an AG-groupoid then (ab)c = a(bc), is not generally true for all $a, b, c \in S$, that is $(Sx)S \neq S(xS)$, for some x in S.

The relations γ and δ be defined in S as follows:

 $a\gamma b$ if and only if there exists a positive integer n such that $b^n \in S(aS)$ and $a^n \in S(bS)$ for all a and b in S

 $a\delta b$ if and only if there exists a positive integer m such that $b^m \in (Sa)S$ and $a^m \in (Sb)S$ for all a and b in S.

Lemma 5. δ is equivalent to γ on an AG^* -groupoid S.

Proof. Let $a^n \in S(bS)$, then using (3) and (1), we get

$$a^{n+2} \in (S(bS))a^2 = ((bS)S)a^2 = (a((bS)S))a = (a(S^2b))a$$

= $((S^2a)b)a \subseteq (Sb)S.$

Similarly $b^n \in S(aS)$ implies that $b^{n+2} \in (Sa)S$.

Conversely, assume that $a^n \in (Sb)S$, using (1) and (5), we get,

$$a^{n+1} \in ((Sb)S)a = (aS)(Sb) = (aS)(bS) \subseteq S(bS).$$

Similarly $b^n \in (Sa)S$ implies that $b^{n+1} \in S(aS)$.

3. The semilattice decomposition

In an AG-groupoid S with left identity we have,

$$a(bc) = b(ac), \quad \text{for all } a, b, c \in S.$$
 (6)

The following law holds for an AG-groupoid with left identity,

$$(ab)(cd) = (dc)(ba), \quad \text{for all } a, b, c, d \in S.$$
 (7)

Also it is easy to see that if an AG-groupoid S contains left identity e, then SS = S and Se = S = eS.

In [2] the power of elements in an AG-groupoid has been defined as follows: $a^m = (...(((aa)a)a)...)a, (m-\text{times}).$

Here we begin with an example of an AG-groupoid.

Example 1. Let $S = \{1, 2, 3, 4\}$ and the binary operation " \cdot " be defined on S as follows:

·	1	2	3	4
1	3	4	1	2
2	2	3	4	1
3	1	2	3	4
4	4	1	2	3

Then clearly (S, \cdot) is an AG-groupoid with left identity 3.

From now, by S, we shall mean an AG-groupoid with left identity e. The following Lemma 6 and Theorems 4 - 8 are available in [2].

Lemma 6. If $a \in S$, then for every positive integer m,

 $\begin{array}{ll} (i) & a^m = a^{m-1}a = a^{m-3}a^3 = a^{m-5}a^5 = a^{m-7}a^7 = ..., \\ (ii) & a^m = a^2a^{m-2} = a^4a^{m-4} = a^6a^{m-6} = \end{array}$

Theorem 4. If $a \in S$, then $a^m a^{2n-1} = a^{m+2n-1}$, for all positive integers m and n.

Theorem 5. If $a \in S$, then $a^{2n}a^m = a^{2n+m}$, for all positive integers m and n.

Theorem 6. If $a \in S$, then $a^{2n} = a^{2n}e$, for every positive integer n.

Theorem 7. If $a \in S$, then $(a^m)^n = a^{mn}$, for all positive integers m and n.

Theorem 8. If each $a \in S$, then $(ab)^n = a^n b^n$, for every positive integer n.

Define a relation η on S as follows: $x\eta y$ if and only if there exists n such that $(xa)^n \in (ya)S$ and $(ya)^n \in (xa)S$.

Lemma 7. If $a, b \in S$, then $a^2b^2 = b^2a^2$.

Theorem 9. η is a semilattice congruence on S.

Proof. It is reflexive and symmetric. For transitivity let us suppose that $x\eta y$ and $y\eta z$, then there exist positive integers m, n such that $(xa)^n \in (ya)S$, $(ya)^n \in (xa)S$ and $(ya)^m \in (za)S$, $(za)^m \in (ya)S$. More specifically, there exist $t_1, t_2 \in S$, such that $(xa)^n = (ya)t_1$ and $(za)^m = (ya)t_2$. Now using Theorems 7, 8, (1) and (6), we have,

$$(xa)^{2mn} = ((xa)^n)^{2m} = ((ya)t_1)^{2m} = ((ya)^m)^2 t_1^{2m} \in ((za)S)^2 S, \text{ but}$$
$$((za)S)^2 S = ((za)S)(za)S))S = (S((za)S))((za)S)$$
$$= (za)(S((za)S))S) = (za)S.$$

Therefore $(xa)^{2mn} \in (za)S$. Similarly $(za)^{2mn} \in (xa)S$. Hence η is transitive.

To show compatibility, let $x\eta y$ then there exists a positive integer m such that $(xa)^m \in (ya)S$ and $(ya)^m \in (xa)S$. Hence there exists t_3 and t_4 such that $(xa)^m = (ya)t_3$ and $(ya)^m = (xa)t_4$. Now using Theorem 8, Lemma 7, (2), (7) and (6), we get

$$\begin{aligned} ((xz)a)^{2m} &= ((xz)^2a^2)^m = ((xz)^2(a^2e))^m = ((xa)^2z^2)^m = ((xa)z)^2)^m \\ &= ((xa)z)^m)^2 = ((xa)^mz^m)^2 = (((ya)t_3)z^m)^2 = ((ya)^2z^{2m})t_3^2 \\ &= ((yz^m)^2a^2)t_3^2 = ((y^2\left(z^{2m-1}z\right))a^2)t_3^2 = (((yz^{2m-1})(yz))a^2)t_3^2 \\ &= (((yz^{2m-1})a)((yz)a))t_3^2 = t_3^2(((yz)a)((yz^{2m-1})a)) \\ &= ((yz)a)\left(t_3^2((yz^{2m-1})a)\right) \in ((yz)a)S. \end{aligned}$$

Similarly we can show that $((yz)a)^{2m} \in ((xz)a) S$. Therefore $(xz)\eta(yz)$. Similarly we can show that η is left compatable. Hence η is a congruence relation. M. Khan

Next we shall show that η is a band congruence, by using Theorem 8, Lemma 7 and (1), we have $(xa)^2 = x^2a^2 = a^2x^2 = (aa)x^2 = (x^2a)a \in$ $(x^{2}a)$ S. Also using (6), (1), (2) and (7) we get $(x^{2}a)^{2} = (x^{2}a)(x^{2}a) =$ $x^{2}((x^{2}a)a) = x^{2}(a^{2}x^{2}) = x^{2}((ax)(ax)) = x^{2}((xa)(xa)) = (xa)(x^{2}(xa)) \in x^{2}(xa)(xa) = x^{2}(xa)(xa)(xa) = x^{2}(xa)(xa)(xa)(xa) = x^{2}(xa)(xa)(xa)(xa) = x^{2}(xa)(xa)(xa)(xa)(xa) = x^{2}(xa)(xa)(xa)(xa) = x^{2}(xa)(xa)(xa)(xa)(xa) =$ (xa)S. Therefore $x\eta x^2$, that is, $x_{\eta}^2 = x_{\eta}$. Hence $S \swarrow \eta$ is idempotent. Now let $x\eta y$ which implies that $x\eta x^2\eta xy$, therefore $x\eta xy$.

Let $x\eta y$ and using Lemma 7, we have

 $((xy) a)^2 = ((yx) a)^2 = ((yx) a) ((yx) a) \in ((yx) a) S.$ Similarly $((yx) a)^2 \in ((xy)a) S.$ Therefore $xy\eta yx$, that is, $x_\eta y_\eta = y_\eta x_\eta.$ Hence $S \neq \eta$ is a commutative AG-groupoid and so is commutative semigroup of idempotents.

Theorem 10. η is separative on S.

Proof. Let $x^2\eta xy$ and $xy\eta y^2$. Then we have $x^2\eta y^2$, but, $x^2\eta x$ and $y^2\eta y$. So, $x\eta x^2\eta y^2\eta y$. Therefore, $x\eta y$. Hence η is separative.

Theorem 11. S/η is a separative semilattice homomorphic image of S.

Proof. It follows from Theorems 9 and 10.

Remark 2. If every congruence on S is left zero, i.e., $ax\tau a$, then S/η is a maximal separative semilattice homomorphic image of S.

References

- [1] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Stud. 61 (1992), 101 - 106.
- [2] S. Kamran, Conditions for LA-semigroups to resemble associative structures, Ph.D. Thesis, Quaid-i-Azam University, Islamabad, 1993.
- [3] M. A. Kazim and M. Naseeruddin, On almost semigroups, The Alig. Bull. Math. 2 (1972), 1 - 7.
- [4] Q. Mushtaq and Q. Iqbal, Decomposition of a locally associative LA*semigroup*, Semigroup Forum **41** (1990), 154 - 164.
- [5] **Q. Mushtaq and M. Khan**, Decomposition of AG^* -groupoids, Quasigroups and Related Systems 15 (2007), 303 - 308.
- [6] N. Stevanović and P. V. Protić, Some decompositions on Abel-Grassmann's groupoids, PU. M. A. 8 (1997), 355 - 366.

Received January 05, 2010

Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan.

E-mail: madadmath@yahoo.com