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Decompositions of an Abel-Grassmann's groupoid

Madad Khan

Abstract. In this paper we have decomposed AG-groupoids. We have proved that
if S is an AG∗-groupoid, then S/ρ is isomorphic to S/σ, for n, m > 2, where ρ and
σ are congruence relations. Further it has shown that S/η is a separative semilattice
homomorphic image of an AG-groupoid S with left identity, where η is a congruence
relation.

1. Introduction

An Abel-Grassmann's groupoid [5], abbreviated as an AG-groupoid, is a
groupoid S whose elements satisfy the invertive law:

(ab)c = (cb)a, for all a, b, c ∈ S. (1)

It is also called a left almost semigroup [3, 4]. In [1], the same structure
is called a left invertive groupoid. It is a useful non-associative algebraic
structure, midway between a groupoid and a commutative semigroup, with
wide applications in the theory of �ocks.

An AG-groupoid S is medial [3], that is,

(ab)(cd) = (ac)(bd), for all a, b, c, d,∈ S. (2)

If an AG-groupoid satis�es the following property, then it is called an
AG∗-groupoid [5].

(ab)c = b(ca), for all a, b, c ∈ S. (3)

Then also
(ab)c = b(ac), for all a, b, c ∈ S. (4)

It is easy to see that the conditions (3) and (4) are equivalent. In an
AG∗-groupoid S holds all permutation identities of a next type [6],
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(x1x2)(x3x4) = (xπ(1)xπ(2))(xπ(3)xπ(4)), (5)

where {π(1), π(2), π(3), π(4)} means any permutation of the set {1, 2, 3, 4}.
It means that if S = S2, then S becomes a commutative semigroup. Many
characteristics of a non-associative AG∗-groupoid are similar to a commu-
tative semigroup.

As a consequence of (5), we would have (x1x2x3)m = (xp(1)xp(2)xp(3))m,
where {p(1), p(2), p(3)} means any permutation of the set {1, 2, 3} and
m > 2. The result can be generalized for �nite numbers of elements of S.

2. The smallest separative congruences

In an AG∗-groupoid S, (ab)c = b(ac) holds for all a, b, c ∈ S. This leads us
to (aa)a = a(aa) which implies that a2a = aa2. Hence it is easy to note
that an+1a = aan+1, aman = am+n, (am)n = amn, (ab)n = anbn, for all a, b
and positive integers m and n.

We de�ne a relation ρ on an AG-groupoid S as follows: aρb if and only
if there exists a positive integer n such that abn = bn+1 and ban = an+1.

We de�ne a relation σ on an AG-groupoid S as follows: aσb if and only
if there exists a positive integer n such that anb = an+1 and bna = bn+1.

A relation ρ on an AG-groupoid S is called separative if abρa2 and abρb2

imply that aρb.
The following lemma has been proved in [6].

Lemma 1. Let σ́ be a separative congruence on an AG∗-groupoid S, then
for all a, b ∈ S it follows that abσ́ba.

In the following two lemmas we have proved that the relations ρ and σ
are commutative without using separativity.

Lemma 2. If S is an AG∗-groupoid, then abρba for all a, b in S.

Proof. By using (5) and (2), we have, (ab)(ba)m = (ab)(bmam) = (ab)(ambm)
= (aam)(bbm) = (bbm)(aam) = bm+1am+1 = (ba)m+1. Similarly (ba)(ab)m =
(ab)m+1. Hence abρba.

Lemma 3. If S is an AG∗-groupoid, then abσba for all a, b in S.

Proof. By using (5), we have, (ba)n(ab) = (bnan)(ab) = (bnb)(ana) =
bn+1an+1 = (ba)n+1. Similarly (ab)n(ba) = (ab)n+1. Hence abσba.
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The proofs of the following theorems are available in [6] and [5].

Theorem 1. S�ρ is a maximal separative commutative image of an AG∗-
groupoid S.

Theorem 2. S�σ is a maximal separative commutative image of an AG∗-
groupoid S.

Lemma 4. ρ is equivalent to σ for m,n > 2, on an AG∗-groupoid S.

Proof. Let aρb, then there exists a positive integer n such that abn = bn+1

and ban = an+1. Now multiply b on both sides of abn = bn+1, then using
(1), we get bn+1b = (abn)b = bn+1a.

Similarly ban = an+1 implies that an+1b = an+2. Hence aσb.
Conversely, assume that aσb, then there exists a positive integer m such

that bma = bm+1 and amb = am+1. Assume that m > 2. Now multiply b
on both sides of bma = bm+1, then, using (3) and (5), we get

bbm+1 = b(bma) = (ab)bm = (ab)(bm−1b) = (ba)(bm−1b) = a(bmb) = abm+1.

Similarly amb = am+1 implies that bam+1 = am+2. Hence aρb.

Theorem 3. If S is an AG∗-groupoid, then S/ρ is isomorphic to S/σ, for
m,n > 2.

Proof. It follows from Lemma 4.

Remark 1. S/ρ is not isomorphic to S/σ for n = m = 1.

If S is an AG-groupoid then (ab)c = a(bc), is not generally true for all
a, b, c ∈ S, that is (Sx)S 6= S(xS), for some x in S.

The relations γ and δ be de�ned in S as follows:
aγb if and only if there exists a positive integer n such that bn ∈ S(aS)

and an ∈ S(bS) for all a and b in S
aδb if and only if there exists a positive integer m such that bm ∈ (Sa)S

and am ∈ (Sb)S for all a and b in S.

Lemma 5. δ is equivalent to γ on an AG∗-groupoid S.

Proof. Let an ∈ S(bS), then using (3) and (1), we get

an+2 ∈ (S(bS))a2 = ((bS)S)a2 = (a((bS)S))a = (a(S2b))a
= ((S2a)b)a ⊆ (Sb)S.
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Similarly bn ∈ S(aS) implies that bn+2 ∈ (Sa)S.
Conversely, assume that an ∈ (Sb)S, using (1) and (5), we get,

an+1 ∈ ((Sb)S)a = (aS)(Sb) = (aS)(bS) ⊆ S(bS).

Similarly bn ∈ (Sa)S implies that bn+1 ∈ S(aS).

3. The semilattice decomposition

In an AG-groupoid S with left identity we have,

a(bc) = b(ac), for all a, b, c ∈ S. (6)

The following law holds for an AG-groupoid with left identity,

(ab)(cd) = (dc)(ba), for all a, b, c, d ∈ S. (7)

Also it is easy to see that if an AG-groupoid S contains left identity e,
then SS = S and Se = S = eS.

In [2] the power of elements in an AG-groupoid has been de�ned as
follows: am = (...(((aa)a)a)...)a, (m-times).

Here we begin with an example of an AG-groupoid.

Example 1. Let S = {1, 2, 3, 4} and the binary operation �·� be de�ned
on S as follows:

· 1 2 3 4

1 3 4 1 2
2 2 3 4 1
3 1 2 3 4
4 4 1 2 3

Then clearly (S, ·) is an AG-groupoid with left identity 3. 2

From now, by S, we shall mean an AG-groupoid with left identity e.
The following Lemma 6 and Theorems 4− 8 are available in [2].

Lemma 6. If a ∈ S, then for every positive integer m,

(i) am = am−1a = am−3a3 = am−5a5 = am−7a7 = ...,
(ii) am = a2am−2 = a4am−4 = a6am−6 = ....

Theorem 4. If a ∈ S, then ama2n−1 = am+2n−1, for all positive integers

m and n.
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Theorem 5. If a ∈ S, then a2nam = a2n+m, for all positive integers m
and n.

Theorem 6. If a ∈ S, then a2n = a2ne, for every positive integer n.

Theorem 7. If a ∈ S, then (am)n = amn, for all positive integers m and n.

Theorem 8. If each a ∈ S, then (ab)n = anbn, for every positive integer n.

De�ne a relation η on S as follows: xηy if and only if there exists n such
that (xa)n ∈ (ya)S and (ya)n ∈ (xa)S.

Lemma 7. If a, b ∈ S, then a2b2 = b2a2.

Theorem 9. η is a semilattice congruence on S.

Proof. It is re�exive and symmetric. For transitivity let us suppose that xηy
and yηz, then there exist positive integers m, n such that (xa)n ∈ (ya)S,
(ya)n ∈ (xa)S and (ya)m ∈ (za)S, (za)m ∈ (ya)S. More speci�cally, there
exist t1, t2 ∈ S, such that (xa)n = (ya)t1 and (za)m = (ya)t2. Now using
Theorems 7, 8, (1) and (6), we have,

(xa)2mn = ((xa)n)2m = ((ya)t1)2m = ((ya)m)2t2m
1 ∈ ((za)S)2S, but

((za)S)2S = ((za)S)(za)S))S = (S((za)S))((za)S)
= (za)(S((za)S))S) = (za)S.

Therefore (xa)2mn ∈ (za)S. Similarly (za)2mn ∈ (xa)S. Hence η is transi-
tive.

To show compatibility, let xηy then there exists a positive integer m
such that (xa)m ∈ (ya)S and (ya)m ∈ (xa)S. Hence there exists t3 and
t4 such that (xa)m = (ya)t3 and (ya)m = (xa)t4. Now using Theorem 8,
Lemma 7, (2), (7) and (6), we get

((xz)a)2m = ((xz)2a2)m = ((xz)2(a2e))m = ((xa)2z2)m = ((xa)z)2)m

= ((xa)z)m)2 = ((xa)mzm)2 = (((ya)t3)zm)2 = ((ya)2z2m)t23
= ((yzm)2a2)t23 = (

(
y2

(
z2m−1z

))
a2)t23 = ((

(
yz2m−1)(yz

)
)a2)t23

= ((
(
yz2m−1)a)((yz

)
a))t23 = t23(((yz)a)((yz2m−1)a))

= ((yz)a)
(
t23((yz2m−1)a)

)
∈ ((yz) a) S.

Similarly we can show that ((yz)a)2m ∈ ((xz) a) S. Therefore (xz)η(yz).
Similarly we can show that η is left compatable. Hence η is a congruence
relation.
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Next we shall show that η is a band congruence, by using Theorem 8,
Lemma 7 and (1), we have (xa)2 = x2a2 = a2x2 = (aa) x2 =

(
x2a

)
a ∈(

x2a
)
S. Also using (6), (1), (2) and (7) we get

(
x2a

)2 =
(
x2a

) (
x2a

)
=

x2(
(
x2a

)
a) = x2(a2x2) = x2((ax)(ax)) = x2((xa)(xa)) = (xa)(x2(xa)) ∈

(xa)S. Therefore xηx2, that is, x2
η = xη. Hence S�η is idempotent. Now

let xηy which implies that xηx2ηxy, therefore xηxy.
Let xηy and using Lemma 7, we have

((xy) a)2 = ((yx) a)2 = ((yx) a) ((yx) a) ∈ ((yx) a) S.
Similarly ((yx) a)2 ∈ ((xy)a) S. Therefore xyηyx, that is, xηyη = yηxη.

Hence S�η is a commutative AG-groupoid and so is commutative semi-
group of idempotents.

Theorem 10. η is separative on S.

Proof. Let x2ηxy and xyηy2. Then we have x2ηy2, but, x2ηx and y2ηy.
So, xηx2ηy2ηy. Therefore, xηy. Hence η is separative.

Theorem 11. S/η is a separative semilattice homomorphic image of S.

Proof. It follows from Theorems 9 and 10.

Remark 2. If every congruence on S is left zero, i.e., axτa, then S/η is a

maximal separative semilattice homomorphic image of S.
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