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Intersection graphs of normal subgroups of groups

Sayyed Heidar Jafari and Nader Jafari Rad

Abstract. We give characterizations of groups whose intersection graphs of normal
subgroups are connected, complete, forests, or bipartite.

1. Introduction

Let F = {Si : i ∈ I} be an arbitrary family of sets. The intersection graph

G(F ) of F is the graph whose vertices are Si, i ∈ I and in which the vertices
Si and Sj (i, j ∈ I) are adjacent if and only if Si 6= Sj and Si ∩ Sj 6= ∅. It
is known that every simple graph is an intersection graph, ([4]).

It is interesting to study the intersection graphs G(F ) when the mem-
bers of F have an algebraic structure. Bosak [1] in 1964 studied graphs
of semigroups. Then Csákány and Pollák [2] in 1969 studied the graphs
of subgroups of a �nite group. Zelinka [6] in 1975 continued the work on
intersection graphs of nontrivial subgroups of �nite abelian groups.

Recall that a subgroup H of a group G is normal if g−1Hg = H for
every g ∈ G.

In this paper, we consider the intersection graph of normal subgroups
of a group. For a group G, the intersection graph of normal subgroups of

G, denoted by Γ(G), is the graph whose vertices are in a one-to-one corre-
spondence with proper nontrivial normal subgroups of G and two distinct
vertices are adjacent if and only if the corresponding normal subgroups of
G have a nontrivial (nonzero) intersection. Clearly Γ(G) does not exist if
and only if G is simple. Note that the intersection graph of a simple group
G is not de�ned, since a graph can not have an empty vertex set.

The graph theory and group theory notation terminology follow from
[5] and [3], respectively.

Throughout the paper, to simplify, for a normal subgroup N in a group
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G we use "the vertex N" instead of "the vertex in Γ(G) corresponded to
N". Also we use 0 as the trivial subgroup.

2. Connected and complete graphs

In this section we characterize all groups whose intersection graphs are
connected or complete. We �rst some graph theory and group theory def-
initions. A graph G is complete if there is an edge between every pair of
the vertices. We denote the complete graph on n vertices by Kn. A path

of length n in a graph G is an ordered list of distinct vertices v0, v1, . . . , vn

such that vi is adjacent to vi+1 for i = 1, 2, . . . , n − 1. We denote by
v0 − v1 − . . .− vn to such a path. A (u, v)-path is a path with endpoints u
and v. For vertices x and y of G, let d(x, y) be the length (the number of
edges) of a shortest path from x to y (d(x, x) = 0, and d(x, y) = ∞ if there
is no path between x and y). A graph G is connected if it has a (u, v)-path
for each pair u, v ∈ V (G).

Recall that a chain 0 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G of subgroup of a group
G is a composition seriers if Gi EGi+1 and Gi+1

Gi
is simple for i = 0, 1, . . . , n.

The length of the chain is n. If G has a composition series, then any two
compositione series of G have the same length, denoted by lc(G).

Lemma 2.1. Let G = A1 ×A2. If Ni E Ai for i = 1, 2, then N1 ×N2 E G.

The complement G of G is the graph with vertex set V (G) = V (G), and
E(G) = {uv : uv 6∈ E(G)}. The complement of a complete graph is the
null graph.

Lemma 2.2. Let G = N1 × N2, where N1, N2 are simple. Then Γ(G) is

null.

Proof. Since N1 and N2 are simple, then lc(G) = 2. Then any normal non-
trivial proper subgroup of G is both maximal and minimal. This completes
the proof.

Recall that a group G is a direct sum of two normal subgroups N1 and
N2 if N1 ∩N2 = 0 and N1N2 = G, where N1N2 = {xy : x ∈ N1, y ∈ N2}.

Theorem 2.3. Let G be a group. Then Γ(G) is disconnected if and only if

G = N1 ⊕N2, where N1 and N2 are simple normal subgroups of G.
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Proof. Let Γ(G) be disconnected. Then Γ(G) has at least two components.
Let N1 and N2 be two normal subgroups of G and the corresponding vertices
included in two di�erent components of Γ(G). Thus, N1 ∩ N2 = 0. Since
N1 ∪N2 ⊆ N1N2, we obtain N1N2 = G. We conclude that G = N1 ⊕N2.
Now we show that N1 and N2 are simple. If N1 is not simple, then N1 has
a proper nontrivial subgroup N . Then by Lemma 2.1, N EG. Now NN2 is
adjacent to both N1 and N2, a contradiction. Thus N1 is simple. Similarly,
N2 is simple.

The converse follows from Lemma 2.2.

The center Z(G) of a group G is the set of all elements x which xy = yx
for every y ∈ G. A chain G0 = 0 ⊆ G2 ⊆ . . . ⊆ Gt = G is a central series

of G if Gi
Gi−1

⊆ Z( G
Gi−1

) for i = 1, 2, . . . , t. A group G is nilpotent if G has
a central series.

Corollary 2.4. If G is nilpotent, then Γ(G) is disconnected if and only if

G ∼= Zp × Zq, where p, q are two non necessarily distinct primes.

Proof. Notice that any nilpotent simple group is in the form Zp, where p is
a prime.

The next theorem provides a characterization for all groups whose in-
tersection graphs are complete.

Note that a group G satis�es the minimal condition on normal subgroups
if any non-empty subset of normal subgroups of G contains a minimal ele-
ment.

Theorem 2.5. Let G be a non-simple group that satis�es the minimal con-

dition on normal subgroups. Then Γ(G) is complete if and only if G has a

unique minimal normal subgroup.

Proof. Let G be a non-simple group and G satis�es the minimal condition
on normal subgroups. Let Γ(G) be complete. Then G has at least one
minimal normal subgroup. Let N be a minimal normal subgroup of G. If
N1 is a minimal normal subgroup di�erent from N , then N ∩N1 = 0, since
0 ≤ N ∩N1 � N and N ∩N1 E G. This implies N1 and N are not adjacent
in Γ(G). This is a contradiction, since Γ(G) is complete. We deduce that
N is the unique minimal normal subgroup of G.

Conversely, suppose that G has a unique minimal normal subgroup say
N . Let K and L be two nontrivial normal subgroups of G. Since G satis-
�es the minimal condition on normal subgroups, K and L each contain a
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minimal normal subgroup. By assumption N ⊆ K ∩ L, and so K ∩ L 6= 0.
Thus the vertices K and L are adjacent in Γ(G). This means that Γ(G) is
complete.

Corollary 2.6. For n > 1, Γ(Zpn) is Kn−1. �

Example 2.7. The intersection graph of the generalized quaternion group
Qn, (of order 4n) is complete. Note that Qn has a unique minimal normal
subgroup of order 2.

Example 2.8. For any prime p, the intersection graph of Zp∞ = {m
n + Z :

m,n ∈ Z, n = pt for some t ∈ N∪{0}} is an in�nite complete graph. To see
this notice that all proper nontrivial normal subgroups of Zp∞ are in the
form 〈 1

pi + Z〉, where i > 1. However, the only minimal normal subgroup of

Zp∞ is 〈1
p + Z〉.

Corollary 2.9. For a �nite nilpotent group G, Γ(G) is complete if and only

if G is a p-group and Z(G) is cyclic.

Proof. Note that any subgroup of Z(G) of prime order is a minimal normal
subgroup of G, and a prime p is a prime factor of |G| if and only if p is a
prime factor of Z(G).

Example 2.10. If n is a power of 2, then the intersection graph of the
dihedral group Dn is complete. Notice that Dn is a 2-group and the center
of this group is of order 2.

3. Forests and bipartite graphs

In this section we characterize all groups whose intersection graphs are
forests or bipartite. We recall that a graph G is called bipartite if its vertex
set can be partitioned into two independent subsets X and Y such that
every edge of G has one endpoint in X and other endpoint in Y . We denote
by Cn the cycle with vertex set {v0, v1, . . . , vn} and edge set {vivi+1 : i =
1, 2, . . . , n− 1} ∪ {v1vn}.

Lemma 3.1. Let G = N1 ×N2, where N1, N2 are normal subgroups of G.

Then Γ(G) has a cycle C3 if and only if N1 or N2 is not simple.
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Proof. (=⇒) follows by Lemma 2.2.
(⇐=) Assume that N1 is not simple. Let N be a nontrivial proper normal
subgroup of N1. Then N × N2 − N × 0 − N1 × 0 − N × N2 is a cycle on
three vertices.

Lemma 3.2. If G is an indecomposable group of length 2, then Γ(G) is K1.

Proof. Since lc(G) = 2, G has at least one proper nontrivial normal sub-
group. By assumption any proper nontrivial normal subgroup of G is both
minimal and maximal. We show that G has exactly one proper nontriv-
ial normal subgroup. Suppose to the contrary that N1, N2 are two dis-
tinct proper nontrivial normal subgroups of G. Then N1 ∩ N2 = 0, and
G ∼= N1N2, a contradiction.

A group G is indecomposable if it is not isomorphic to direct product
of two nontrivial groups.

Lemma 3.3. Let G be an indecomposable group with lc(G) = 3. If G has

a unique maximal normal subgroup, then Γ(G) is a forest.

Proof. By assumption any normal subgroup of G is either minimal or max-
imal. Let N be the unique maximal normal subgroup of G. If there are two
distinct normal subgroups K1,K2 of G di�erent from N , then K1 and K2

are minimal, and so K1 ∩K2 = 0. This completes the proof.

We are now ready to characterize all groups whose intersection graphs
are forest.

Theorem 3.4. The intersection graph of a group G is a forest if and only

if one of the following holds:

(i) lc(G) = 2,
(ii) lc(G) = 3, and G is an indecomposable group with a unique maxi-

mal normal subgroup,

(iii) G ∼= M1 ×M2, where M1, M2 are simple groups.

Proof. (⇐) follows from Lemmas 3.3, 3.2, and 3.1.
(⇒): Let Γ(G) be a forest. We �rst show that G is a direct product of
at most two groups. Let G = M1 × M2 × . . . × Mk, where Mi is a group
for i = 1, 2, . . . , k. If k > 3, then H = M2 × M3 × . . . × Mk has at least
one normal proper nontrivial subgroup M2 × 0 × . . . × 0, and by Lemma
3.1 Γ(G) contains a cycle. This contradiction implies that k 6 2. If k = 2,
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then Lemma 3.1 implies (iii). Thus we may assume that k = 1. So G is
indecomposable.

We show that lc(G) 6 3. Suppose the contrary that lc(G) > 4. There
are three proper nontrivial normal subgroups N1, N2, N3 such that N1 ⊂
N2 ⊂ N3. Then N1, N2 and N3 form a cycle, a contradiction. So lc(G) 6 3.
If lc(G) = 2, then (i) holds. So we suppose that lc(G) = 3. We prove
that G has a unique normal maximal subgroup. Since lc(G) < ∞, G has a
maximal normal subgroup N . If N1 is another maximal normal subgroup
of G, then NN1 = G. Since G is indecomposable, N ∩ N1 6= 0. Then
N − N ∩ N1 − N1 − N forms a cycle in Γ(G). This contradiction implies
that N is the unique maximal normal subgroup of G.

Next we characterize all groups whose intersection graphs are bipartite.
In view of the proof of Theorem 3.4 any produced cycle has three vertices.
Also it is known that a graph G is bipartite if and only if any cycle of G
has even number of vertices. These lead to the following.

Corollary 3.5. The intersection graph Γ(G) of a group G is bipartite if

and only if Γ(G) is a forest.
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