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Once more about Brualdi's conjecture

Ivan Deriyenko

Abstract. A new algorithm for �nding quasi-complete or complete mappings for Latin
squares is presented. This algorithm is a modi�cation of the previous algorithm by this
author from 1988.

1. Introduction

In 1988 the author published the paper [3], where he proved the Brualdi's
conjecture. In 2005 P. J. Cameron and I. M. Wanless disproved in [1] the
author's proof and gave a counter-example. The author agrees with them
that his proof presented in [3] is not complete. However, the author does
not agree with the counter-example given in [1]. Problems seem to have
appeared because the paper was written in Russian, the algorithm was
described by the author in a complicated form and it was translated to
English without the author's consultancy and not quite correctly (as well
as the author's surname which should be Deriyenko, not Derienko). In the
present paper the author again describes the algorithm in a simpler form,
reveals the groundlessness of the counter-example given in the paper [1].
The way the algorithm works is presented on a concrete example.

The author does not claim that this algorithm gives the �nal con�r-
mation of the Brualdi's conjecture, but believes that his algorithm gives
signi�cant progress in solution to this problem.

2. Preliminaries

Q(·) always denotes a quasigroup, Q � a �nite set {1, 2, 3, . . . , n}, ϕ, ψ �
permutations of Q, SQ � the set of all permutations of Q. The composi-
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tion of permutations is de�ned as ϕψ(x) = ϕ(ψ(x)). Permutations will be
written as a composition of cycles; cycles will be separated by dots, e.g.

ϕ =
(

1 2 3 4 5 6
3 1 2 5 4 6

)
= (132.45.6.)

Any permutation ϕ of Q de�nes on a quasigroup Q(·) a mapping

ϕ(x) = x · ϕ(x).

By the range rg(ϕ) of a permutation ϕ ∈ SX we mean the number of
elements of the set ϕ(X) = {ϕ(x) : x ∈ X ⊆ Q}.

If |ϕ(X)| = |X|, then we say that ϕ is a complete mapping on the set
X. In this case ϕ is one-to-one. If |ϕ(X)| < |X|, then we say that ϕ is
incomplete on the set X. In particular, when |ϕ(X)| = |X| − 1 we say that
ϕ is a quasicomplete mapping.

The Brualdi's conjecture (see for example [2])
Every �nite quasigroup has a complete or quasicomplete mapping.

In other words, for every �nite quasigroup Q(·) there is a permutation
ϕ such that

|ϕ(Q)| > |Q| − 1.

Some results on the Brualdi's conjecture are known. For example:

• All groups of odd order have a complete mapping (see [2]).

• All symmetric groups Sn (n > 3) have a complete mapping (see [2]).

• A �nite group order n which has a cyclic Sylow 2-subgroup does not

possess a complete mapping (see [2]).

• If a quasigroup of order 4k + 2 has a subquasigroup of order 2k + 1,
then its multiplication table is without complete mappings (see [5]).

Some known approximations of the range t = rg(ϕ) of a permutation ϕ
of a quasigroup of order n.

a) t > [n−O(log2 n)] , (Sade, 1963, [6])

b) t >
[

2n+1
3

]
for n > 7, (Koksma, 1969, [4])

c) t > [n−
√
n] , (Woolbrighte, 1978, [9])

d) t >
[
n− 5, 5(lnn)2

]
. (Shor, 1982, [7])
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3. D-algorithm

In this section we describe the algorithm which gives the possibility to �nd
a quasicomplete or complete mapping for a given �nite quasigroup. But
�rst we prove some auxiliary results.

Let Q(·) be a quasigroup, X ⊆ Q, ϕ some �xed permutation of Q. By
the block Bk = {X,ϕ} of a quasigroup Q(·), where k = |X|, we mean the
subtable

Bk = X × ϕ(X)

contained in the multiplication table of Q(·). The set X is called a basis of
the block Bk. Note that the same block can be determined by two di�erent
permutations ϕ and ψ. This situation takes place when ϕ(X) = ψ(X). The
block Bk = {X,ϕ} is called complete if

|X| = |ϕ(X)|.

In this case, ϕ is one-to-one. If |ϕ(X)| < |X|, then the block Bk is called
incomplete. An incomplete block Bk is called quasicomplete, if

|ϕ(X)| = |X| − 1,

and a lopped block, if
|ϕ(X)| = |X| − 2. (1)

In such block there exists at least one element z∗ ∈ ϕ(X), called a
star-element, such that

|ϕ−1(z∗)| > 1.

The following fact is obvious.

Lemma 3.1. A lopped block has one or two star-elements. �

Let Z∗ be the set of all star-elements of a lopped block B = {X,ϕ} and
ϕ−1(Z∗) = S. If a lopped block B has one star-element z∗, then, obviously

S = ϕ−1(z∗) = {s1, s2, s3}.

If it has two star-elements z∗1 and z∗2 , then we have

S′ = ϕ−1(z∗1) = {s1, s2}, S′′ = ϕ−1(z∗2) = {s3, s4},

S′ ∪ S′′ = S, S′ ∩ S′′ = ∅.
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So, |S| = r, where r ∈ {3, 4}.
A transposition α = (si, sj) such that si, sj ∈ S if |S| = 3 and si ∈ S′,

sj ∈ S′′, if |S| = 4, is called a star-transposition. In the case |S| = 3 we have
three possibilities to build α, in the case |S| = 4 we have four possibilities.

Lemma 3.2. For a lopped block B = {X,ϕ} the following inequality is true:

rg(ϕα) > rg(ϕ)

Proof. Indeed, since ϕα(x) = ϕ(x) for x ∈ X \ S, we have ϕα(x) = ϕ(x)
for all x ∈ X \ S. Hence |ϕα(X \ S)| = |ϕ(X \ S)|. For si, sj ∈ S elements
ϕα(si) and ϕα(sj) may not be in ϕ(X). So, |ϕα(X)| > |ϕ(X)|.

Now, let us describe our D-algorithm which gives the possibility to �nd
a quasicomplete or complete mapping.

D-algorithm

Let Q(·) be a �xed quasigroup of order n > 3, Bk = {X,ϕ0} its arbitrary
lopped block, |X| = k.

Step 1.

(a) Determine the set S0 according to ϕ0.

Let S0 = {s01, s02, ..., s0r}, where r ∈ {3, 4}.
(b) Determine all star-transpositions α

(t)
1 = (s0i, s0j), 1 6 t 6 r.

(c) Calculate all r permutations ϕ
(t)
1 = ϕ0α

(t)
1 .

(d) If rg(ϕ(q)
1 ) > rg(ϕ0) for some ϕ

(q)
1 , 1 6 q 6 r, then the goal has

been achieved. If not, i.e.,

rg(ϕ(t)
1 ) = rg(ϕ0) (2)

holds for all 1 6 t 6 r, then we can take one of the star-transposi-

tions, say α1 = α
(t0)
1 , calculated in (b), put ϕ1 = ϕ0α1 and we state

in the same block Bk = {X,ϕ1} (with the same set X and ϕ1(X) =
ϕ0(X)), which in view of (2), also will be a lopped block.

Step j + 1.
First we start with j = 1.
(a) Determine the set Sj according to ϕj , where ϕj was calculated in

the previous step.

(b) Determine all star-transpositions α
(t)
j+1.

One of the transpositions α
(t)
j+1 will coincide with the transposition
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α
(t0)
j used in the previous step. Suppose that it is α

(r)
j+1. We exclude

it from further consideration because it returns us back to ϕj . So,

in the future we will consider only permutations of the form

ϕ
(t)
j+1 = ϕjα

(t)
j+1,

where t = 1, 2, . . . , r − 1, r = |Sj |.
(c) If rg(ϕ(t)

j+1)>rg(ϕj) for some ϕ
(t)
j+1, then the goal has been achieved.

If not, i.e.,

rg(ϕ(t)
j+1) = rg(ϕj) (3)

for all 1 6 t 6 r−1, then we can take one of the star-transpositions,

say αj+1 = α
(t0)
j+1, calculated in (b), put ϕj+1 = ϕjαj+1 and we state

in the same block Bk = {X,ϕj+1} (with the same set X such that

ϕj+1(X) = ϕj(X)), which in view of (3), also will be a lopped block.

Next we go back to the beginning of the Step j+1 replacing j by j+1,
i.e., we go back to (a) taking ϕj+1 instead of ϕj and so on, until we �nd a
permutation ϕm = ϕ0α1α2 . . . αm such that

rg(ϕm) > rg(ϕm−1). (4)

Now, we can go to the block of higher order.

Inequality (4) admits of two possibilities:

rg(ϕm)− rg(ϕm−1) = 2,

rg(ϕm)− rg(ϕm−1) = 1.

In the �rst case we can add to the setX = {x1, . . . , xk} two new elements
xk+1, xk+2 ∈ Q \X. In this way we obtain the set

X1 = X ∪ {xk+1, xk+2}.

In the second case we add only one element.

This set together with ϕm gives a new lopped block B′ = {X1, ϕm}.
We mark it as Bk = {X,ϕ0} and repeat the above algorithm for this block
starting from the Step 1.

After several repetitions, the algorithm stops. The goal will be achieved.
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4. Comments

This D-algorithm is not identical with our old algorithm described in [3].
These algorithms have common principles, but they are signi�cantly di�er-
ent. In our old algorithm, each step, starting from the second is uniquely
determined. Only in the �rst step, we have several possibilities to select the
initial transposition α1. In our D-algorithm on each step we have two or
three possibilities to select the star-transposition αj .

In [1] is given the counter-example to the work of our old algorithm.
This counter-example shows that our old algorithm can cause a return to the
beginning of the procedure. The author agrees with this counter-example,
but he do not think that it is a "fatal error" (see [8]) because in each return
to the beginning, we can choose a new value of α1 and repeat the whole
procedure. Then we get di�erent results. This algorithm can be repeated
in such a way six or eight times.

Our new D-algorithm gives even more possibilities. In this algorithm,
in every step the transposition αj can be chosen in two or three ways. This
algorithm can be returned to the start many times and after that we can
many times change the way of it works.

The author tested this algorithm on many examples and in each case he
received a positive solution. He received a positive solution also in the case
of quasigroups of large orders.

The author understands that it is not a complete proof of the Brualdi's
conjecture, but if we can show that this D-algorithm gives the possibility to
"look" (k−2)2+1 cells from among k2 cells of a block Bk, then it will be the
proof of the Brualdi's conjecture or at least proof that our this algorithm
always leads to the goal.

5. Counter-example

The counter-example to our old algorithm was given in [1]. This counter-
example is built on "the partial Latin square of order 15". We complete this
Latin square and present it below. Elements calculated in [1] are marked
here.
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10 1 3 9 6 7 14 2 15 5 8 11 12 4 13
1 15 2 14 3 12 7 4 6 9 10 8 11 13 5
2 13 14 4 7 6 5 10 1 11 15 3 8 9 3
3 4 1 13 14 15 6 5 8 2 9 12 7 10 11
4 6 11 1 12 8 15 7 13 10 5 9 2 14 3
5 3 12 15 4 11 13 6 9 1 2 14 10 8 7
6 5 4 7 9 3 2 11 10 8 1 13 14 12 15
8 11 13 10 15 14 12 1 4 6 7 2 5 3 9
7 9 8 5 1 4 10 3 2 12 14 15 13 11 6
9 10 15 11 2 1 8 13 5 3 12 7 4 6 14
11 14 6 12 5 2 1 9 7 13 4 10 3 15 8
12 8 9 2 13 10 3 14 11 7 6 5 15 1 4
13 7 10 3 8 9 4 12 14 15 11 1 6 5 2
14 2 5 8 11 13 9 15 12 4 3 6 1 7 10
15 12 7 6 10 5 11 8 3 14 13 4 9 2 1

Let us analyze the work of the algorithm using this counter-example.

Step 1.

We start with the identity permutation ϕ0 = ε. In this case

ϕ0 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 15 14 13 12 11 2∗ 1∗ 2∗ 3 4 5 6 7 1∗

)
,

Z∗
0 = {1∗, 2∗}, ϕ−1

0 (1∗) = {8, 15} = S′
0, ϕ−1

0 (2∗) = {7, 9} = S′′
0 . Thus

rg(ϕ0) = 13.
Since S = S′ ∪ S′′ = {7, 8, 9, 15}, we can choose x0 in four ways. For

each selected x0 we have two possibilities to build a star-transposition α.
Hence, we have eight ways to do the �rst step.

We we select x0 = 8. This element will be �xed for this block in whole
our procedure. In the next block another element will be selected and �xed.

For x0 = 8 we have two star-transpositions:

α
(1)
1 = (8, 15) and α

(2)
1 = (8, 9).

Let us choose the second transposition α1 = (8, 9). Then

ϕ1 = ϕ0α1 = εα1 = (8, 9).
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Step 2.

Now we have

ϕ1 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 15 14 13 12 11 2 4∗ 3∗ 3∗ 4∗ 5 6 7 1

)
,

Z∗
1 = {3∗, 4∗}, ϕ−1

1 (3∗) = {9, 10} = S′
1, ϕ−1

1 (4∗) = {8, 1} = S′′
1 which

means that rg(ϕ1) = 13.
Since x0 = 8 ∈ S′′

1 , the second element of a star-transposition α2 should
be in S′

1. From the fact that α2 6= α1, we obtain

α2 = (8, 10).

Hence ϕ2 = ϕ1α2 = (8, 9)(8, 10) = (8 10 9.).
Step 3.

ϕ2 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 15 14 13 12 11 2 6∗ 3 5∗ 4 5∗ 6∗ 7 1

)
,

Z∗
2 = {5∗, 6∗}, ϕ−1

2 (5∗) = {10, 12} = S′
2, ϕ−1

2 (6∗) = {8, 13} = S′′
2 . Thus

rg(ϕ2) = 13.
Then α3 = (8, 12) and ϕ3 = ϕ2α3 = (8 12 10 9.).

Step 4.

ϕ3 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 15 14 13 12 11 2∗ 2∗ 3 5 4 7∗ 6 7∗ 1

)
,

Z∗
3 = {2∗, 7∗}, ϕ−1

3 (2∗) = {7, 8} = S′
3, ϕ−1

3 (7∗) = {12, 14} = S′′
3 . Hence

rg(ϕ3) = 13.
Then α4 = (8, 14) and ϕ4 = ϕ3α4 = (8 14 12 10 9.) and so on.

Continuing this procedure we obtain ϕ48 = ϕ0, which means that we
return to the start. After that we have seven possibilities to choose α1.
Now we again take α1 = (8, 9), but in this case we select x0 = 9 as a �xed
element.

New step 1.

ϕ1 = ϕ0α1 = εα1 = (8, 9),

ϕ1 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 15 14 13 12 11 2 4∗ 3∗ 3∗ 4∗ 5 6 7 1

)
,
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Z∗
1 = {3∗, 4∗}, ϕ−1

1 (3∗) = {9, 10} = S′
1, ϕ−1

1 (4∗) = {8, 11} = S′′
1 . Thus

rg(ϕ1) = 13.
Then α2 = (9, 11) and ϕ2 = ϕ1α2 = (8 9 11.).

New step 2.

ϕ2 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 15 14∗ 13 12 11 2 4 14∗ 3 9 5 6 7 1

)
,

rg(ϕ2) = 14.

The goal has been achieved. ϕ2 is a quasicomplete mapping.

Remark 5.1. Note that in our old algorithm every step, beginning from
the second one, was uniquely determined. In our new algorithm at each
stage we have two or three possibilities to perform the next step. Number
of possibilities depends on the number of elements of the set S.

Acknowledgments. The author highly values attention paid by Ian Wan-
less and Peter Cameron to the paper [3] and appreciates the e�orts to study
this paper written in Russian. The author looks forward to further fruitful
cooperation.

Special thanks are due to Wieslaw A. Dudek for helping us writing the
�nal version of the D-algorithm.

Added after publication (February 24, 2011). The citation [6] on page
128 is incorrect. The approximation t > [n−O(log2 n)] was obtained by
P. Hatami and P. W. Shor in the article A lower bound for the length of a

partial transversal in Latin square, J. Comb. Theory, Ser. A, 115 (2008),
1103− 1113.
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