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Topological LA-groups and LA-rings

Tariq Shah and Kamran Yousaf

Abstract. We introduce the notion of topological LA-groups and topological LA-rings
which are some generalizations of topological groups and topological rings respectively.
We extend some characterizations of topological groups and rings to topological LA-
groups and topological LA-rings.

1. Introduction
Kazim and Naseerudin [4] have introduced the concept of LA-semigroups,
i.e., groupoids whose elements satisfy the left invertive law: (ab)c = (cb)a.
Such groupoids also are known as Abel-Grassmann's groupoids or AG-
groupoids (see [2]). Many interesting results on LA-semigroups one can
�nd in [5], [6] and [7]. Some authors studied also left almost groups (LA-
groups), i.e., LA-semigroups in which for every a ∈ G there exists e ∈ G
such that ea = a and a−1 ∈ G such that a−1a = e. LA-rings are studied by
T. Shah and I. Rehman (cf. [9]).

In this paper we introduced the notion of topological LA-groups and
topological LA-rings. Furthermore we established some of properties re-
garding products, quotient and subgroups of a topological LA-group. In
case of topological LA-ring we prove that the product of any family of
topological LA-rings is again a topological LA-ring and an LA-subring of a
topological LA-ring is again a topological LA-ring.

2. Preliminaries
A topological group is a group (G, ∗) with a topology τ such that the group
operations G×G → G : (x, y) → x∗y and G → G : x → x−1 are continuous
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or the map G × G → G : (x, y) → x ∗ y−1 is continuous. For topological
group one may consult [3] and [8].

De�nition 2.1. A non empty set G is called a topological LA-group if
(a) (G, ∗) is an LA-group,
(b) (G, τ) is a topological space,
(c) LA-group operation ∗ : G×G → G and the inversion function

i : G → G de�ned by i(x) = x−1 are continuous.

The condition (c) can be replaced by
(c)′ The mapping (x, y) → x ∗ y−1 of G×G onto G is continuous.

Example 2.2. Let G be an LA-group. It is easy to verify that the con-
dition (a) is true in the discrete (respectively indiscrete) topology on G.
Consequently G is an LA-topological group. In this manner any LA-group
may be considered as a topological LA-group in the discrete (respectively
indiscrete) topology. ¤

The following theorem is a generalization of Proposition 3.2 from [3].

Theorem 2.3. Let G be a topological LA-group. Then
(1) the right translation ra : x → xa is homeomorphism,
(2) the left translation la : x → ax is homeomorphism and
(3) the inversion mapping i : x → x−1 is homeomorphism.

Proof. (1) Let x = y. This implies xa = ya which shows that ra(x) = ra(y),
which shows that ra is well-de�ned.

Let ra(x) = ra(y). This implies xa = ya. Since G is cancellative, so
x = y, so ra is one-to-one.

For each x ∈ G there exist xa−1 ∈ G such that ra(xa−1) = (xa−1)a =
(aa−1)x = ex = x implies that ra is onto. Thus ra is bijective.

Let U be any neighbourhood of ra(x) = xa. Since G is a topological
LA-group, so the mapping ∗ : G×G → G is continuous and for any neigh-
bourhood U of ra(x) = xa there exists neighbourhoods V and W of x and
a (respectively) such that V ∗W ⊆ U.

Now ra(V ) = V ∗ a ⊆ V ∗W. So, ra(V ) ⊆ V ∗W ⊆ U. Thus ra(V ) ⊆ U.
Since x is an arbitrary element of G, the mapping ra is continuous.

Let U be any neighbourhood of r−1
a (x) = xa−1. Since G is a topological

LA-group, the mapping ∗ : G × G → G is continuous. Hence for any
neighbourhood U of r−1

a (x) = xa−1 there exists neighbourhoods V and W
of x and a−1 respectively such that V ∗W ⊆ U.
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Now as r−1
a (V ) = V ∗ a−1 ⊆ V ∗ W, we have r−1

a (V ) ⊆ V ∗ W ⊆ U.
Thus r−1

a (V ) ⊆ U. As x is an arbitrary element of G, the mapping r−1
a is

continuous. Hence ra is a homeomorphism.
(2) The proof is analogous to (1).
(3) Let i(x) = i(y). Then x−1 = y−1. Now e = yy−1 = yx−1, which

implies ex = (yx−1)x and therefore by left invertive law we have x =
(xx−1)y = ey = y and hence i is one-to-one.

For each x ∈ G there exist x−1 ∈ G such that i(x−1) = (x−1)−1 = x, so
i is onto.

Since G is a topological LA-group, i is continuous. Also i−1(x) = x−1

is continuous because i is one-to-one.

Remark 2.4. The mappings x 7→ a(xa−1), x 7→ a−1(xa), x 7→ (ax)a−1,
x 7→ (a−1x)a are homeomorphisms as composition of two homeomorphisms
x 7→ xa(xa−1) and x 7→ ax(a−1x).

Remark 2.5. In topological groups we obtain only one homeomorphism
axa−1, but in the case of topological LA-groups we obtain distinct homeo-
morphisms a(xa−1), a−1(xa), (ax)a−1 etc.

Corollary 2.6. Let E be open and F be closed in a topological LA-group
G and A be any subset of G. Then for a ∈ G

(1) aE, Ea, E−1 are open,
(2) aF , Fa, F−1 are closed and AE, EA are open.

Proof. The mappings in Theorem2.3 are homeomorphisms, so (1) is obvious.
Since AE = ∪a∈AaE, EA = ∪a∈AEa, and the union of open sets is

open, therefore (2) is established.

3. Topological LA-groups
In this section we de�ne topological LA-groups and give some characteriza-
tions of such LA-groups.

3.1. Construction of a new topological LA-group from old
We can always construct a new topological LA-group from old ones. A
product of topological LA-groups permits us the construction of a new topo-
logical LA-group from the given ones and also permits the reduction of the
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study of relatively complicated topological LA-groups to the investigation
of their simple constituents.

The following theorem is a generalization of Proposition 3.12 from [3].

Theorem 3.1. Let A be an index set. For each α ∈ A, let Gα be a topo-
logical LA-group. Then G =

∏
α∈A

Gα endow with product topology, is also a
topological LA-group.

Proof. To prove that G is a topological LA-group, we have to show that the
onto mapping ∗ : G×G → G ; (x, y) 7→ xy−1 is continuous.

Let W be a neighbourhood of xy−1 in G, then there exists an open
set U such that xy−1 ∈ U ⊆ W , where U =

∏
α∈A Uα with Uα is an

open neighbourhood of xαy−1
α in Gα. Since (xα, yα) 7→ xαy−1

α is continuous
for each α ∈ A, so there exists neighbourhoods Vαi , V ′−1

αi
of xαi and yαi

respectively such that VαiV
′−1
αi

⊆ Uαifor each 1 6 i 6 n. Now let V =∏
α∈A

Vα and V ′ =
∏

α∈A

V ′
α, then V and V ′ are neighbourhoods of x and y

respectively. This means V V ′−1 =
∏

(VαiV
′−1
αi

) ⊆ ∏
Uα = U ⊆ W. This

proves the theorem.

Now we give the following de�nition.

De�nition 3.2. Let G be a topological LA-group and H be an LA-subgroup
of G. Then H endow with relative topology, is a topological LA-group called
topological LA-subgroup of G.

Theorem 3.3. An LA-subgroup H of a topological LA-group G is a topo-
logical LA-subgroup.

Proof. Let G be a topological LA-group and H be an LA-subgroup of G.
Then H is endowed with relative topology induced from G. Since the map-
ping (x, y) 7→ xy−1 of G × G onto G is continuous, so its restriction from
H × H onto H is also continuous. Let a, b be two elements of H and
let ab−1 = c. Every neighbourhood W ′ of the element c in H can be ob-
tained as the intersection with H of some neighbourhood W of c in G, i.e.,
W ′ = H ∩ W . Since G is a topological LA-group, so there exists neigh-
bourhoods U and V of a, b such that UV −1 ⊆ W . Now U ′ = H ∩ U and
V ′ = H ∩ V are the relative neighbourhoods of a and b in H. Thus we
have U ′V ′−1 ⊆ W and also U ′V ′−1 ⊆ H. Hence U ′V ′−1 ⊆ W ′ and H is a
topological LA-subgroup.
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3.2. Topological factor LA-groups
Let G be a topological LA-group and H is an LA-subgroup of G. Then G/H
denotes the set of all cosets Ha, a ∈ G. Let ϕ be a canonical mapping of G
onto G/H. With the help of ϕ we can de�ne a topology on G/H as follows:
A subset A′ of G/H is open if and only if ϕ−1(A′) is an open subset of G.
This topology in G/H is called the quotient topology and G/H, endowed
with quotient topology, is called the quotient space.

The following theorem is a generalization of Proposition 3.8 from [3].

Theorem 3.4. Let G be a topological LA-group and H be an LA-subgroup
of G. Let G/H be the quotient space endowed with the quotient topology and
ϕ be the canonical mapping of G onto G/H, then

(1) ϕ is homomorphism,
(2) ϕ is continuous,
(3) ϕ is open.

Proof. (1) Let x, y ∈ G, then ϕ(xy) = H(xy) = (HH)(xy) = (Hx)(Hy) =
ϕ(x)ϕ(y).

(2) ϕ is continuous by the de�nition of quotient topology.
(3) Let U be open in G. We have to prove that ϕ(U) is open in G/H.

That is, ϕ−1(ϕ(U)) is open in G. But ϕ−1(ϕ(U)) = {g : g ∈ uH for some
u ∈ U} = UH, which is open. Hence ϕ is open.

The following theorem is a generalization of Proposition 3.10(ii) from
[3].

Theorem 3.5. Let G be a topological LA-group and H be an LA-subgroup
of G. Then G/H endowed with the quotient topology, is a topological LA-
group.

Proof. To prove that G/H is a topological LA-group we have to show that
the mapping ∗ : (x′, y′) → x′y′−1 of G/H ×G/H onto G/H is continuous.

Let W be an open neighbourhood of x′y′−1, where x′ = xH and y′ = yH
and x, y ∈ G. Clearly ϕ−1(W ) is open in G and x′y′−1 ∈ ϕ−1(W ).

Since G is a topological LA-group, so there exists open sets U and V such
that x ∈ U, y−1 ∈ V −1 and xy−1 ∈ UV −1 ⊆ ϕ−1(W ). Since by Theorem
3.4 ϕ is continuous and open homomorphism so x′y′−1 ∈ ϕ(U)(ϕ(V ))−1 ⊂
ϕ(ϕ−1(W )), which implies x′y′−1 ∈ ϕ(U)(ϕ(V ))−1 ⊂ W.

As by theorem 3.4 ϕ is open, so ϕ(U) and ϕ((V ))−1 = ϕ(V −1) are open
because U and V are open. Thus G/H is a topological LA-group.
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De�nition 3.6. A topological LA-group G is said to be homogeneous if for
all x, y ∈ G, there exists a homeomorphism f : G → G such that f(x) = y.

The following theorem is a generalization of Proposition 3.14 from [3].

Theorem 3.7. Let G be a topological LA group and H be a subgroup of G.
Then the topological LA-group G/H is a homogeneous space.

Proof. Let x′ = Hx, y′ = Hy and g ∈ G be such that g = yx−1. De�ne the
mapping fg : x′ = Hx 7→ H(gx) for all x′ ∈ G/H.

Let Hx = Hy, then g(Hx) = g(Hy) implies H(gx) = H(gy) and hence
fg(Hx) = fg(Hy). Thus the mapping is well-de�ned.

Let fg(Hx) = fg(Hy). Then H(gx) = H(gy) and g(Hx) = g(Hy).
Hence Hx = Hy and so fg is one-to-one.

For each x′ = Hx ∈ G/H there exists H{(g−1e)x} ∈ G/H such that

fg(H{(g−1e)x}) = H{g((g−1e)x)} = H{g((xe)g−1)}
= H{(xe)gg−1} = H{(xe)e} = H{(ee)x} = Hx,

which shows that fg is onto.
Let U be any neighbourhood of fg(Hx) = H(gx). Since G/H is a

topological LA-group, so the mapping ∗ : G/H×G/H → G/H is continuous
and thus for any neighbourhood U of fg(x) = H(gx) = Hg∗Hx there exists
neighbourhoods V and W of Hg and Hx respectively such that V ∗W ⊆ U.

Now fg(V ) = fg(HS) = H(gS), so fg(V ) = Hg ∗HS implies fg(V ) ⊆
W ∗V ⊆ U. As x is an arbitrary element of G, we see that fg is continuous.

Now let U be any neighbourhood of f−1
g (Hx) = H(g−1e)x = H(g−1e)∗

Hx. Since G/H is a topological LA-group, so for any neighbourhood U
of f−1

g (Hx) there exists neighbourhoods V and W of H(g−1e) and Hx
respectively such that V ∗W ⊆ U.

Now f−1
g (W ) = f−1

g (HS) so f−1
g (W ) = H{(g−1e)S} implies f−1

g (W ) =
H(g−1e) ∗HS and this means f−1

g (W ) ⊆ V ∗W ⇒ f−1
g (W ) ⊆ V ∗W ⊆ U.

Hence f−1
g (W ) ⊆ U and therefore f−1

g is continuous. Thus we concluded
that f−1

g is a homeomorphism.
Clearly
fg(x′) = fg(Hx) = H(gx) = H((yx−1)x) = H((xx−1)y) = Hy = y′,

which shows that G/H is a homogeneous space.

The following theorem is a generalization of Proposition 3.4 from [3].
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Theorem 3.8. For a topological LA-group G, the following statements are
equivalent:

(1) G is a T0−space,
(2) G is a T1−space,
(3) G is a T2−space,
(4) ∩U = {e},where U is a fundamental system of neighbourhood of the

identity e.

Proof. (1) ⇒ (2) Let x, y ∈ G, x 6= y. (1) implies that for at least one
of x and y, there exists an open neighbourhood P of x such that y /∈ P.
Since x ∈ P, so xx−1 ∈ Px−1, i.e., e ∈ Px−1 and Px−1 = V is an open
neighbourhood of e.

Now V ∩ V −1 = Q is an open symmetric neighbourhood of e, so e ∈ Q,
which implies ey ∈ Qy. Hence y ∈ Qy. Now x /∈ Qy because if x ∈ Qy
then x−1 ∈ y−1Q (Q = Q−1) and x−1 ∈ y−1Q ⊂ y−1V x−1 ⊂ y−1(Px−1) =
P (y−1x−1) but this implies that

e = x−1x ∈ (P (y−1x−1))x = (y−1x−1)(Px).

Thus, by medial law,

e ∈ (y−1P )(x−1x) = (y−1P )e = (eP )y−1 = Py−1.

Hence,
y = ey ∈ (Py−1)y = (yy−1)P = eP = P,

which is a contradiction.
(2) ⇒ (3) Let x, y ∈ G, x 6= y. By (2) G is a T1−space, so {x} is a

closed set and therefore P = G\{x} is an open neighbourhood of y, thus
y ∈ P, which implies y−1y ∈ y−1P, this means e ∈ y−1P and hence y−1P
is an open neighbourhood of e by Theorem 2.3.

Let V be an open neighbourhood of e such that V V −1 ⊂ y−1P. Then
V y is an open neighbourhood of y. Let Q = G\V y, an open set and x ∈ Q.

Otherwise x ∈ V y and hence by the de�nition of closure V y ∩ V x 6= ∅.
But this shows that x ∈ (ye)(V V −1) ⊂ (ye)(y−1P ), which implies that

x ∈ (yy−1)(eP ) = eP and hence x ∈ P, a contradiction. Clearly Q∩V y = ∅
gives y ∈ V y and so x ∈ Q. This proves (3).

(3) ⇒ (4) Let x ∈ U for each U in {U} and assume x 6= e. Then (3)
shows that there exists a neighbourhood P of e such that x /∈ P. But then
there exists a U in {U} such that U ⊂ P. We have a contradiction that
x ∈ U ⊂ P and x /∈ P. Hence x = e and (4) is satis�ed.
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(4) ⇒ (1) Let x 6= y. Then xy−1 6= e and hence by (4) there exists a
U in {U} such that xy−1 /∈ U. Thus Uy being a neighbourhood of y and
x /∈ Uy. This proves (1).

4. Topological LA-rings
The following de�nition of a topological ring is taken from [1].
De�nition 4.1. A topological ring is a ring R with a topology τ such that
the additive group of the ring R is topological group in topology τ and the
one of the following equivalent conditions is satis�ed:

(a) the maps R×R → R : (x, y) → xy is continuous, (multiplication
condition (MC)),

(b) for any two elements x, y ∈ R and arbitrary neighborhood U of the
element xy there exist neighborhoods V and W of elements x and
y respectively such that V W ⊂ U.

De�nition 4.2. An LA-ring (R, +, · is called a topological LA-ring if
(a) (R, +) is an LA-group,
(b) (R, τ) is a topological space,
(c) the algebraic operations de�ned in R are continuous in topological

space R, i.e., the mappings (a, b) → a−b and (a, b) → a ·b of the topological
space R × R to the topological space R are continuous. In greater detail:
for arbitrary elements a, b ∈ R and for arbitrary neighbourhoods W and
W ′ of the elements a− b and ab respectively, there exist neighbourhoods U
and V of a and b such that U − V ⊂ W and UV ⊂ W ′.

Example 4.3. By the virtue of above de�nition the additive LA-group of
any topological LA-ring is a topological LA-group. Conversely, if R is a
topological LA-group, then R could be transformed into the LA-ring by the
de�nition of zero multiplication on R, i.e., setting a.b = 0 for any a, b ∈ R.
In doing so, the condition (MC) is ful�lled, and hence R is transformed into
a topological LA-ring. In this manner every LA-group may be considered
as a topological LA-ring with zero multiplication.
Theorem 4.4. Let R be a topological LA-ring, then for each r ∈ R, the
functions φr : x → rx and ψr : x → xr are continuous from R to R.

Proof. Let U be any neighbourhood of ϕr(x) = xr. Since R is a topological
LA-ring so the mapping ∗ : R×R → R is continuous so for any neighbour-
hood U of ϕr(x) = xr there exists neighbourhoods V and W of x and r
respectively such that V ∗W ⊆ U
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Now
ϕr(V ) = V ∗ r ⊆ V ∗W ⊆ U.

As x is an arbitrary element of R, so ϕr is continuous.
Similarly we can prove theorem for ψr.

Theorem 4.5. Let A be an index set. For each α ∈ A, let Rα be a topo-
logical LA-ring. Then R =

∏
α∈A

Rα endow with the product topology, is also
a topological LA-ring.

Proof. As R is a LA-ring so (R, +) is a topological group, so ∗ : (x, y) →
x− y is continuous. We have to check the continuity of : (x, y) → xy only.

Let W be a neighbourhood of xy in R, then there exists an open set
U such that xy ∈ U ⊆ W, where U =

∏
α∈A Uα and Uα is an open neigh-

bourhood of xαyα in Rα. Since (xα, yα) → xαyα is continuous for each
α ∈ A, so there exists neighbourhoods Vαi,V

′−1
αi

of xαi and yαi respectively
such that VαiV

′−1
αi

⊆ Uαi for each i = 1, 2, . . . , n. Now let V =
∏

α∈A

Vα

and V ′ =
∏

α∈A

V ′
α, then V and V ′ are neighbourhoods of x, y respectively.

This implies V V ′−1 =
∏

(VαiV
′−1
αi

) ⊆ ∏
Uα = U ⊆ W. This proves the

theorem.

We �nish our work by the following

Theorem 4.6. An LA-subring S of a topological LA-ring R is a topological
LA-subring.

Proof. Let R be a topological LA-ring and S be an algebraic LA-subring
of R. Then S is endowed with relative topology induced from R. Since the
mappings : (x, y) → x− y and (x, y) → xy of R×R are continuous so their
restriction from S × S into S is also continuous.

Let a, b be two elements of S and let ab−1 = c. Every neighbourhood W ′

of the element c in H can be obtained as the intersection with S of some
neighbourhood W of c in G. i.e., W ′ = H∩W . Since R is a topological LA-
ring so there exists neighbourhoods U and V of a, b such that UV −1 ⊆ W .
Now U ′ = S∩U and V ′ = S∩V are the relative neighbourhoods of a and b
in S. Thus we have U ′V ′−1 ⊆ W and also U ′V ′−1 ⊆ H. Hence U ′V ′−1 ⊆ W ′.
Hence S is a topological LA-subring.
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