
Quasigroups and Related Systems 18 (2010), 83− 94

Fast signatures based on non-cyclic �nite groups

Nikolay A. Moldovyan

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. Finite rings of the m-dimension vectors over the ground �eld are de�ned
with the vector multiplication operations of di�erent types. Non-cyclic multiplicative
groups of the rings in particular cases possess structure described in terms of the multi-
dimension cyclicity. The vector �nite groups relating to such cases are applied to design
fast digital signature algorithms.

1. Introduction
The cyclic �nite groups of di�erent types are widely used as primitives of
the digital signature (DS) algorithms [7, 9]. A group is called cyclic, if
there exists a group element G (called generator) such that all elements of
the group can be generated as di�erent powers of G. Usually in the DS
schemes based on di�culty of the discrete logarithm problem (DLP) the
public key is computed as a group element Y = Gx, where G is the ω(G)
order group element, and x is the secret key (x < ω(G)). Security of the DS
scheme is provided by the necessary requirement that the value ω contains
a large prime factor q such that q > 2160 [2] and by some other require-
ments depending on type of the used group, the �rst requirement being a
common one for all cyclic groups used as primitive of the DS algorithms.
The upper security boundary is limited by the di�culty of the DLP. There
are known the general-purpose methods for solving the DLP, which work
in any type cyclic group [2]. Such methods have exponential complexity
W = O(

√
q) group operations, where O(·) is the order notation, and q is

the largest prime divisor of the group order. If q > 2160, then solving the
DLP with the general-purpose methods are computationally infeasible. For

2000 Mathematics Subject Classi�cation: 11G20, 11T71
Keywords: digital signatures, non-cyclic groups, vector �nite groups
Supported by the Russian Foundation for Basic Research grant # 08-07-00096-a.



84 N. A. Moldovyan

some �nite groups there are known specialized methods having subexponen-
tial di�culty. Such groups are also used in some DS schemes, however they
do not provide su�ciently high performance of the signature generation and
veri�cation procedures.

At present �nite groups of the elliptic curve (EC) points represent the
most e�cient primitive of the DS algorithms. In the DS schemes there are
used properly de�ned ECs for which the most e�cient methods for solving
the DLP are the general-purpose ones. Therefore it is su�cient to use the
EC de�ned over �nite �elds (FFs) having the order size 160 to 320 bits [1].
Due to su�ciently small size of the FF order the DS algorithms based on
ECs [3] provide the high performance.

Unfortunately the performance of the EC-based DS algorithms is lim-
ited by the inversion operation in the underlying FF, which is included in
the procedure implementing the operation of adding the EC points. To
overcome this limitation the �nite groups of vectors over the ground FFs
have been proposed as primitives of the DS algorithms [5]. For detailed
justi�cation of this proposal it is required to consider the structure of the
vector �nite groups (VFGs) that in general case are not cyclic. Only in
some particular cases the multiplicative VFGs have cyclic structure. Such
cases relates to formation of the vector �nite �elds (VFFs) [4] that have
been proposed to de�ne ECs providing higher performance of the EC-based
DS algorithms. Essentially higher performance is expected from the DS
based on non-cyclic VFGs.

Present paper presents the results on investigation of the structure of the
non-cyclic VFGs and describes peculiarities of designing the DS algorithm
based on computations in the VFGs. Section 2 provides description of the
�nite rings of the m-dimension vectors and de�nes a class of the vector
multiplication operations. Section 3 provides general description of the
structure of the vector �nite rings in terms of the multi-dimension cyclicity
(MDC). The proposed formulas describing the group structure have been
con�rmed by computational experiments. Section 4 explains the features
of designing the DS algorithms based on VFGs possessing the MDC and
presents new DS schemes and a rough performance comparison with the
well known DS algorithms. Section 5 concludes the paper.
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2. Finite rings of the m-dimension vectors
Finite rings of m-dimension vectors are de�ned over the ground �eld GF (p),
where p is a prime. Suppose e, i, . . . , w be some m formal basis vectors
and a, b, z ∈ GF (p), where p > 3, are coordinates. The set of vectors

ae + bi + · · ·+ zw

is a �nite m-dimension vector space. A vector can be also represented as
a set of its coordinates (a, b, . . . , z). The terms τv, where τ ∈ GF (pd)
and v ∈ {e, i, . . . ,w}, are called components of the vector. The addition
and multiplication operations over the vectors are de�ned as follows. The
addition of two vectors (a, b, . . . , z) and (a′, b′, . . . , z′) is de�ned via addition
of the coordinates corresponding to the same basis vector accordingly to the
following formula

(a, b, . . . , z) + (a′, b′, . . . , z′) = (a + a′, b + b′, . . . , z + z′).

The multiplication of two vectors ae+bi+· · ·+zw and a′e+b′i+· · ·+z′w
is de�ned as pair-wise multiplication of all components of the vectors in
correspondence with the following formula
(ae+bi+· · ·+zw)◦(a′e+b′i+· · ·+z′w) = aa′e◦e+ba′i◦e+· · ·+za′w◦e+

+ab′e ◦ i + bb′i ◦ i + · · ·+ cb′w ◦ i + . . .
· · ·+ az′e ◦w + bz′i ◦w + · · ·+ zz′w ◦w,

where ◦ denotes the vector multiplication operation. In the �nal expression
each product of two basis vectors is to be replaced by some basis vector v
or by a vector τv (τ ∈ GF (p)) in accordance with some given table called
basis-vector multiplication table (BVMT). There are possible di�erent types
of the BVMTs, but in this paper there is used the BVMT of some general
type proposed in [6] (see Table 1). For arbitrary values m and τ Table 1
de�nes the vector multiplication that is a commutative and associative op-
eration. Di�erent values τ de�ne di�erent types of the vector multiplication
operation that de�nes the structure of the multiplicative group of the vector
�nite ring (VFR).

◦ −→e −→ı −→
j

−→
k −→u . . . −→w−→e e i j k u . . . w−→ı i εj εk εu ε . . . εw εe−→

j j εk εu ε . . . εw εe i−→
k k εu ε . . . εw εe i j−→u u ε . . . εw εe i j k

. . . . . . εw εe i j k u−→w w εe i j k u . . .
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Table 1. The basis-vector multiplication table of the general type [6].

3. Cyclicity of the multiplicative group of VFR
The �xed vector addition operation is used in the VFR described in Section 2.
On the contrary, for the given values m and p di�erent types of the multiplication
operation are speci�ed with di�erent values of the "expansion" coe�cient τ . In this
section the structure of the multiplicative group is considered. There are possible
a variety of di�erent structures of the VFGs depending on selection of the value
τ . The simplest example is provided by the example of the VFFs that are formed
in the cases m|p− 1, while usingle values τ such that the equation xm = τ has no
solution in the �eld GF (p). In such cases the VFGs have the cyclic structure and
the VFG order is equal to Ω = pm − 1. Majority of other cases (for some values
m there are possible speci�c conditions of the VFFs formation) the VFGs possess
non-cyclic structure. The known example are VFGs formed in the case m|p − 1,
while using value τ such that the equation xm = τ has a solution in the �eld
GF (p). In the last case for m = 2 and m = 3 the order of the VFGs is expressed
by the following formula derived theoretically [6] Ω = (p− 1)m. However the last
formula does not explain the VFG structure. In the case of non-cyclic VFGs the
computational experiments appear to be required to reveal the structure. The
computational experiments have shown that the last formula is correct for all
values m and the structure of such non-cyclic groups can be described in terms
of MDC. The experiment have also shown in all cases the multiplicative VFGs
possess structure described in terms of the MDC, except the case of the VFFs
while the VFGs possess one-dimension cyclicity.

3.1. Multi-dimension cyclicity of the VFG structure
Let us consider a hypothetic group Γµ of the order Ω(Γµ) = qµ, where q is a prime,
in which there exist µ elements G1, G2, . . . , Gµ possessing the same order q, such
that any group element G ∈ Γµ can be represented as product

∏µ
i=1 Gsi

i for some
set of powers (s1, s2, . . . , sµ) and none of these elements, for example, Gj can be
expressed as product

∏ µ
i=1;i 6=j Gsi

i .
Non-cyclic groups produced by the generator system in which all generators

have the same order value are called in this paper groups possessing the structure
with multi-dimension cyclicity (MDC). The value µ is called dimension of the MDC
of the group structure. The term MDC is used to describe the VFG structures
since it corresponds well to the fact that the elements of the considered groups are
vectors, besides the term re�ects the fact that in all cases the multiplicative groups
of the VFRs can be described from a single position. Indeed, the cyclic structure
of the multiplicative groups of the VFFs can be considered as a particular case of
MDC, i.e., as one-dimension cyclicity.

Since the element order divides the group order, the minimum order of elements
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Gi is value ω(Gi) = q. It is easy to show that the basis {G1, G2, . . . , Gµ} generates
ω(G1)ω(G2) . . . ω(Gµ) > qµ di�erent elements of the group Γµ. It is evident that
Ω(Γµ) > ω(G1)ω(G2) . . . ω(Gµ). The number of di�erent elements in the group
Γµ is equal to Ω(Γµ) = qµ, therefore the last inequality holds, only if all elements
of the basis have the minimum possible order q. The last means that all elements
of the group, except the unity element, have the same order q.

Suppose the group Γµ contains NΩ′=q di�erent cyclic subgroups. Each of such
subgroups contains q− 1 non-unity elements, therefore NΩ′=q(q− 1) = qµ− 1 and

NΩ′=q =
qµ − 1
q − 1

. (1)

There exist few real examples of such groups. Among vector �nite groups we
have the example relating to selection of the parameters m = 2, p = 3, and τ = 1
that de�ne the fourth order group containing three elements (0,1), (2,0), and (0,2)
of the second order and the unity elements (1,0). Other example are provided by
some subgroups in the groups considered below. It is a typical case that VFGs
contains subgroups like Γµ. (Among the VFRs de�ned over the �nite polynomial
�elds GF (pd), where d > 2, we have some more examples of the VFGs possessing
the MDC structure and containing only elements having the same prime order.)

Note that in some group of the order qd, where q is a prime, the dimension µ
of the MDC satis�es the condition µ 6 d. Let us consider a hypothetic group Γtµ

of the order Ω = qd, where d = tµ. Suppose the group Γtµ contains µ independent
elements of the order ω = qt, composing a basis {G1, G2, . . . , Gµ}, then we have
the following facts.

1. The group Γtµ contains µ exponentially independent elements of the order
ω = qj for each of the values j = 1, 2, . . . t.

2. For all values j = 1, 2, . . . t the group Γt contains Nω=qj elements G of the
order ω(G) = qj , which is equal to the value

Nω=qj = qµ(j−1)(qµ − 1). (2)

3. For each of the values j = 1, 2, . . . t the group Γt contains NΩ′=qj di�erent
cyclic subgroups of the order Ω′ = qj , which is equal to the value

NΩ′=qj = q(µ−1)(j−1) q
µ − 1
q − 1

. (3)

The VFGs provide su�cient number of real examples of groups of the Γtµ type,
which relates to the cases m = 2, 4, . . . 2d (d = 1, 2, 3 . . . ) and primes p having the
structure p = 2k + 1 (k = 4, 8, 16). Table 2 presents experimental results.
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m = 2; p = 257; τ = 169 m = 4; p = 257; τ = 81 m = 8; p = 17; τ = 1
ω Nω ω Nω ω Nω

2 3 2 15 2 255
4 12 4 240 4 65280
8 48 8 3840 8 16711680

16 192 16 61440 16 4278190080
32 768 32 983040 - -
64 3072 64 15728640 - -
128 12288 128 251658240 - -
256 49152 256 4026531840 - -

Table 2. Some particular variants of the vector �nite groups of order (p− 1)m.

3.2. Vector groups having multi-dimension cyclicity structure
Let us consider a hypothetic group Γ of the order Ω =

(∏z
i=1 qti

i

)µ, where qi is a
prime for all i ∈ {1, 2, . . . z}. Suppose for all i = 1, 2, . . . z the group Γ contains µ
exponentially independent elements of the order ω = qti

i , which compose the basis
{G(i)

1 , G
(i)
2 , . . . , G

(i)
µ }. Such assumption leads to the following facts.

1. The group Γ contains µ exponentially independent elements of the order
ω =

∏z
i=1 qti

i , that generate all of the group elements.
2. The group Γ contains µ exponentially independent elements of the order

ω = D, where D is a divisor of the group order.
3. For each divisor D of the group order such that D = q

t′i
i , where i ∈

{1, 2, . . . z} and 0 6 t′i 6 ti, the group Γ contains the number of elements N
ω=q

t′
i

i

of the order D, which is equal to

N
ω=q

t′
i

i

= q
µ(t′i−1)
i (qµ

i − 1). (4)

4. For each divisor D of the group order such that D =
∏z′

i=1 q
t′i
i , where

i = 1, 2, . . . z and 1 6 t′i 6 ti, the group Γ contains the number of elements Nω=D

of the order D, which is equal to

Nω=D =
z′∏

i=1

q
µ(t′i−1)
i (qµ

i − 1). (5)

5. For each divisor D|Ω of the group order such that D =
∏z′

i=1 q
t′i
i , where

i = 1, 2, . . . z and 1 6 t′i 6 ti, the group Γ contains the number NΩ′=D of cyclic
subgroups of the order Ω′ = D, which equals to

NΩ′=D =
z′∏

i=1

q
(µ−1)(t′i−1)
i

qµ
i − 1
qi − 1

. (6)
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Among di�erent types of the multiplicative groups of VFRs the VFGs possess-
ing the MDC structure are more attractive as primitive of the DS algorithms, some
other particular types of the non-cyclic VFGs also represent interest for public key
cryptography though. In the VFGs possessing the MDC for each prime divisor
qi of the group order Ω there exist subgroups of the orders Ω′ =

(
q

t′i
i

)µ

, where
t′i = 1, 2, . . . ti, which possess the MDC structure with the same dimension value
µ. In particular for some large prime q there exists the qµ-order subgroup all ele-
ments of which have the same order q, except the unity element. Such subgroups
play important role in the DS algorithms proposed below. Examples con�rming
the facts and formulas presented above are given in the next section.

4. Experimental con�rmation
For values m = 2 and m = 3 in the case m|p−1 it has been theoretically derived [6]
the following formula

Ω = (p− 1)m. (7)
In all our experiments relating to the case p > m and m|p− 1 the group order is
described with formula (7), if the coe�cient τ is the mth power of some element
x ∈ GF (p). To determine the real structure of the VFGs we have computed the
order of all elements in the VFGs involved in experiments (multiplying the group
elements G many times, the order ω(G) has been calculated). Experimental results
are presented in Table 3. The results are completely described by formulas (4) and
(5).

m = 10; p = 11; τ = 1 m = 7; p = 29; τ = 28 m = 6; p = 19; τ = 1
ω Nω ω Nω ω Nω

2 1023 2 127 2 63
5 9765624 4 16256 3 728
10 9990233352 7 823542 6 45864
- - 14 104589834 9 530712
- - 28 13387498752 18 33434856

Table 3. Structure of the VFGs possessing the order Ω = (p− 1)µ,
where µ = m (Nω is the number of the group elements having the order ω).

Thus, performing many di�erent computational experiments in all cases, when
τ can be represented as the mth degree of some element of the ground �eld GF (p)
and m|p−1, we have get the vector group structure that is described in terms of the
MDC with µ = m. The experiments have also revealed di�erent other conditions
under which there are formed the VFG possessing the MDC structure described
by formula (5). From the results for the case m|p−1 the following formula for the
VFG order have been derived

Ω = (pν − 1)µ, (8)
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where µ is the dimension of MDC, µ|m, ν = m/µ, which describes the VFG
structure when the parameter τ is such that the equation τ = xµ has solutions in
GF (p), and the equation τ = xµδ has no solutions in GF (p) for each divisor δ|ν,
δ > 1. Examples of the VFGs relating to such cases are presented in Table 4. In
the next section formula (8) is used to de�ne the VFGs suitable to implementation
of the DS algorithms. In Table 4 the formulas describing the group order Ω for
cases m 6 8 have been obtained from experiments on �nding the order ω for each
group element, like experiments used to obtain results of Table 3. For cases m > 8
the formulas have been preliminary composed and then experimentally proved.

The cases µ = 1 relates to VFRs that are extension FFs GF (p), when the
VFGs are cyclic. Such VFFs are very attractive for application in EC-based DS
algorithms [4] due to su�ciently fast multiplication operation and possibility of the
e�cient parallelization of the vector multiplication. In this paper only non-cyclic
VFGs (µ > 2) are discussed as primitives of the DS algorithms.

m, p, τ Ω µ m, p, τ Ω µ

10, 11, 4
(
p5 − 1

)µ 2 24, 1201, 729 (p− 1)µ 24
10, 11, 10

(
p2 − 1

)µ 5 24, 1201, 49
(
p2 − 1

)µ 12
9, 13, 1

(
p3 − 1

)µ 3 24, 1201, 16
(
p3 − 1

)µ 8
9, 19, 1 (p− 1)µ 9 24, 1201, 19

(
p4 − 1

)µ 6
8, 17, 4

(
p2 − 1

)µ 4 24, 1201, 61
(
p6 − 1

)µ 4
8, 5, 4

(
p4 − 1

)µ 2 24, 1201, 23
(
p8 − 1

)µ 3
6, 19, 8

(
p2 − 1

)µ 3 24, 1201, 289
(
p12 − 1

)µ 2
6, 19, 16

(
p3 − 1

)µ 2 24, 1201, 101
(
p24 − 1

)µ 1
42, 421, 67 (p− 1)µ 42 42, 421, 29

(
p2 − 1

)µ 21
42, 421, 277

(
p3 − 1

)µ 14 42, 421, 73
(
p6 − 1

)µ 7
42, 421, 7

(
p7 − 1

)µ 6 42, 421, 19
(
p14 − 1

)µ 3
42, 421, 79

(
p21 − 1

)µ 2 42, 421, 2
(
p42 − 1

)µ 1
Table 4. Analytic description of the experimental results on investigation of the VFG

structure (cases µ 6 m).

5. Designing the DS algorithms based on the VFGs
In the standard case of the DS algorithm design based on cyclic groups the group
order Ω should contain a large prime divisor q|Ω such that g > 2160 [2, 7]. However
taking into account the MDC of the VFG structure it can be shown that for
VFGs the standard cryptographic requirement is essentially excessive. If the prime
divisor q of the VFG order relates to the MDC subgroup of the order qµ, then
the general security requirement can be speci�ed as q > 2160/µ, where µ is the
dimension of the cyclicity of the group structure. However to make use of this
essential correction some changes in the design of the DS algorithms should be
introduced.
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First, the public key is to be generated as µ vectors Y1, Y2, ..., Yµ in accordance
with the following formula

Yi = Gx1i
1 ◦Gx2i

2 · · · ◦Gxµi
µ =

µ∏

j=1

G
xji

j ,

where ω(Gi) = q ∀i ∈ {1, 2, . . . , µ}, G1, G2, . . . Gµ is the generator system of
the subgroup having the order qµ, and the set {xji} is the secret key (i, j ∈
{1, 2, . . . , µ}). Computation of the secret key de�nes a problem of �nding multi-
dimension logarithm at the basis G1, G2, . . . Gµ. This problem can be solved using
some modi�cations of the general-purpose methods for �nding discrete logarithms
in cyclic groups [2]. The di�culty of such modi�ed methods is O(

√
qµ) exponenti-

ation operations in the used VFG, therefore the minimum security (corresponding
to di�culty of breaking the DS algorithm, which is equal to 280 exponentiation
operations) can be provided with the condition |p| ≈ |q| > 160/µ bits.

Second, the DS scheme should be modi�ed in accordance with the modi�ed
public key. All parts of the public key (Y1, Y2, . . . , Yµ) should be used in the DS
veri�cation procedure. The following DS schemes takes into account the mentioned
modi�cations.

Generation of the DS corresponding to the message M is performed as follows:
1. Select µ random values k1, k2, . . . , kµ such that for all i = 1, 2, . . . , µ it

holds ki < q.
2. Calculate vector R = (r1, r2, . . . , rm) = Gk1

1 ◦Gk2
2 · · · ◦G

kµ
µ .

3. Using some speci�ed hash function Fh (di�erent examples see in [2]) cal-
culate the hash value h from the message to which the vector R is concatenated:
h = Fh(M‖r1‖r2‖ . . . ‖rm).

4. Represent the value h as some concatenation of µ elements: h = h1‖h2‖...‖hµ

and compute the second element of the DS as the set of µ values {s1, s2, . . . sµ}:

sj = tj +
i=µ∑

i=1

xjihi mod q,

where j = 1, 2, . . . µ.
Veri�cation of the DS corresponding to the message M is performed as follows:
1. Compute the vector R′ = Y −h1

1 ◦ Y −h2
2 · · · ◦ Y

−hµ
µ ◦Gs1

1 ◦Gs2
2 · · · ◦G

sµ
m .

2. Compute the value h′ = Fh(M‖r′1‖r′2‖ . . . ‖r′m).
3. Compare the values h′ and h. If h′ = h, then the DS is valid.
There are possible di�erent variants of the values m and µ that provide fast

generation and veri�cation of the DS, the values µ = 2 (for m = 2, 6, 10, 14 and
22) and µ = 3 (for m = 3, 9, 15, and 21) are the most interesting for practical
applications though. Values µ > 3 lead to comparatively large size of the public
key. The values m corresponding to µ = 2 and µ = 3, which are indicated in
brackets, provides possibility to select the values p providing faster procedures for
DS generation and veri�cation.
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Let us consider some particular variants of the DS scheme described above.
Example 1. m = 6, p = 3112656501667, and τ = 3229543499124319810093519.
These parameters de�ne formation of the VFG having the order Ω =

(
p5 − 1

)µ

and dimension of the cyclicity µ = 2. The largest prime divisor of Ω is q =
3229543499124319810093519. The subgroup of the order qµ is generated by the
following pair of the q-order vectors
G1 =

(2461700031734, 482034324490, 156834270570, 1324447431161, 2740416991343, 1220868764310),
G2 =

(2538171306005, 283399862632, 192519072375, 891592729264, 760409728893, 2653262071023).

Example 2. m = 10, p = 14152871, and τ = 9. These parameters de�ne forma-
tion of the VFG having the order Ω =

(
p5 − 1

)µ and dimension of the cyclicity
µ = 2. The largest prime divisor of Ω is q = 8024319624114910583796004541. The
subgroup of the order qµ is generated by the following pair of the q-order vectors
G1 =

(6283401, 4259768, 6598451, 3709261, 8444571, 82053, 6685050, 10303674, 9996976, 10471343),
G2 =

(1523659, 5587678, 3962704, 8694664, 3478222, 2379965, 4305324, 860257, 4524271, 8938870).

Example 3. m = 14, p = 8093, and τ = 9. These parameters de�ne formation
of the VFG having the order Ω =

(
p7 − 1

)µ and dimension of the cyclicity µ = 2.
The largest prime divisor of Ω is q = 40143281293465596069349. The subgroup of
the order qµ is generated by the following pair of the q-order vectors

G1 = (6324, 3153, 1575, 5913, 3701, 5665, 3268, 5171, 4816, 1661, 1926, 4203, 678, 4187),

G2 = (5992, 4360, 4442, 2341, 6950, 2525, 921, 1565, 2120, 3592, 6668, 248, 399, 6214).

Example 4. m = 2, p = 6917891042381689626702539, and τ = 232 = 4294967296.
These parameters de�ne formation of the VFG having the order Ω = (p− 1)µ and
dimension of the cyclicity µ = 2.

The largest prime divisor of Ω is q = 3458945521190844813351269. The sub-
group of the order qµ is generated by the following pair of the q-order vectors

G1 = (3, 0), G2 = (1, 5).

Example 5. m = 3, p = 275352871102525507, and τ = 224 = 16777216.
These parameters de�ne formation of the VFG having the order Ω = (p− 1)µ

and dimension of the cyclicity µ = 3. The largest prime divisor of Ω is q =
45892145183754251. The subgroup of the order qµ is generated by the following
three of the q-order vectors

G1 = (21, 0, 0),
G2 = (217941963753891151, 239089986535147009, 109899378481277797),

G3 = (158846680700738144, 28761476487049241, 144620654759850124).

Example 6. m = 4, p = 11780627332037, and τ = 224 = 16777216. These param-
eters de�ne formation of the VFG having the order Ω = (p− 1)µ and dimension
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of the cyclicity µ = 2. The largest prime divisor of Ω is q = 2945156833009. The
subgroup of the order qµ is generated by the following four of the q-order vectors

G1 = (17, 0, 0, 0),
G2 = (872502753155, 6114625095567, 4745624761713, 4690788873292),
G3 = (11269823703275, 5374465446130, 6550130852697, 7523825764505),
G4 = (9996654190922, 7883587942021, 9910063088313, 272051995111).

The computational di�culty of the DS generation and veri�cation procedures
is approximately equal to di�culty of three modulo exponentiation operations
like gs mod n, where |s| = µ|q| and |n| = m|p|. As it has been shown above in
the case m = µ the characteristic of the �eld GF (p) can be selected such that
|p| ≈ |q| > 160/µ bits. This provides high performance of the proposed algorithm.
Comparison with the performance (in arbitrary unites) of some widely used DS
algorithms is presented in Table 6, where the performance is estimated for the size
of the DS parameters providing supposed security of 280 group operations.

DS scheme DL problem |p|, Public key DS size, Rate,
in . . . bits size, bits bits arb. un.

GOST 1994 [10] GF (p) 1024 1024 1024 1
DSA [11] GF (p) 1024 1024 320 3
Shnorr [8] GF (p) 1024 1024 320 3
GOST 2001 [10] EC 256 512 512 6
ECDSA [11] EC 160 320 320 10
Proposed (m = 6; µ = 2) VFG 42 512 320 70
Proposed (m = 10; µ = 2) VFG 21 420 320 80
Proposed (m = µ = 2) VFG 82 328 320 100
Proposed (m = µ = 3) VFG 56 504 320 100
Proposed (m = µ = 4) VFG 43 688 320 100

Table 5. Rough performance comparison of di�erent DS schemes based on di�culty of
the DL problem (EC denotes elliptic curve de�ned over GF (p)).

6. Conclusion
Using specially introduced BVNTs to de�ne the vector multiplication operation in
the �nite vector spaces over the �nite ground �elds leads to formation of the VFRs
containing the multiplicative group possessing the MDC structure. The MDC is
a common feature for such VFGs. The dimension of the structure cyclicity µ is
equal to some divisor of the vector dimension m. Using di�erent values of the
expansion coe�cient τ that is the �exible parameter of the used BVMT di�erent
values µ are assigned. The particular case of the VFFs formation corresponds to
value µ = 1.

The VFGs relating to cases µ = 2 and µ = 3 are very attractive as primitives
for fast DS algorithms. It has been proposed a DS scheme in which some design
features have been applied taking into account the MDC structure of the VFGs.
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Several concrete VFGs suitable to application in the frame of the proposed DS
scheme have been described. An algorithm for �nding two-dimension algorithms
has been described and used to estimate the security of the DS algorithms based
on computations in FVGs possessing the structure with two-dimension cyclicity.
Performance comparison with the known fast DS schemes shows the proposed ones
provides signi�cantly higher rate. Besides, the vector multiplication operation
suite well to parallelization therefore the propose DS scheme is signi�cantly more
e�cient in parallelized hardware implementation than other known DS algorithms,
especially when the VFGs with su�ciently large value m are applied.
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