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Polynomial functions on the units of Z2n

Smile Markovski, Zoran �uni¢ and Danilo Gligoroski

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. Polynomial functions on the group of units Qn of the ring Z2n are con-
sidered. A �nite set of reduced polynomials RPn in Z[x] that induces the polynomial
functions on Qn is determined. Each polynomial function on Qn is induced by a unique
reduced polynomial - the reduction being made using a suitable ideal in Z[x]. The set
of reduced polynomials forms a multiplicative 2-group. The obtained results are used
to e�ciently construct families of exponential cardinality of, so called, huge k-ary quasi-
groups, which are useful in the design of various types of cryptographic primitives. Along
the way we provide a new (and simpler) proof of a result of Rivest characterizing the
permutational polynomials on Z2n .

1. Introduction
The need for new kinds of computational methods and devices is growing
as a result of the possibility of their application in the new developing
�elds in mathematics and computer science, in particular cryptography and
coding theory. Finite �elds and integer quotient rings are traditionally used
for such computational needs. The integer quotient rings are somewhat
disadvantaged due to the fact that their nonzero multiplicative structure
does not form a group (except when they happen to be �elds). The structure
of the ring of polynomials over rings, and especially over integer quotient
rings, has been under investigation for almost a century. Let us mention
here chronologically some of the authors: Kempner (1921) [9], Nöbauer
(1965) [13], Keller and Olson (1968) [7], Mullen and Stevens (1984) [12],
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Rivest (2001) [15], Bandini (2002) [1], Zhang (2004) [18]. We emphasize
that the paper of Rivest [15] is closest to our work and his results can be
inferred from ours (see Section 5).

We consider its group of units Qn in Z2n and de�ne a �nite set RPn

of reduced polynomials over Z that induce the set PFn of all polynomial
functions that keep Qn invariant. The set RPn is a �nite 2-group under
polynomial multiplication modulo functional equivalence. Exactly half of
the reduced polynomials induce permutations on Qn.

The reduced polynomials are obtained by using an ideal In in Z[x] such
that every polynomial in In induces the 0 constant function on Qn and
two polynomials are functionally equivalent over Qn if and only if they are
equivalent with respect to the ideal In.

By using our reduction algorithms we are able to give e�cient answers to
several problems. We show that there are e�cient algorithms (polynomial
complexity with respect to the input parameters) for the following problems:

(i) given a polynomial inducing a polynomial function on Qn, determine
the reduced polynomial inducing the same polynomial function,

(ii) given a polynomial inducing a permutation on Qn, determine the
reduced polynomial inducing the inverse permutation.

(iii) given a polynomial inducing a polynomial function on Qn, determine
the reduced polynomial for the multiplicative inverse.

In the last part of the paper we use the obtained results to construct
families of quasigroups of large cardinality. We de�ne the concept of huge
quasigroups as quasigroups of large order that can be handled e�ectively, in
the sense that the multiplication in the quasigroup, as well as in its adjoint
operations, can be e�ectively realized (polynomial complexity with respect
of log n, where n is the order of the quasigroup). The need for permu-
tations and quasigroups of large (huge) orders such as 216, 232, 264, 2128,
that can be easily handled is associated with the development of the mod-
ern massively produced 32-bit and 64-bit processors. Strong links between
modern cryptography and quasigroups (equivalently, Latin squares) have
been observed by Shannon [17] more than 50 years ago. Subsequently, the
cryptographic potential of quasigroups in the design of di�erent types of
cryptographic primitives has been addressed in numerous works. Authenti-
cation schemas have been proposed by Dènes and Keedwell (1992) [5], secret
sharing schemes by Cooper, Donovan and Seberry (1994) [4], a version of
popular DES block cipher by using Latin squares by Carter, Dawson, and
Nielsen (1995) [3], di�erent proposals for use in the design of cryptographic
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hash functions by several authors [16], a hardware stream cipher by Glig-
oroski, Markovski, Kocarev and Gusev (2005) [6]. One application of the
quasigroups as de�ned here can be found in the paper [11], where a new
public key cryptsystem is de�ned.

We want to emphasize that the results in this work concerning e�ective
constructions of large quasigroups, besides in cryptography, can also be of
interest in other areas (such as coding theory, design theory, ...).

1.1. Organization of the content
Well known background on the structure of the group Qn and on Hensel
lifting (useful to extract inverses in Qn) is presented in Section 2. Full
description of the polynomials in Z[x] that induce transformations on Qn

(and the �nite set of reduced polynmials that represent them) is provided
in Section 3, while the polynomials in Z[x] that induce permutations on Qn

are characterized in Section 4. Section 5 is a brief interlude in which we use
our results to present a new proof or a result of Rivest [15] providing a char-
acterization of polynomials in Z[x] that induce permutations on Z2n . The
group of reduced polynomials under multiplication is brie�y considered in
Section 6. Section 7 provides polynomial algorithms that handle construc-
tion of reduced polynomials related to interpolation, functional inversion,
and multiplicative inversion. Finally, applications to e�ective constructions
of large k-ary quasigroups are provided in Section 8.

2. The group (Qn, ·)
The integer quotient ring (Zk, +, ·), where k is a positive integer, is a well
known mathematical structure, where the addition and multiplication are
interpreted modulo k. This ring is associative and commutative ring with
a unit element 1. Here we are concerned solely with the case k = 2n. The
set Qn = {1, 3, . . . , 2n − 1} is a subgroup of the multiplicative semigroup
(Z2n , ·). Indeed, Qn is precisely the group of units of Z2n . Note that if
n = 1, then Qn is trivial, and if n = 2, Q2 = Z2 = 〈−1〉. The structure of
the abelian group Qn, for n > 3, is given by the following result.
Proposition 1. Let n > 3. Then (Qn, ·) ∼= Z2 × Z2n−2. Moreover, Qn is
generated by −1 and 5, the order of −1 is 2, and the order of 5 is 2n−2.
Proof. The subset Fn ⊆ Qn of numbers of the form 4k+1 forms a subgroup
of index 2 in Qn. Since 5 ∈ Fn, we have 52n−2

= 1 in Qn. On the other
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hand,

52n−3
= (4 + 1)2

n−3
=

2n−3∑

i=0

(
2n−3

i

)
22i.

The highest power of 2 dividing i! is bi/2c+bi/4c+ · · · < i/2+ i/4+ · · · = i.
Thus each of the terms

(
2n−3

i

)
22i is divisible by 2n−3+2i−(i−1) = 2n−2+i and

we have
52n−3 ≡ 1 + 2n−3 · 22 ≡ 2n−1 + 1 (mod 2n). (1)

Therefore 52n−3 6= 1 in Qn, the order of 5 is 2n−2, and Fn is a cyclic group
generated by 5.

The order of −1 is clearly 2. Since −1 is not in Fn (it has the form
4k + 3) we have that Qn = 〈−1〉 × 〈5〉 = Z2 × Z2n−2 .

Corollary 1. Let n > 3. The multiplicative order of every a ∈ Qn divides
2n−2. ¤

Given a large value of n and a ∈ Qn, can we e�ectively �nd the inverse
a−1? Note that if we express a as a = (−1)i · 5j , for some i ∈ {0, 1},
j ∈ {0, 1, . . . , 2n−2 − 1}, then its inverse in Qn is given by

a−1 = (−1)i · 52n−2−j .

However, this requires representing a in the form a = (−1)i · 5j , for some
i ∈ {0, 1}. It is fairly easy to decide if i = 0 or i = 1. Indeed, i = 0 when
a is of the form 4k + 1 and i = 1 otherwise. However, to determine j we
need to solve a discrete logarithm problem of the type 5x = a (mod 2n).
This apparent di�culty can be sidestepped by calculating the inverse by
applying Hensel lifting [14] (also known as Newton-Hensel lifting [8]).

The basic idea is to use binary representation of the integers modulo 2n.
Given r ∈ Z2n , its binary representation is rn−1rn−2 . . . r1r0, where rj ∈
{0, 1} is the (j +1)−th bit of r. In the same way, the binary representation
of a variable x is given by xn−1xn−2 . . . x1x0, where xj are bit variables.
Now, let r be a root of the polynomial P (x). Then P (x) = (x− r)S(x) for
some polynomial S(x). The equality P (x) = (x − r)S(x) in the ring Z2k ,
where k < n, is given by

P (xk−1 . . . x1x0) = (xk−1 . . . x1x0 − rk−1 . . . r1r0)S(xk−1 . . . x1x0).

The last equality shows that if we want to �nd the k least signi�cant bits
of a root r of P (x), we need to consider the equation P (x) = 0 in the ring
Z2k .
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One variant of the Hensel lifting algorithm for �nding a root of P (x) is
the following:

Step 1: Determine a bit r0 such that P (r0) = 0 in Z2.
This can be accomplished simply by checking if P (0) = 0 or P (1) = 0

(or both!) in Z2.
Let the bits r0, . . . , rk−1 be already chosen in Step 1 � Step k.
Step k +1: Determine a bit rk such that P (rkrk−1 . . . r0) = 0 in Z2k+1.
Since the bits r0, . . . , rk−1 are known, this can be accomplished by check-

ing if P (0rk−1 . . . r0) = 0 or P (1rk−1 . . . r0) = 0 (or both) in Z2k+1 .
The algorithm stops after Step n.
In order to �nd all roots of a polynomial one has to follow all the branch-

ing points of the algorithm (whenever both 0 and 1 are good choices one
has to follow both choices, and whenever neither 0 nor 1 are good choices
one discards that particular branch of the search).

Given a ∈ Q, the root of the polynomial ax − 1 is the inverse of a. In
this case, the above algorithm has polynomial complexity in n, since there
is only one root and the above algorithm will produce the unique correct
bit of a−1 at each step (there is no branching).

3. Polynomial functions on Qn

Every polynomial P (x) from the polynomial ring Z[x] induces a polynomial
function p : Z2n → Z2n by the evaluation map (taken modulo 2n). We are
interested here in polynomial functions on Qn, i.e., polynomial functions
p : Qn → Qn induced by polynomials P (x) in Z[x] such that p(Qn) ⊆ Qn.
Denote by Pn the set of polynomials in Z[x] that induce polynomial function
on Qn and denote by PFn the set of corresponding polynomial functions
on Qn. We implicitly assume that n > 2 (as was already mentioned, Q1 is
trivial).

We �rst determine precisely the polynomials over Z that induce poly-
nomial functions on Qn, i.e., we determine Pn.

Proposition 2. Let P (x) = a0 + a1x + · · ·+ adx
d be a polynomial in Z[x].

Then P (x) is in Pn (i.e., P (x) induces a polynomial function on Qn) if and
only if the sum of the coe�cients a0 + a1 + · · ·+ ad is odd, which, in turn,
is equivalent to the condition that p(1) is odd.
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Proof. For every odd number a, all the powers ai, i = 0, . . . , d are also odd.
Thus the parity of p(a) = a0 + a1a + · · · + ada

d is equal to the parity of
a0 + · · ·+ ad.

The �nite set PFn of polynomial functions on Qn is induced by the in�-
nite set of polynomials in Pn. We will determine a �nite set of polynomials,
that induce all polynomial functions in PFn. In order to de�ne this set, we
need some preliminary de�nitions.

For an integer i, de�ne ti = bi/2c + bi/4c + bi/8c + . . . , i.e., ti is the
largest integer ` such that 2` divides i!. Let dn be the largest integer i such
that n− i− ti is positive.
De�nition 1. A polynomial P (x) = a0 + a1x + · · · + adx

d in Pn is called
reduced if

(i) the degree of P (x) is no higher than dn,
(ii) 0 6 ai 6 2n−i−ti − 1, for i = 0, . . . , dn.
Denote the set of reduced polynomials in Pn by RPn.

Proposition 3. The number of reduced polynomials in RPn is

|RPn| = 2(2n−dn)(dn+1)/2−1−Pdn
i=0 ti .

Proof. The number of polynomial of degree at most dn with restrictions on
the coe�cients given by (ii) is

2
Pdn

i=0 n−i−ti = 2n(dn+1)−dn(dn+1)/2−Pdn
i=0 ti .

Exactly half of such polynomials also satis�es the condition required by
Proposition 2 on the parity of the sum of the coe�cients. Indeed, we can
match up any polynomial P (x) = a0 + a1x + · · ·+ adx

d in that satis�es the
conditions (i) and (ii) with the polynomial P (x) + 1 if a0 is even and with
P (x)− 1 if a0 is odd. In both cases, the obtained polynomial also satis�es
the conditions (i) and (ii). In such a matching exactly one polynomial in
each pair has odd sum of coe�cients.

Two polynomials P (x) and T (x) in Pn are said to be functionally equiv-
alent over Qn if they induce the same polynomial function on Qn. In that
case we write P (x) ≈ T (x). Clearly, ≈ is an equivalence relation on Pn.

The polynomials P (x) and T (x) are functionally equivalent over Qn if
and only if the di�erence P (x) − T (x) induces the constant 0 function on
Qn. With this in mind, we de�ne now a �nite set of polynomials over Z
that induce the 0 constant function on Qn.
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De�nition 2. For i = 0, . . . , dn, de�ne the polynomial

Pn,i(x) = 2n−i−ti(x + 1)(x + 3) . . . (x + 2i− 1)

of degree i. When i = 0 the understanding is that Pn,0 = 2n. De�ne also
the polynomial

Pn,dn+1(x) = (x + 1)(x + 3) . . . (x + 2dn + 1)

of degree dn + 1.

Denote the ideal generated by Pn,i(x), i = 0, . . . , dn + 1, in Z[x] by In.
Thus

In =

{
dn+1∑

i=0

Si(x)Pn,i(x) | Si(x) ∈ Z[x], i = 0, . . . , dn + 1

}
.

Proposition 4. Every polynomial in In induces the 0 constant function on
Qn.

Proof. What we need to prove is that, for every x ∈ Qn

pn,i(x) ≡ 0 (mod 2n).

This is clear since, for any x ∈ Qn the product (x+1)(x+3) . . . (x+2i−1)
is a product of i consecutive even numbers and it is therefore divisible by
2ii!, implying that it is divisible by 2i+ti . For i = 0, . . . , dn we then have
that pn,i(x) is divisible by 2n−i−ti · 2i+ti = 2n. For i = dn + 1, we have that
n 6 i + ti, and therefore 2n divides pn,i(x) in this case as well.

We state now the two main results of this section.

Theorem 1. Two polynomials P (x) and T (x) in Pn are functionally equiv-
alent over Qn if and only if P (x)− T (x) is a member of In.

Theorem 2. Every polynomial function in PFn is induced by a unique
reduced polynomial in RPn.

We will prove the Theorem 1 and Theorem 2 through a series of lemmas
and propositions. Along the way we provide some additional information
(for instance Proposition 6 establishes a linear upper bound on the degree of
a reduced polynomial). While some other approaches are certainly possible,
we chose to follow a simple constructive route, since we are interested in
algorithmic/complexity issues (see Section 7).
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Proof of Theorem 1, su�ciency. If P (x) − T (x) is in In then, by Proposi-
tion 4, P (x) − T (x) induces the constant 0 function on Qn, implying that
P (x) and Q(x) are functionally equivalent over Qn.

Proposition 5. Every polynomial function in PFn is induced by a reduced
polynomial in RPn. Moreover, for every polynomial P (x) in Z[x] there
exists a polynomial SP (x) in In such that P (x) − SP (x) is reduced and
functionally equivalent to P (x) over Qn.
Proof. Let p(x) be a polynomial function in PFn induced by the polynomial
P (x).

If the degree d of P (x) is higher than dn we may replace P (x) by
P (x) − adx

d−dn−1Pn,dn+1, where ad is the coe�cient of xd in P (x). The
polynomial P (x)−adx

d−dn−1Pn,dn+1 has degree smaller than d and is func-
tionally equivalent to P (x). We may continue this until we obtain a polyno-
mial that is functionally equivalent to P (x) and has degree no higher than
dn.

We assume now that P (x) has degree no higher than dn. If P (x) is
reduced we are done. Otherwise, let i be the highest degree of a coe�cient
ai of xi that does not satisfy the requirement 0 6 ai 6 2n−i−ti − 1. If
q is the quotient obtained by dividing ai by 2n−i−ti then P (x) ≈ P (x) −
qPn,i, and the coe�cient at degree i in P (x)− qPn,i is in the correct range
0, . . . , 2n−i−ti − 1.

We repeat this procedure with the next highest degree that has a coe�-
cient out of range until we reach a reduced polynomial that is functionally
equivalent to P (x).

Example 1. Let n = 5. We have 0 + t0 = 0, 1 + t1 = 1, 2 + t2 = 3,
3 + t3 = 4 and 4 + t4 = 7. Therefore d5 = 3, and every reduced polynomial
has the form

R(x) = a0 + a1x + a2x
2 + a3x

3,

where 0 6 a0 6 31, 0 6 a1 6 15, 0 6 a2 6 3 and 0 6 a3 6 1. The
polynomials P5,i(x), i = 0, 1, 2, 3, 4 are given by

P5,0(x) = 25 = 32,

P5,1(x) = 24(x + 1) = 16 + 16x,

P5,2(x) = 22(x + 1)(x + 3) = 12 + 16x + 4x2,

P5,3(x) = 2(x + 1)(x + 3)(x + 5) = 30 + 14x + 18x2 + 2x3,

P5,4(x) = (x + 1)(x + 3)(x + 5)(x + 7) = 9 + 16x + 22x2 + 16x3 + x4.
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Then, for the polynomial P (x) = 3x5 + 1, we have

P (x) = 1 + 3x5 ≈ (1 + 3x5)− 3xP5,4(x) ≈ 1 + 5x + 16x2 + 30x3 + 16x4

≈ (1 + 5x + 16x2 + 30x3 + 16x4)− 16P5,4(x)

≈ 17 + 5x + 16x2 + 30x3 ≈ (17 + 5x + 16x2 + 30x3)− 15P5,3(x)

≈ 15 + 19x + 2x2 ≈ (15 + 19x + 2x2)− P5,1(x)

≈ 31 + 3x + 2x2.

The calculations are done modulo 32 all the time. This is equivalent to
using P5,0 = 32 to make reductions. ¤
Proposition 6. Every polynomial function in PFn is induced by a polyno-
mial of degree smaller than (n + 1 + blog2 nc)/2.
Proof. We need to prove that dn < (n + 1 + blog2 nc)/2.

First note that i − 1 − blog2 ic 6 ti. Indeed ti = bi/2c + bi/4c + . . . .
Only the �rst blog2 ic terms of the series are possibly positive. Thus

ti =
∑blog2 ic

k=1 bi/2kc >
∑blog2 ic

k=1 (i/2k − 1) = i
(
1− 1

2blog2 ic

)
− blog2 ic >

i
(
1− 1

2log2 i−1

)
− blog2 ic = i− 2− blog2 ic.

Assume that n > i > n+1+blog2 nc
2 . Then

i + ti > 2i− 1− blog2 ic ≥ 2
n + 1 + blog2 nc

2
− 1− blog2 nc = n.

Since dn is the largest integer i such that n− i− ti is positive, we must have
dn < n+1+blog2 nc

2 .

Lemma 1. Let Mm be the (m + 1)× (m + 1) Vandermonde matrix

Mm =




1 1 1 . . . 1
1 3 32 . . . 3m

... ... ... . . . ...
1 (2m + 1) (2m + 1)2 . . . (2m + 1)m


 ,

in which the rows and columns are indexed by 0, . . . ,m. The matrix Mm is
row equivalent over Z to a matrix of the form

Rm =




1 ∗ . . . ∗
0 2 . . . ∗
... ... . . . ...
0 0 . . . 2mm!


 ,
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where the ∗'s represent integers (whose values are irrelevant for our purposes),
and the only type of row reduction used is the one in which an integer mul-
tiple of a row is added to another row.

Proof. We will prove, by induction on m, that
(i) every vector ri,m = (1, 2i + 1, . . . , (2i + 1)m), i > m + 1, is a linear

combination of the rows 0, . . . , m in Mm,
(ii) the matrix Rm can be obtained by row reduction of the indicated

type from Mm.
(iii) assuming ri,m = α0r0,m + · · ·+ αmrm,m in (i),

ri,m+1 − (α0r0,m+1 + · · ·+ αmrm,m+1) = (0, 0, . . . , 0, si),

where sm+1 = 2m+1(m+1)! and si is divisible by 2m+1(m+1)! if i > m+2.
The claims (i),(ii),(iii) are clear for m = 0 and assume they are valid for

some m > 0. We proceed to the inductive step.
(i) Consider the vector ri,m+1 = (1, 2i + 1, . . . , (2i + 1)m+1), i > m + 2.

From the inductive assumption (iii),
ri,m+1 − (α0r0,m+1 + · · ·+ αmrm,m+1) = (0, 0, . . . , 0, si)

and
rm+1,m+1 − (α′0r0,m+1 + · · ·+ α′mrm,m+1) = (0, 0, . . . , 0, 2m+1(m + 1)!).

Since 2m+1(m + 1)! divides si we see that ri,m+1 can be indeed written
as a linear combination of the rows 0, . . . , m + 1 in Mm+1.

(ii) Since, from inductive assumption (iii),

rm+1,m+1 − (α′0r0,m+1 + · · ·+ α′m,mrm,m+1) = (0, 0, . . . , 0, 2m+1(m + 1)!).

we see that Mm+1 is row equivalent to a matrix R′
m+1 in which the bottom

row is (0, 0, . . . , 0, 2m+1(m + 1)!) and the upper left block of size (m + 1)×
(m + 1) is Mm. The inductive assumption (ii) shows that R′

m+1 is row
equivalent to Rm+1.

(iii) Consider the matrix Mm+2(i) obtained from Mm+1 by extending
it by the column vector (1, 3m+2, . . . , (2m + 3)m+2) on the right and then
by the row vector ri,m+2, i > m + 2, at the bottom. The new matrix is
the (m + 3) × (m + 3) Vandermonde matrix corresponding to the values
1, 3, 5, . . . , 2m + 3 and 2i + 1. From parts (i) and (ii) of the inductive step
that we just proved, we know that Mm+2(i) is row equivalent to a matrix
Rm+2(i) in which the bottom row is (0, 0, . . . , si), for some integer si, and
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the upper left block of size (m + 2)× (m + 2) is Rm+1. The determinant of
the Vandermonde matrix Mm+2(i) is equal to

det(Mm+2(i)) =(3− 1) · (5− 3)(5− 1) · . . . · ((2m + 3)− (2m + 1)) . . .

. . . ((2m + 3)− 1) · ((2i + 1)− (2m + 3)) . . . ((2i + 1)− 1)
= det(Mm+1) · ((2i + 1)− (2m + 3)) . . . ((2i + 1)− 1).

On the other hand, the row equivalence of Mm+2(i) and Rm+2(i) shows
that

det(Mm+2(i)) = det(Rm+2(i)) = det(Rm+1) · si = det(Mm+1) · si.

Since det(Mm+1) 6= 0 we obtain that

si = ((2i + 1)− (2m + 3)) . . . ((2i + 1)− 1).

In case i = m + 2, sm+2 = 2 · 4 · · · · · (2(m + 2)) = 2m+2(m + 2)!.
If i > m + 3, then si is a product of m + 2 consecutive even numbers

and is therefore divisible by 2m+2(m + 2)!. The inductive claim (iii) now
easily follows.

Proof of Theorem 2, uniqueness. Let p be a polynomial function in PFn.
All reduced polynomials inducing p are given by

P (x) = a0 + a1x + · · ·+ adx
d,

where d = dn, and the coe�cients a0, . . . , ad satisfy the linear system

Md(a0, a1, . . . , ad)T = (p(1), p(3), . . . , p(2d + 1))T ,

where (.)T stands for transposition. By Lemma 1, this system is equivalent
in Z2n to the upper triangular system

Rd(a0, a1, . . . , ad)T = (b0, b1, . . . , bd)T ,

where bi are some elements in Z2n . Since odd numbers are units in Z2n this
system is equivalent to a triangular system

R′
d(a0, a1, . . . , ad)T = (b′0, b

′
1, . . . , b

′
d),

where

R′
d =




20+t0 ∗ . . . ∗
0 21+t1 . . . ∗
... ... . . . ...
0 0 . . . 2d+td


 . (2)



70 S. Markovski, Z. �uni¢ and D. Gligoroski

The last equation of this system now reads 2d+tdad = b′d. Since 0 6
ad 6 2n−d−td − 1 this equation can only have one solution in Z2n . We can
substitute this solution in the second to last equation to obtain an equation
2d−1+td−1ad−1 = b′′d−1, which will also have a unique solution in Z2n since
0 6 ad−1 6 2n−d−1−td−1 − 1.

Continuing with the backward substitution in the triangular system with
matrix R′

d we obtain a unique solution for all the coe�cients ad, ad−1, . . . , a0

of P (x).

Proposition 7. The number of polynomial functions in PFn is equal to
the number of reduced polynomials in RPn.

Example 2. Let n = 4. In this case d = d4 = 2. Let p be a polynomial
function in PF4 for which p(1) = 9, p(3) = 5 and p(5) = 9. We are trying
to determine the unique reduced polynomial P (x) = a0+a1x+a2x

2 in RP4

that induces p. Note that the coe�cients must satisfy the range conditions
0 6 a0 6 15, 0 6 a1 6 7, and 0 6 a2 6 1. The known values of p give the
system 


1 1 1 | 9
1 3 9 | 5
1 5 9 | 9


 ,

which is row equivalent to



1 1 1 | 9
0 2 8 | 12
0 0 8 | 8


 .

The last equation 8a2 = 8, together with the condition 0 6 a2 6 1, gives
a2 = 1. The second equation 2a1 + 8a2 = 12, together with the conditions
a2 = 1 and 0 6 a1 6 7, gives a1 = 2. Finally, the �rst equation a0+a1+a2 =
9, together with the conditions a2 = 1, a1 = 2 and 0 6 a0 6 15, gives a0 = 6.
Thus the unique reduced polynomial inducing p is P (x) = 6 + 2x + x2. ¤

Example 3. It is clear that one can uniquely determine the reduced poly-
nomial R(x) that is functionally equivalent to P (x) from the value of p at
any dn + 1 consecutive values of x.

On the other hand, not any dn + 1 values are su�cient. Indeed, let
n = 4 and p be a polynomial function in PF4 for which p(1) = 9, p(5) = 9
and p(9) = 9. We are trying to determine a reduced polynomial R(x) =
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a0 + a1x + a2x
2 in RP4 that induces p. The known values of p give the

system 


1 1 1 | 9
1 5 9 | 9
1 9 1 | 9


 ,

which, together with the range conditions 0 6 a0 6 15, 0 6 a1 6 7, and
0 6 a2 6 1, gives the following 4 solutions: R(x) = 9, R(x) = 6 + 2x + x2,
R(x) = 5 + 4x, R(x) = 2 + 6x + x2. Note than one of these is the solution
obtained in Example 2. ¤

Proof of Theorem 1, necessity. Let P (x) and T (x) be two functionally equiv-
alent polynomials. By Proposition 5, there exists polynomials SP (x) and
ST (x) in In such that P (x)− SP (x) and T (x)− ST (x) are reduced polyno-
mials which are functionally equivalent to P (x) and T (x). Theorem 2 then
shows that P (x) − SP (x) = T (x) − ST (x), implying that P (x) − T (x) =
SP (x)− ST (x) ∈ In.

Proposition 8. The set of polynomials in Z2n [x] that induce the 0 constant
function on Qn is precisely the ideal In.

Proof. We already know from Proposition 4 that the polynomials in In

induce the constant 0 function on Qn. Conversely, let P (x) induce the
constant 0 function on Qn. By Proposition 5 there exists a polynomial
SP (x) in In such that P (x)−SP (x) is reduced and functionally equivalent to
P (x). Since the zero polynomial is reduced, we must have P (x)−SP (x) = 0,
by Theorem 2. Therefore P (x) = SP (x) ∈ In.

4. Permutational polynomial functions on Qn

Some polynomial function on Qn are permutations on Qn. Denote the
set of such (permutational) polynomial functions by PPFn and the set of
polynomials over Z inducing such functions by PPn.

Proposition 9. Let P (x) = a0 + a1x + · · · + adx
d be a polynomial in

Pn. Then P (x) is in PPn (i.e. P (x) induces a permutational polynomial
function on Qn) if and only if the sum of the odd indexed coe�cients a1 +
a3 + a5 + · · · is an odd number.

Proof. Let a, b ∈ Qn. We have
p(a)− p(b) = a1(a− b) + a2(a2 − b2) + · · ·+ ad(ad − bd) =
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= (a− b)(a1A1 + a2A2 + · · ·+ adAd),

where A1 = 1 and Ai = ai−1 + ai−2b + · · · + abi−2 + bi−1, for i > 2. The
number Ai is even if and only if i is even. Consequently, a1A1 + a2A2 +
· · ·+ adAd is odd if and only if a1 + a3 + a5 + · · · is odd number.

If a1 + a3 + a5 + · · · is even then (a− b)(a1A1 + a2A2 + · · ·+ adAd) ≡ 0
(mod 2n), for a = 2n−1 +1, b = 1. Thus, for this choice of a and b, we have
p(a) = p(b) and, therefore, p is not a permutation on Qn.

If a1 + a3 + a5 + · · · is odd then (a− b)(a1A1 + a2A2 + · · ·+ adAd) ≡ 0
(mod 2n) if and only if a − b ≡ 0 (mod 2n), i.e., a = b in Qn. Thus p is a
permutation in this case.

Since we have a bijective correspondence between reduced polynomials
and polynomial functions, it is clear that we also have a bijective corre-
spondence between the reduced polynomials in RPn with odd sum of odd
indexed coe�cients and the permutational polynomial functions in PPFn.

Proposition 10. The number of permutational polynomial functions in
PPFn is equal to

|PPFn| = 2(2n−dn)(dn+1)/2−2−Pdn
i=0 ti

Example 4. Reduced polynomials in RPn of degree at most 3 that induce
permutational polynomial functions in PPFn have the form a0 + a1x +
a2x

2 + a3x
3, where a1 + a3 is odd, a0 + a2 is even, 0 6 a0 6 2n − 1,

0 6 a1 6 2n−1 − 1, 0 6 a2 6 2n−3 − 1, and 0 6 a3 6 2n−4 − 1. ¤

Proposition 11. The inverse of a permutational polynomial function p ∈
PPFn is also a polynomial function.

Proof. If p ∈ PFn is a permutation on Qn, then p ∈ σ(Qn), where σ(Qn)
denotes the full permutation group of Qn. Let r be the order of p in σ(Qn).
Then p−1 = pr−1 and therefore, if p is induced by the polynomial P (x),
then p−1 is induced by the polynomial P (P (. . . P (︸ ︷︷ ︸

r−1

x))).

Example 5. A linear permutational polynomial function p has a linear
permutational polynomial function as its inverse. Indeed, if p is induced by
b + ax, then a must be odd, a−1 exists in Z2n and p−1 is induced by the
polynomial −a−1b + a−1x. ¤
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We can use the permutational polynomial functions on Qn to de�ne
permutations on Z2n (this will be useful in our last section). Denote by Q′

n

the set Z2n \Qn (consisting of 0 and all zero divisors in Z2n). We can easily
conjugate the action of a polynomial function on Qn to an action on Q′

n.
Namely, given a polynomial function h : Qn → Qn, de�ne h′ : Q′

n → Q′
n by

h′(x) = h(x + 1)− 1.
Given a permutation p ∈ PFn, we can de�ne a permutation p̂ on Z2n

by

p̂(x) =

{
p(x), x ∈ Qn

p′(x), x ∈ Q′
n

. (3)

More generally, given permutations p, h ∈ PFn, a permutation fp,h on Z2n

can be de�ned by

fp,h =

{
p(x), x ∈ Qn

h′(x), x ∈ Q′
n

. (4)

5. On a result of Rivest
The main result of Rivest in [15] provides a criterion for a polynomial over Z
to induce a permutation on Z2n . We infer now this result from our results.
Note that our proof only relies on Proposition 2 and Proposition 9, both of
which have short and rather elementary proofs.

Theorem 3 (Rivest [15]). A polynomial P (x) = a0 + a1x + · · · + adx
d

of degree d > 1 over Z induces a permutation on Z2n if and only if the
following conditions are satis�ed:

(a) the sum a2 + a4 + a6 + . . . is even,
(b) the sum a3 + a5 + a7 + . . . is even,
(c) a1 is odd.

Proof. If P (x) is a polynomial that permutes Z2n then all elements in Q′
n =

Z2n \ Qn are mapped to elements of Q′
n or all of them are mapped to

elements in Qn depending on the parity of a0. Let us �rst characterize those
polynomials over Z that permute both Qn and Q′

n. They are precisely the
polynomials for which

(i) a0 is even,
(ii) the sum of all coe�cients a0 + a1 + · · ·+ ad is odd,
(iii) the sum of the odd index coe�cients a1 + a3 + . . . is odd,



74 S. Markovski, Z. �uni¢ and D. Gligoroski

(iv) the sum of the odd index coe�cients in P (x + 1)− 1 is odd.
The �rst condition ensures that Q′

n is invariant, the second that Qn is
invariant (Proposition 2), the third that P (x) induces a permutation on Qn

(Proposition 9) and the last that P (x) induces a permutation on Q′
n (by

conjugating the action from Q′
n to Qn we can again use Proposition 9). Let

S(x) = P (x+1)−1. The sum of odd index coe�cients of S(x) is odd exactly
when (S(1)−S(−1))/2 is odd. But (S(1)−S(−1))/2 = (P (2)−P (0))/2 =
a1 + 2a2 + 22a3 + · · ·+ 2d−1ad, and therefore this condition is equivalent to
a1 being odd. Therefore the conditions (i)-(iv) are equivalent to

(i') a0 is even,
(ii') the sum a2 + a4 + a6 + . . . is even,
(iii') the sum a3 + a5 + a7 + . . . is even,
(iv') a1 is odd.
Thus, in order to characterize all polynomials that induce a permutation

on Z2n we just need to drop the condition that a0 is even (which allows Qn

and Q′
n to be mapped to each other, when a0 is odd).

In fact, we may establish a precise connection between the (permuta-
tional) polynomial functions on Qn and those on Z2n .

Proposition 12. Let n > 2. For every pair of polynomials functions p, h ∈
PFn, there exists a polynomial function g on Z2n , such that

g(x) = fp,h(x),

for x in Z2n .

Proof. Consider the polynomial

V0(x) =





x2n−2
, n > 4

x4, n = 3,

x2, n = 2.

We claim that, for the associated polynomial function v0(x) on Z2n ,

v0(x) =

{
1, x ∈ Qn,

0, x ∈ Q′
n.

The claim can be easily veri�ed directly for n = 2, 3. Assume n > 4. From
Proposition 1, it follows that v0(x) = 1, for x ∈ Qn. On the other hand,
2n−2 > n, for n > 4, which then implies that v0(x) = x2n−2

= 0, for x ∈ Q′
n.



Polynomial functions on the units of Z2n 75

Let V1(x) = 1−V0(x). For the associated polynomial function v1(x) we
clearly have

v1(x) =

{
0, x ∈ Qn,

1, x ∈ Q′
n.

Therefore, if P (x) and H(x) are polynomial representing the polynomial
functions p(x) and h(x) then the polynomial

G(x) = P (x)V1(x) + H ′(x)V0(x),

where H ′(x) = H(x + 1) − 1, induces the function fp,h, showing that this
function is a polynomial function on Z2n .

Corollary 2. Let n > 2. The number of permutational polynomial func-
tions on Z2n is

2(2n−dn)(dn+1)−3−2
Pdn

i=0 ti , (5)
where ti is the largest integer ` such that 2` divides i!, and dn is the largest
integer i such that n− i− ti is positive.

Proof. Note that the correspondence that associates to each pair of permu-
tational polynomial functions (p, h) on Qn the element fp,h in the set of
permutational polynomial functions on Z2n that keep both Qn and Q′

n in-
variant is a bijection. Thus, the number of such permutational polynomial
functions on Z2n is |PPFn|2. The number of permutational polynomial
functions on Z2n is twice larger than this number since we need to take into
account the polynomial functions that permute Qn and Q′

n. Thus, the total
number is

2|PPFn|2 = 2(2n−dn)(dn+1)−3−2
Pdn

i=0 ti .

It is interesting to compare the last corollary to earlier results counting
permutational polynomial functions on Z2n . For instance, the following
formula is proved in [7]. For n > 2, the number of permutational polynomial
functions on Z2n is equal to

23+
Pn

j=3 βj , (6)

where βj is the smallest integer s such that 2j divides s!. Combining this
with our result yields the identity

2
dn∑

i=0

ti +
n∑

j=3

βj = (2n− dn)(dn + 1)− 6,
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for n > 2. We note that the number of permutational polynomials given by
our formula (5) in Corollary 2 seems easier to evaluate than by using (6),
since the summation goes to a smaller bound (dn rather than n) and the
summands are easier to compute.

6. Multiplication operation on reduced polynomials
Here we consider the multiplication operation on the set RPn of reduced
polynomials.

We recall that RPn is the set of representatives of the congruences
classes of Pn modulo the functional equivalence relation ≈. In that sense,
given P (x), S(x) ∈ RPn, we denote by P (x) · S(x) the corresponding re-
duced polynomial inducing the same polynomial function as the product
P (x)S(x) of the polynomials P (x) and S(x). The set Pn forms a monoid
under polynomial multiplication. Indeed, if the sum of the coe�cient of
both P (x) and S(x) is odd, then p(1) and s(1) are odd and therefore so is
p(1)s(1), implying that the sum of the coe�cients of P (x)S(x) is also odd.
Theorem 4. The equivalence ≈ is a congruence on Pn. The factor (RPn, ·)
= Pn/ ≈ is a �nite 2-group.
Proof. Let Pi(x) ≈ Si(x), for i = 1, 2, TP (x) = P1(x)P2(x), and TS(x) =
S1(x)S2(x). Then tP (x) = p1(x)p2(x) = s1(x)s2(x) = tS(x). Thus we have
P1(x)P2(x) ≈ S1(x)S2(x) and ≈ is a congruence on P.

For every a ∈ Qn, we have a2n−2
= 1 in Qn. Therefore, for any polyno-

mial P (x) in Pn, the polynomial P (x)2
n−2 is functionally equivalent to 1.

Thus each reduced polynomial has a multiplicative inverse.

In order to avoid confusion we denote inverses of polynomial functions
under composition by (.)−1, and the inverse of a reduced polynomial P (x)
under multiplication by 1

P (x) .
The subset PRPn ofRPn consisting of reduced polynomials that induce

permutations on Qn is not closed under multiplication. Indeed, P (x) = 2+x
induces a permutation on Qn, while P (x)2 = 4 + 4x + x2 does not.
Proposition 13. The set of reduced permutational polynomials PRPn is
closed under multiplicative inversion, i.e., P (x) ∈ PRPn implies 1

P (x) ∈
PRPn.
Proof. This directly follows from the fact that di�erent elements in Qn have
di�erent multiplicative inverses.
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Example 6. We have 1
2+x = 2 + x in RP3, 1

4+3x = 3 + 3x + x2 in RP4,
and 1

31+2x+2x2+x3+x4 = 4 + 7x + 2x2 in RP5. ¤

We note that �nding the inverse polynomial by using the equality 1
P (x) =

P (x)2
n−2−1 is not e�ective. We provide an e�ective method in the next

section.

7. Algorithmic aspects
We brie�y address the complexity issues related to interpolation of polyno-
mial functions, inversion of permutational polynomial functions and multi-
plicative inversion of polynomials.

Theorem 5. There exists an algorithm of polynomial complexity in n that,
given the values p(1), p(3), . . . , p(2dn+1) of a polynomial function p in PFn,
produces the unique reduced polynomial R(x) that induces p.

Proof. Note that dn has a linear upper bound in n by Proposition 6. Run-
ning the row reduction on the (dn +1)× (dn +1) linear system as suggested
in the uniqueness part of the proof of Theorem 2 takes polynomially many
steps in terms of n.

Theorem 6. There exists an algorithm of polynomial complexity in n + m
that, given a polynomial P (x) ∈ Pn of degree m (with coe�cients reduced
modulo 2n, i.e., coe�cients in the range between 0 and 2n − 1 inclusive),
produces the unique reduced polynomial R(x) that is functionally equivalent
to P (x).

Proof. By Theorem 5 it is su�cient to calculate p(1), p(3), . . . , p(2dn + 1)
in polynomially many steps in terms of n + m. This is possible since the
degree of P (x) is m and the calculations are done modulo 2n.

Another approach would be to use the reduction algorithm suggested in
the proof of Proposition 5 and implemented in Example 1.

Theorem 7. There exists an algorithm of polynomial complexity in n + m
that, given a polynomial P (x) in PPn of degree m (with coe�cients reduced
modulo 2n), produces the unique reduced polynomial inducing the inverse
polynomial function p−1.



78 S. Markovski, Z. �uni¢ and D. Gligoroski

Proof. First calculate p(1), p(3), . . . , p(2dn + 1). Set up a system of linear
equations to determine the coe�cients of the reduced polynomial R(x) =
a0 + a1x + · · ·+ adx

d that is functionally equivalent to p−1, where d = dn.
The system has the form




1 p(1) p(1)2 . . . p(1)d

1 p(3) p(3)2 . . . p(3)d

... ... ... . . . ...
1 p(2d + 1) p(2d + 1)2 . . . p(2d + 1)d







a0

a1
...

ad


 =




1
3
...

2d + 1


 .

We apply row reduction to this system. The crucial observation is that
since, for every a, b ∈ Qn,

P (a)− P (b) = (a− b)ka,b,

where ka,b is an odd number (see the proof of Proposition 9) and odd num-
bers are units in Z2n the row reduction will eventually lead to a system in
which the matrix of the system has the form (2). This system has unique
solution that can be found by back substitution.

Example 7. Let n = 4 and P (x) = 5 + x + x2. The polynomial P (x)
induces a permutation p on Q4. We will �nd the unique reduced polynomial
R(x) = a0 + a1x + a2x

2, with 0 6 a0 6 15, 0 6 a1 6 7, and 0 6 a2 6 1,
that induces the inverse permutation p−1 on Qn.

We calculate p(1) = 7, p(3) = 1 and p(5) = 3. We then perform row
reduction (over Z16) on the system



1 7 1 | 1
1 1 1 | 3
1 3 9 | 5


 ∼




1 7 1 | 1
0 10 0 | 2
0 12 8 | 4


 ∼




1 7 1 | 1
0 2 0 | 10
0 4 8 | 12


 ∼




1 7 1 | 1
0 2 0 | 10
0 0 8 | 8


 ,

where the third matrix is obtained from the second by re-scaling the second
row by 13 = 5−1 and the third row by 11 = 3−1. The last system is
triangular and has unique solution a2 = 1 a1 = 5 and a0 = 13. Thus
R(x) = 13 + 5x + x2 induces the inverse polynomial function p−1. ¤
Theorem 8. There exists an algorithm of polynomial complexity in n + m
that, given a polynomial P (x) ∈ Pn of degree m (with coe�cients reduced
modulo 2n), produces the multiplicative inverse 1

P (x) in reduced form.

Proof. To calculate the reduced polynomial S(x) = 1
P (x) it su�ces to calcu-

late p(x) for x = 1, 3, . . . , 2dn +1, then calculate the multiplicative inverses
s(x) = 1

p(x) , for x = 1, 3, . . . , 2dn + 1, and �nally use Theorem 5 to �nd the
coe�cients of S(x).
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8. Huge quasigroups de�ned by polynomial functions
A k-groupoid (k > 2) is an algebra (Q, f) on a nonempty set Q as its
universe and with one k-ary operation f : Qk → Q.

De�nition 3. A k-groupoid (Q, f) is said to be a k-quasigroup if any k out
of any k + 1 elements a1, a2, . . . , ak+1 ∈ Q satisfying the equality

f(a1, a2, . . . , ak) = ak+1

uniquely determine the remaining one.
A k-groupoid is said to be a cancellative k-groupoid if it satis�es the

cancellation law

f(a1, . . . , ai−1, x, ai+1, . . . , ak) = f(a1, . . . , ai−1, y, ai+1, . . . , ak) ⇒ x = y,

for each i = 1, . . . , k and all x, y, a1, . . . , ai−1, ai+1, . . . , ak in Q.

For k = 2 we obtain the standard notion of a quasigroup.
The de�nition of a k-quasigroup immediately implies the following. Let

(Q, f) be a �nite k-quasigroup and let the map ϕ : Q → Q be de�ned by
ϕ(x) = f(a1, . . . , ai−1, x, ai+1, . . . , ak), for some �xed a1, . . . , ai−1, ai+1, . . .
. . . , ak in Q. Then ϕ is a permutation on Q.

Here we consider only �nite k-quasigroups (Q, f), i.e., Q is a �nite set,
and in this case we have the following property ([10]).

Proposition 14. The following statements are equivalent for a �nite k-
groupoid (Q, f):

(a) (Q, f) is a k-quasigroup,
(b) (Q, f) is a cancellative k-groupoid. ¤

Given a k-quasigroup (Q, f) we can de�ne k new k-ary operations fi, i =
1, 2, . . . , k, by

fi(a1, . . . , ak) = b ⇐⇒ f(a1, . . . , ai−1, b, ai+1, . . . , ak) = ai.

These operations are called adjoint operations of f . Then (Q, fi) are k-
quasigroups as well ([2]).

De�nition 4. A huge k-quasigroup is said to be a k-quasigroup (Q, f) such
that all of the operations f, f1, f2, . . . , fk can be computed with complexity
O((log |Q|)α) for some constant α.



80 S. Markovski, Z. �uni¢ and D. Gligoroski

The problem of e�ective constructions of quasigroups of any order can
be solved, for example, by using P. Hall's algorithm for choosing di�erent
representatives for a family of sets. The algorithm is of complexity O(n3),
where n is the order of the quasigroup, and is not applicable for, let say,
n = 216. We will show here how the permutational polynomial functions
from PFn can be used in order to construct families of huge quasigroups
on the sets Qn and Z2n .

Theorem 9. Let p1, p2, . . . , pk be permutations in PPFn. De�ne a k-ary
operation f on Qn by

f(a1, a2, . . . , ak) = p1(a1)p2(a2) · · · pk(ak) (mod 2n). (7)

Then the k-groupoid (Qn, f) is a huge quasigroup.

Proof. Let r = 2n. The permutations in PPFn are de�ned by polynomials
P (x) of degree smaller than (log2 r+1+blog2(log2 r)c)/2 (by Proposition 6).
Then the evaluation of P (x) modulo 2n can be computed in polynomial
complexity with respect to log2 r. Consequently, the function f de�ned by
(7) can be computed in polynomial complexity with respect to log2 r.

Consider now the adjoint operations fi of f . We have, for any a1, a2, . . .
. . . , ak, b ∈ Qn:

fi(a1, a2, . . . , ak) = b ⇐⇒
⇐⇒ f(a1, . . . , ai−1, b, ai+1, . . . , ak) = ai

⇐⇒ p1(a1) · · · pi−1(ai−1)pi(b)pi+1ai+1 · · · pk(ak) = ai

⇐⇒ pi(b) = (pi−1(ai−1))−1 · · · (p1(a1))−1ai(pkak)−1 · · · (pi+1(ai+1))−1

⇐⇒ b = p−1
i ((pi−1(ai−1))−1 · · · (p1(a1))−1ai(pkak)−1 · · · (pi+1(ai+1))−1)

By using the Hensel lifting technique the inverse elements (pj(aj))−1 can
be computed in polynomial complexity with respect to log2 r (see Section
2), and the same is true for the inverse permutation p−1

i by Theorem 7.

Theorem 10. Let p1, p2, . . . , pk be permutations in PPFn. De�ne a k-ary
operation f on Z2n by

f(a1, a2, . . . , ak) = p̂1(a1) + p̂2(a2) + · · ·+ p̂k(ak) (mod 2n), (8)

where p̂i are de�ned by (3). Then the k-groupoid (Qn, f) is a huge quasi-
group.
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Proof. The proof is similar to the proof of Theorem 9. We only need to
note that the inverse permutation

p̂i
−1 =

{
p−1

i (a), a ∈ Qn

p−1
i (a + 1)− 1, a ∈ Q′

n

can be computed in polynomially complexity with respect to log2 r.

Theorem 11. Let p1, . . . , pk and h1, . . . , hk be permutations in PPFn. De-
�ne a k-ary operation f on Z2n by

f(a1, a2, . . . , ak) = fp1,h1(a1) + fp2,h2(a2) + · · ·+ fpk,hk
(ak) (mod 2n),

where fpi,hi are de�ned by (4). Then the k-groupoid (Qn, f) is a huge quasi-
group. ¤

We note that Rivest [15] gives a simple necessary and su�cient condition
for a bivariate polynomial P (x, y) modulo 2n to represent a quasigroup
on Z2n , namely P (x, 0), P (x, 1), P (0, y) and P (1, y) should be univariate
permutational polynomials on Z2n . This result is based on his main result
in [15] (see Theorem 3 in Section 5).
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