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Transversals in loops. 1.
Elementary properties

Eugene Kuznetsov

Devoted to the memory of Valentin D. Belousov (1925-1988)

Abstract. A new notion of a transversal in a loop to its subloop is introduced and
studied. This notion generalized a well-known notion of a transversal in a group to its
subgroup and can be correctly de�ned only in the case, when some speci�c condition (con-
dition A) for a loop and its subloop is ful�lled. Elementary properties of the transversals
in a loop to its subloop are investigated and proved. With the help of the notion of
transversal in a loop to its subloop a new notion of permutational representation of a
loop by left (right) cosets to its subloop is introduced and studied.

1. Introduction
In group theory, in group representation theory and in quasigroup theory
the following notion is well-known � the notion of a left (right) transversal
in a group to its subgroup [1, 5, 6, 10].

De�nition 1.1. Let G be a group and H be a subgroup in G. A complete
system T = {ti}i∈E of representatives of the left (right) cosets of H in G
(e = t1 ∈ H) is called a left (right) transversal in G to H.

In the present work a variant of natural generalization of the notion of
transversal at the class of loops is proposed and studied. As the elements of
a left (right) transversal in a group to its subgroup are the representatives
of every left (right) coset to the subgroup, then a notion of a left (right)
transversal in a loop to its subloop can be correctly de�ned only in a case
when this loop admits a left (right) coset decomposition by its subloop (see
[11] and the Condition A below).
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In the part 2 of this article we start studying a class of loops which
admits a left (right) coset decomposition by its subloop (admits the left
(right) condition A). Elementary properties of those loops are proved. One
of these properties (for �nite loops) is an analogue of Lagrange theorem for
groups.

In the part 3 of this article at the investigated class of loops we introduce
the notion of left (right) transversals to its subloops. Some elementary
properties of the transversals are investigated and proved.

In the part 4 of this article at this class of loops we introduce and study
a notion of a permutational representation of loop by the left (right) cosets
to its subloop. Elementary properties of this new notion are proved. Also
we will prove an equivalence of this notion and a notion of permutation loop
from [3].

Further we shall use the following notations:
〈L, ·, e〉 is an initial loop with the unit e;
〈R, ·, e〉 is its proper subloop;
E is a set of indexes (1 ∈ E) of the left (right) cosets Ri in L to R

(assume R1 = R).

2. Preliminaries
De�nition 2.1. The system 〈E, ·〉 is called [2] a right (left) quasigroup if for
arbitrary a, b ∈ E the equation x · a = b (a · y = b) has a unique solution in
E. If 〈E, ·〉 is both a right and left quasigroup, then it is called a quasigroup.
If in a right (left) quasigroup 〈E, ·〉 there exists an element e ∈ E such that

x · e = e · x = x

for every x ∈ E, then 〈E, ·〉 is called a right (left) loop (the element e is
called a unit or an identity element). If 〈E, ·〉 is both a right and left loop,
then it is called a loop.

De�nition 2.2. Let 〈L, ·〉 be a loop and 〈R, ·〉 be its proper subloop.
Then a left coset of R is a set of the form

xR = {xr | r ∈ R},
and a right coset has the form

Rx = {rx | r ∈ R}.
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The cosets in a loop to its subloop do not necessarily form a partition
of the loop. This leads us to the following de�nition.

De�nition 2.3. A loop L has a left (right) coset decomposition by its proper
subloop R, if the left (right) cosets form a partition of the loop L, is equal
for some set of indexes E

1.
⋃

i∈E

(aiR) = L;

2. for every i, j ∈ E, i 6= j (aiR) ∩ (ajR) = ∅.

In order to de�ne correctly a notion of a left (right) transversal in a
loop to its proper subloop, it is necessary that the following condition be
ful�lled.

De�nition 2.4 (see [9]). (Left Condition A) Let R be a subloop of a loop
L. For all a, b ∈ L there exists c ∈ L such that

a(bR) = cR. (1)

The right condition A is de�ned analogously.
In [11] the following theorem was proved.

Lemma 2.5. The following conditions are equivalent:
1. A loop L has a left cosets decomposition by its proper subloop R.
2. The following condition takes place (it can be named the weak left

condition A): for every a ∈ L

(aR)R = aR. (2)

Proof. See in [11], Theorem I.2.12.

Below we shall prove all statements only for a case of the left cosets (if
the left condition A take place); in a case of the right cosets all proofs are
similar.

Lemma 2.6. Let the left condition A in a loop L to its subloop R be satis�ed.
Then

(a ·R) ·R = a ·R (3)
for all a ∈ L.
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Proof. By the left condition A for all a, b ∈ L there exists an element
c = c (a, b) ∈ L such that a · (b ·R) = c · R. In the loop L always it is
possible to �nd an element d = d (a, b) such that c = a · d. Then

a · (b ·R) = (a · d) ·R. (4)

So, for some r1 ∈ R we have a · (b · r1) = (a · d) · e = a · d. Thus, b · r1 = d,
i.e., d ∈ b ·R. Therefore, b ∈ R implies d ∈ R. Hence, for b ∈ R from (4) it
follows a ·R = (a ·R) ·R. The Lemma is proved.

Lemma 2.7. The following conditions are equivalent:
1. The left condition A is ful�lled in the loop L to its subloop R.
2. For every a, b ∈ L

a · (b ·R) = (a · b) ·R. (5)

Proof. 1 ⇒ 2. Let the left condition A holds. Then for all a, b ∈ L and all
r ∈ R there exist c = c (a, b) ∈ L and r1 ∈ R such that a · (b · r) = c · r1. If
r = e, then a · b = c · r′1 ∈ c ·R. Hence, according to Lemma 2.6,

(a · b) ·R = (c ·R) ·R = c ·R,

which proves 2.
2 ⇒ 1. It is evident.

Let us de�ne (see [12]) for all a, b ∈ L the left inner mapping

la,b (x) = (a · b) \ (a · (b · x)) , x ∈ L, (6)

where ”\” is a left division in the loop 〈L, ·, e〉, and the right inner mapping

ra,b (x) = ((x · b) · a) / (b · a) , x ∈ L, (7)
where ”/” is a right division in the loop 〈L, ·, e〉.
Lemma 2.8. Let the left condition A in a loop L to its subloop R be satis�ed.
Then la,b (R) = R for all a, b ∈ L.

Proof. The proof is an evident corollary of Lemma 2.7.

Lemma 2.9. Let the right condition A in a loop L to its subloop R be
satis�ed. Then ra,b (R) = R for all a, b ∈ L.
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Proof. The proof is similar to the proof of a Lemma 2.8.

Remark 2.10. It is known (see [12]) that the mappings la,b generate the left
inner mappings group LI (〈L, ·, e〉) of a loop L, and the mapings ra,b gener-
ate the right inner mappings group RI (〈L, ·, e〉) of a loop L. Therefore, if
the left (right) condition A in a loop L to its subloop R is ful�lled, then the
investigated class of loops satis�es a condition of an invariance of a subloop
R relating to an action of the group LI (〈L, ·, e〉) (group RI (〈L, ·, e〉), re-
spectively). So we can say that the subloop R is a left (right) invariant
subloop of the loop L.

Remark 2.11. The condition (5) is called in [4] a strong left coset decom-
position of the loop L by its proper subloop R.

Lemma 2.12. Let the left condition A for a loop L and its subloop R is
ful�lled. Then the following conditions hold:

1. Left cosets Ri form a left coset decomposition of the loop L;
2. If a loop L is �nite, then the "Lagrange property" takes place:

an order of the subloop R divides an order of the loop L.

Proof. (see also [11]) 1. Let Ri = aR, Rj = bR. Assume that these cosets
have a common element c ∈ L, i.e.,

c ∈ Ri ∩Rj = (aR) ∩ (bR).

Then c = a · r1 = b · r2 for some r1, r2 ∈ R. So, (a · r1) · r = (b · r2) · r for
every r ∈ R. Let us show there exists an element r0 ∈ R such that

(a · r1) · r0 = a.

Indeed, if the left condition A for the loop L and its subloop R is ful�lled,
then a subloop R is a left invariant subloop in the loop L. Hence ∀a, b ∈ L:
la,b (R) = R. Let us take r0 = la,r1 (r1\e). Then

r0 = (a · r1)\(a · (r1 · (r1\e))) = (a · r1)\(a · e) = (a · r1)\a,

i.e., (a · r1) · r0 = a. So, by Lemma 2.6, we obtain

a = (a · r1) · r0 = (b · r2) · r0 = b · r′2 ∈ b ·R.

Thus a ·R = (b ·R) ·R = b ·R. So, if a ·R 6= b ·R, then (a ·R)∩ (b ·R) = ∅.
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Since c ∈ (c ·R), for any element c ∈ L, we have
⋃

c∈L

(c ·R) = L. So, left
cosets Ri form a left coset decomposition of the loop L.

2. Let L be �nite. Let us show that the number of elements in any left
coset Ri is equal to the number of elements in R. Because L is a loop then

r1 6= r2 ⇔ a · r1 6= a · r2 ∀r1, r2 ∈ R.

So, the left translation La(r) = a · r is an injection. Since L is �nite, then
the translation La is a surjection, i.e., it is a bijection. So, R and a ·R have
the same order for any a ∈ R.

Then, by 1, we have L =
⋃

c∈L

(c ·R), and consequently

|L| =
∑

ci∈L

|ci ·R| = m · |R|.

The Lemma is completely proved.

Now we give two examples of loops and its proper subloops, where the
left condition A is ful�lled.

Example 2.13. A loop L and its normal subloop R.

It is well known (see [2]), that if a subloop R is normal in a loop L,
then an action of the left and right inner permutations la,b and ra,b is an
invariant relation ∀a, b ∈ L. Therefore both left and right conditions A are
ful�lled in this case.

Example 2.14. A loop of pairs L = 〈E ×E\{∆}, ∗, 〈0, 1〉〉 of an arbitrary
DK-ternar 〈E, (x, t, y) , 0, 1〉 and its subloop R = {〈0, x〉 |x ∈ E\{0}}.

As it is known (see [7]), in a loop of pairs L = 〈E × E\{∆}, ∗, 〈0, 1〉〉
the operation ”∗” is de�ned through the ternary operation (x, t, y) of the
DK-ternar 〈E, (x, t, y) , 0, 1〉 by the following way:

〈x, y〉 ∗ 〈u, v〉 def
= 〈(x, u, y) , (x, v, y) 〉.

The elements 〈0, x〉 (where x ∈ E\{0}) form a subloop R with the operation
” ∗ ”. Then for a = 〈x, y〉 ∈ L, b = 〈u, v〉 ∈ L and r = 〈0, z〉 ∈ R we have:

a ∗ (b ∗ r) = 〈x, y〉 ∗ (〈u, v〉 ∗ 〈0,z〉) = 〈x, y〉 ∗ 〈u, (u, z, v)〉
= 〈(x, u, y) , (x, (u, z, v) , y)〉 = 〈αx,y (u) ,αx,yαu,v (z)〉 .
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On the other hand, for r1 = 〈0, z1〉, we have:

(a ∗ b) ∗ r1 = (〈x, y〉 ∗ 〈u, v〉) ∗ 〈0, z1〉 = 〈(x, u, y) , (x, v, y)〉 ∗ 〈0, z1〉
= 〈(x, u, y) , ((x, u, y) ,z1, (x, v, y))〉
=

〈
αx,y (u) , ααx,y(u),αx,y(v) (z1)

〉
.

If elements x, y, u, v ∈ E are given, then for every z ∈ E\{0} there exists
z1 ∈ E\{0} such that

αx,yαu,v (z) = ααx,y(u),αx,y(v) (z1) ,

namely,
z1 = α−1

αx,y(u),αx,y(v)αx,yαu,v (z) .

Thus a ∗ (b ∗R) = (a ∗ b) ∗R. Hence the left condition A is ful�lled.

3. A transversal in a loop to its subloop.
De�nition 3.1 (see [9]). Let 〈R, ·, e〉 be a subloop of the loop 〈L, ·, e〉
and let the left (right) condition A be satis�ed. If {Rx}x∈E is the set of all
left (right) cosets on L determined by R, then the set T = {tx}x∈E ⊂ L is
called the left (right) transversal in L if for every x ∈ E there exists a unique
element tx ∈ T such that tx ∈ Rx. If T = {tx}x∈E is both left and right
transversal in L simultaneously, then it is called the two-sided transversal.
Remark 3.2. Analogously as in groups we assume that t1 = e. If this as-
sumption is not ful�lled then we have the so-called non-reducible left (right)
transversals.

On E we de�ne the following transversal operations:

x
(T )· y = z

def⇔ tx · ty = tz · r, (8)

where tx, ty, tz ∈ T are left transversals L to R and r ∈ R,

x
(T )◦ y = z

def⇔ tx · ty = r · tz, (9)

where tx, ty, tz ∈ T are right transversals L to R.
Also we can de�ne the operation on the set of left transversal by putting

tx
(T )· ty = tz

def⇔ tx · ty = tz · r (10)

for tx, ty, tz ∈ T and r ∈ R. Similarly for the right transversal.
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Lemma 3.3. 〈E,
(T )· , 1〉 is isomorphic to 〈T,

(T )· , t1〉.
Proof. The proof follows easily from (8) and (10). The isomorphism has
the form ϕ : E → T , ϕ(x) = tx.

Lemma 3.4. 〈E,
(T )· , 1〉 is a left loop with the two-sided unit 1.

Proof. Since t1 = e ∈ R, for ever x ∈ E we have

x
(T )· 1 = u ⇔ tx · e = tu · r ⇔ tx = tu · r1 ⇔ tx ∈ tu ·R ⇔ u = x.

Hence x
(T )· 1 = x. On the other sided

1
(T )· x = v ⇔ e · tx = tv · r ⇔ tx = tv · r1 ⇔ tx ∈ tv ·R ⇔ v = x.

Thus 1
(T )· x = x. So, 1 ∈ E is a two-sided unit in 〈E,

(T )· , 1〉.
Let a

(T )· x = b for some a, b ∈ E. Then ta · tx = tb · r. Hence
tx = ta\ (tb · r) = tc · r′ for some c ∈ E ⇔ x = c.

So, there exists an element c ∈ E such that a
(T )· c = b. This means that

the equation a
(T )· x = b has a solution. If this solution is not uniquely

determined, then a
(T )· x1 = b = a

(T )· x2 for some x1, x2 ∈ E, x1 6= x2. Then{
ta · tx1 = tb · r1,
ta · tx2 = tb · r2.

Hence, by Lemmas 2.6 and 2.7 we obtain
ta · (tx1R) = (ta · tx1) ·R = (tb · r1) ·R = tbR,

ta · (tx2R) = (ta · tx2) ·R = (tb · r2) ·R = tbR.

So, for every r′ ∈ R there exists r′′ ∈ R such that
ta ·

(
tx1 · r′

)
= tb · r∗ = ta ·

(
tx2 · r′′

)
.

This implies tx1 · r′ = tx2 · r′′, and consequently x1 = x2, which is a contra-
diction. So, 〈E,

(T )· , 1〉 is a left loop.

In the same way we can prove

Lemma 3.5. 〈E,
(T )◦ , 1〉 is a right loop with the two-sided unit 1. ¤

If 〈E,
(T )· , 1〉 (resp. 〈E,

(T )◦ , 1〉) is a loop, then the transversal T is called
a left (right) loop transversal in L to R.
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4. Representation of loops by cosets
Let 〈R, ·, e〉 be a subloop of the loop 〈L, ·, e〉 and let the left condition A
be satis�ed in 〈L, ·, e〉. Using the left transversal L to R we de�ne the left
action of L on E as the map f : L× E → E, (g, x) → y = ĝ (x) such that

ĝ (x) = y
def⇔ g · (tx ·R) = ty ·R. (11)

Lemma 4.1. ĝ is a permutation on E.

Proof. Let g be an arbitrary element of L. Then for every y ∈ E, every
r′ ∈ R and some x ∈ E we have

g\ (
ty · r′

)
= g′ ∈ tx ·R.

So, g · (tx ·R) = ty ·R, i.e., ĝ (x) = y. Hence ĝ is a surjective map.
Now, if ĝ (x1) = y = ĝ (x2) for some x1, x2 ∈ E, then, according to (11),

we have:
g · (tx1 ·R) = g · (tx2 ·R) .

Hence, for every r1 ∈ R there exists r2 ∈ R such that

g · (tx1 · r1) = g · (tx2 · r2) .

Thus, tx1 · r1 = tx2 · r2, which implies tx1 · R = tx2 · R, and consequently
x1 = x2. Therefore ĝ is a permutation on E.

In this way we obtain a permutation representation of a loop 〈L, ·, e〉 by
ϕ : L → L̂ ⊂ SE , where ϕ : g → ĝ. The multiplication of permutations
from L̂ is de�ned by

ĝ1 ∗ ĝ2 = ĝ3
def⇔ g1 · g2 = g3 in a loop 〈L, ·, e〉.

Since ϕ(g1)∗ϕ(g2) = ĝ1∗ĝ2 = ĝ3 = ĝ1 · g2 = ϕ(g1 ·g2), ϕ is a homomorphism
from 〈L, ·, e〉 to

〈
L̂, ∗,id

〉
.

Lemma 4.2. The kernel of the homomorphism ϕ is a subloop R∗ of a loop
L such that R∗ ⊆ R and

R∗ =
⋂

u∈L

R−1
u Lu(R).
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Proof. The kernel of this homomorphism is the set

R∗ = {g ∈ L| ĝ(x) = x ∀x ∈ E}.
By Lemmas 2.6 and 2.7 for every x ∈ E we have

ĝ(x) = x ⇔ g · (tx ·R) = tx ·R ⇔ g · ((tx · r) ·R) = (tx · r) ·R.

Thus

ĝ(x) = x ∀x ∈ E ⇔ g · (u ·R) = u ·R ∀u ∈ L ⇔ (g ·u) ·R = u ·R ∀u ∈ L.

The last is equivalent to the fact that g ∈ (u · R)/u ∀u ∈ L, i.e., g ∈
R−1

u Lu(R) ∀u ∈ L. Hence R∗ =
⋂

u∈L

R−1
u Lu(R).

For u = e we have g ∈ R. Thus R∗ ⊆ R.

Obviously, R∗ is a normal subloop of L and has the form

R∗ = {r ∈ R |L−1
u Ru(r) ∈ R ∀u ∈ L}.

Further R∗ will be denoted as CoreL(R) and will be called the core of
R in L.

Lemma 4.3. The following statements are true:
1) CoreL(R) is a maximal subloop among the all normal subloops of L

contained in R.
2) Let L′ = L/CoreL(R). If T = {tx}x∈E is a left transversal in L to

R and ψ : L → L′ is a natural homomorphism, then:
a) The set T ′ = {ψ(tx)|x ∈ E} is a left transversal in L′ to R′ =

ψ(R) = R/CoreL(R);

b) 〈E,
(T ′)· , 1〉 ≡ 〈E,

(T )· , 1〉.
3) CoreL′(R′) = {e}.

Proof. 1) Let N be any normal subloop of L contained in R. Since N is
normal, it is invariant by any middle inner permutation of the loop L, i.e.,
L−1

u Ru(N) = N for all u ∈ L. Then R−1
u Lu(N) = N for every u ∈ L.

Since N ⊆ R, for all u ∈ L we have N = R−1
u Lu(N) ⊆ R−1

u Lu(R), and
consequently

N =
⋂

u∈L

N =
⋂

u∈L

R−1
u Lu(N) ⊆ R−1

u Lu(R) = R∗.
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2) Let T = {tx}x∈E be a left transversal in L to R and

ψ : L → L′ = L\CoreL(R)

be a natural homomorphism. Let us denote:

R′ = ψ(R), t′x = ψ(tx) ∀x ∈ E.

a) Let us show that T ′ = {ψ(tx)|x ∈ E} is a left transversal in a loop L′

to its subloop R′. Firstly, because a · (b ·R) = (a · b) ·R for all a, b ∈ L, then
ψ(a · (b ·R)) = ψ((a · b) ·R), i.e., ψ(a) · (ψ(b) ·ψ(R)) = (ψ(a) ·ψ(b)) ·ψ(R).
Thus a′ · (b′ · R′) = (a′ · b′) · R′ for all a′, b′ ∈ L′, which shows that the left
condition A is ful�lled for a loop L′ and its subloop R′.

Secondly, for every g′ ∈ L′ there exists g ∈ L such that g′ = ψ(g). Since
for any g ∈ L we have a representation g = tu · r, tu ∈ T, r ∈ R, we obtain

g′ = ψ(g) = ψ(tu · r) = ψ(tu) ∗ ψ(r) = t′u ∗ r′,

where t′u ∈ T ′, r′ ∈ R′. This means that each g′ ∈ L′ may be represented
in the form g′ = t′u · r′, where t′u ∈ T ′, r′ ∈ R′.

Finally, let t′y = t′x ∗ r′1 for some x, y ∈ E and r′1 ∈ R′. Then, for
r′1 = ψ(r1) we have ψ(ty) = ψ(tx) ∗ ψ(r1) = ψ(tx · r1). From this we obtain
ty · CoreL(R) = (tx · r1) · CoreL(R).

Since R∗ = CoreL(R) ⊆ R, then ty · r∗1 = (tx · r1) · r∗2, where r∗1, r
∗
2 are

in R∗ ⊆ R. Thus

ty ·R = (ty · r∗1) ·R = ((tx · r1) · r∗2) ·R = (tx · r1) ·R = tx ·R.

So x = y, since T is a left transversal in L to R. Therefore T ′ is a left
transversal in L′ on R′.

b) We have

x
(T )· y = z ⇔ tx · ty = tz · r (where tx, ty, tz ∈ T, r ∈ R) ⇔
ψ(tx · ty) = ψ(tz · r) ⇔ ψ(tx) ∗ ψ(ty) = ψ(tz) ∗ ψ(r) ⇔

t′x · t′y = t′z · r′ (where t′x, t′y, t
′
z ∈ T ′, r′ ∈ R′) ⇔ x

(T ′)· y = z.

Thus x
(T )· y = z = x

(T ′)· y. So, 〈E,
(T )◦ , 1〉 and 〈E,

(T ′)◦ , 1〉 are isomorphic.
3) Let CoreL′(R′) = M0 6= {e}. Since M0 is a normal subloop of L′,

the preimage
M1 = ψ−1(M0) = {g ∈ L |ψ(g) ∈ M0}
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is a subloop in L. Further,

e ∈ M0 ⇒ CoreL(R) = Ker ψ = ψ−1(e) ⊂ ψ−1(M0) = M1,

M0 ⊆ R′ ⇒ M1 = ψ−1(M0) ⊆ ψ−1(R′) = R.

Since a homomorphism ψ transforms any inner permutation from L to an
inner permutation from L′, then M1 should be a normal subloop in L. So,
M1 ⊂ R and CoreL(R) ⊂ M1. This contradicts to the previous condition
of this Lemma.

Remark 4.4. According to the above lemma, the study of left transversals
in loops may be reduced to the case, when CoreL(H) = {e}. In this case
〈E, ∗, id〉 ≡ L̂ ∼= L = 〈E, ·, e〉 .

In the case when 〈R, ·, e〉 is as subloop of 〈L, ·, e〉 and the right condition
A is satis�ed we obtain analogical results. Namely, if T = {tx}x∈E is a right
transversal in L to R, then f : L × E → E, f : (g, x) → y = ǧ (x) de�ned
by

ǧ (x) = y
def⇔ (R · tx) · g = R · ty.

is a right action of L on E. Consequently, the following lemmas are true.

Lemma 4.5. ǧ is a permutation on E. ¤

So, ϕ′ : L → L̆ ⊂ SE , ϕ′ : g → ǧ is another permutation representation
of a loop L.

Lemma 4.6. The kernel R~ of the homomorphism ϕ′ is a subloop L such
that R~ ⊆ R and R~ =

⋂
u∈L

L−1
u Ru(R). ¤

Lemma 4.7. The following statements are true:
1) R~ is a maximal subloop among the all normal subloops of the loop

L contained in R.
2) Let L′′ = L/R~. If T = {tx}x∈E is a right transversal in L to R and

ψ : L → L′′ is a natural homomorphism, then:
a) T ′′ = {ψ(tx)|x ∈ E} is a right transversal in L′′ to R′′ = ψ(R) =

R/R~;
b) 〈E,

(T ′′)· , 1〉 ≡ 〈E,
(T )· , 1〉.

3)
⋂

u∈L′′
L−1

u Ru(R′′) = {e}. ¤
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Remark 4.8. According to the last Lemma a research of right transversals
in loops may be reduced to a case when

⋂
u∈L′′

L−1
u Ru(R′′) = {e}. In this case

〈L̆, ∗, id〉 ≡ L̂ ∼= L = 〈L, ·, e〉 .
Lemma 4.9. If T = {tx}x∈E is a two-sided transversal in a loop L to its
subloop R and two-sided conditions A is satis�ed, then

R~ =
⋂

u∈L

L−1
u Ru(R) = R∗ =

⋂

u∈L

R−1
u Lu(R) = CoreL(R).

Proof. It is a consequence of Lemmas 4.3 and 4.7.

De�nition 4.10. [3] A loop 〈L, ·, e〉 is called a permutation loop on a set E,
if there exists a map f : L×E → E, f (g, x) = ĝ (x) satisfying the following
conditions:

(1) ê (x) = x for all x ∈ E, where e is a unit of the loop L,
(2) if b ∈ N (〈L, ·, e〉), where N is a kernel of L, then

(â · b) (x) = â(b̂(x))

for every a ∈ L and x ∈ E,
(3) there exists an element x0 ∈ E such that

Rx0

def
= {g ∈ L| ĝ (x0) = x0}

is a subloop of L and the following conditions are ful�lled:
(a) (b̂ · a)(x0) = b̂(â(x0)) for b ∈ Rx0 and a ∈ L,
(b) (ĝ2 · g1)(x0) 6= ĝ2(x0) for g1, g2 ∈ L and ĝ1(x0) 6= x0,
(c) (ĝ2 · g1)(x0) 6= ĝ1(x0) for g2 /∈ Rĝ1(x0).

Let us show that a permutational representation L̂ de�ned by (11) sat-
is�es all conditions of De�nition 4.10.

Lemma 4.11. Let the left condition A for a loop 〈L, ·, e〉 to its subloop
〈R, ·, e〉 be satis�ed. If a permutation representation

〈
L̂, ·, ê

〉
of the loop L

is de�ned by (11), then
〈
L̂, ·, ê

〉
is a loop of permutations in the sense of

De�nition 4.10.
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Proof. If a representation is de�ned by (11), then

ê (x) = u ⇔ e · (tx ·R) = tu ·R ⇔ tx ·R = tu ·R ⇔ u = x,

which shows that in this case ê (x) = x for all x ∈ E. This veri�es the �rst
condition of De�nition 4.10.

Now, if b ∈ N (〈L, ·, e〉), then for u, v ∈ L we have (b · u) · v = b · (u · v) .
Thus (u · v)·b = u·(v · b), and consequently (u · b)·v = u·(b · v). This means
that for every a ∈ L and every x ∈ E we have (â · b) (x) = y. Therefore
(a · b) · (tx ·R) = ty ·R, which means that (a · b) · tx = ty · r′ for some r′ ∈ R.
But a · (b · tx) = ty · r′, b · tx = tz · r′′ and a · (tz · r′′) = ty · r′ imply b̂(x) = z

and â(z) = y. Hence â(b̂(x)) = y. Consequently (â · b) (x) = â(b̂(x)). This
veri�es the second condition of De�nition 4.10.

Now we prove that the third condition of De�nition 4.10 is satis�ed for
x0 = 1. First we prove that for all g1, g2 ∈ L we have

(ĝ1 · g2)(1) = ĝ1(ĝ2(1)). (12)

Indeed, by Lemma 2.7, (ĝ1 · g2)(1) = u, i.e., (g1 · g2)(e · R) = tu · R. Thus
(g1·g2)·R = tu·R. But g1·(g2·R) = tu·R, g2·R = tz ·R and g1·(tz ·R) = tu·R
imply ĝ2(1) = z and ĝ1(z) = u. Hence ĝ1(ĝ2(1)) = u. This completes the
proof of (12). From (12) the condition (a) follows automatically.

Further, let g1, g2 ∈ L and ĝ1(1) = u0 6= 1. Then by (12) we have

(ĝ2 · g1)(1) = ĝ2 · (ĝ1(1)) = ĝ2(u0) 6= ĝ2(1),

since ĝ2 is a permutation. This proves (b).
Finally, let

g2 /∈ Rĝ1(1) = {g ∈ L| ĝ(ĝ1(1)) = ĝ1(1)} .

Then, by (12), we obtain (ĝ2 · g1)(1) = ĝ2 ·(ĝ1(1)) 6= ĝ1(1), since g2 /∈ Rĝ1(1).
This proves (c).

Lemma 4.12. For an arbitrary left transversal T = {tx}x∈E in a loop
L = 〈L, ·, e〉 to its subloop R = 〈R, ·, e〉 the following statements are true:

1) r̂(1) = 1 for all r ∈ R,

2) t̂x(y) = x
(T )· y, t̂−1

x (y) = x\y for all x, y ∈ E,
where t̂−1

x is an inverse permutation to a permutation t̂x in SE, and
”\” is a left division in a left loop 〈E,

(T )· , 1〉. Moreover,
t̂x(1) = x, t̂1(x) = x, t̂−1

x (1) = x\1, t̂−1
x (x) = 1.
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Proof. 1) Let r̂(1) = u. Then r · (e · R) = tu · R, i.e., R = tu · R. Thus
tu = e = t1. Consequently, u = 1. This proves r̂(1) = 1.

2) Let t̂x(y) = u. Then tx · (ty ·R) = tu ·R, and consequently

tu ·R = (tx · ty) ·R = (tx·y · r′) ·R = tx·y ·R.

Thus u = x · y and t̂x(y) = x · y.
Further,

t̂−1
x (y) = z ⇔ y = t̂x(z) = x · z ⇔ z = x\y,

so, t̂−1
x (y) = x\y. The rest follows from just proved identities.

Lemma 4.13. The following conditions are equivalent:
1) T = {tx}x∈E is a left loop transversal in a loop L to its subloop R;
2) T̂ = {t̂x}x∈E is a sharply transitive set of permutations in SE.

Proof. The proof is based on the following sequence of the equivalent state-
ments:

• T = {tx}x∈E is a left loop transversal in a loop L to its subloop R,

• 〈E,
(T )· , 1〉 is a loop with the unit 1,

• x
(T )· a = b has a unique solution in E for every a, b ∈ E,

• t̂x(a) = b has a unique solution in E for every a, b ∈ E,
• T̂ = {t̂x}x∈E is a sharply transitive set of permutations in SE .

The proof of the following two lemmas about is analogous to the proof
of Lemmas 4.12 and 4.13.

Lemma 4.14. For an arbitrary right transversal T = {tx}x∈E in a loop
L = 〈L, ·, e〉 to its subloop R = 〈R, ·, e〉 the following statements are true:

1) ř(1) = 1 for all r ∈ R,

2) ťx(y) = y
(T )◦ x, ť−1

x (y) = x/y for all x, y ∈ E,
where ť−1

x is an inverse permutation to a permutation ťx in SE, and
”/” is a right division in a right loop 〈E,

(T )◦ , 1〉. Moreover,
ťx(1) = x, ť1(x) = x, ť−1

x (1) = x/1, ť−1
x (x) = 1.

Lemma 4.15. The following conditions are equivalent:
1) T = {tx}x∈E is a right loop transversal in a loop L to its subloop R;
2) Ť = {ťx}x∈E is a sharply transitive set of permutations in SE.
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