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Finite GS�quasigroups

Yahya Amad and M. Aslam Malik

Abstract. This paper is concerned with the determination of the set of possible orders
of �nite GS-quasigroups. Also some examples of �nite GS-quasigroups are given.

1. Introduction

The following de�nition of GS-quasigroups was given by V.Volenec in [4]
and [1].

De�nition 1.1. A quasigroup (Q, ·) is said to be GS-quasigroup (golden
section quasigroup) if the equalities

aa = a,
a(ab · c) · c = b,
a · (a · bc)c = b

hold for all its elements.

The study of GS-quasigroups in [4] is motivated by:

Example 1.2. Let C be set of complex numbers and ∗ an operation on set
C de�ned by:

a ∗ b =
1−

√
5

2
a +

1 +
√

5
2

b.

Let us regard complex numbers as points of the Euclidean plane, then the
point b divides the pair a and a ∗ b in the ratio of golden section, which
justi�es the term of GS-quasigroups.

Here, we'll give some examples of �nite GS-quasaigroups, and determine:
for which positive integer n there exists a GS− quasigroup of order n?

We require the following elementary results, whose proofs are simple.
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Lemma 1.3. Let (G1, ·1), (G2, ·2), . . . , (Gn, ·n) be GS − quasigroups, and
◦ be the operation de�ned on G = G1 ×G2 × . . .×Gn by:

(x1, x2, . . . , xn) ◦ (y1, y2, . . . , yn) = (x1 ·1 y1, x2 ·2 y2, . . . , xn ·n yn).

Then (G, ◦) is a GS − quasigroup.

Therefore, if GS-quasigroups of orders k1, k2, . . . , kn exist, then a GS-
quasigroup of order k1k2 · · · kn exists.

The following characterization of GS-quasigroups was given in [4].

Theorem 1.4. A GS − quasigroup on the set Q exists if and only if on

the same set exists a commutative group (Q,+) with an automorphism ϕ
satisfying the identity

(ϕ ◦ ϕ)(x)− ϕ(x)− x = 0. (1)

Then

a · b = a + ϕ(b− a). (2)

2. Commutative GS-quasigroups

By using Theorem 1.4 to study commutative GS-quasigroups we want to
�nd all commutative groups (Q,+) with an automorphism ϕ satisfying (1)
and with the additional condition that the operation · de�ned by (2) is
commutative. The commutativity of · implies

a + ϕ(b− a) = b + ϕ(a− b).

Thus

ϕ(b− a)− ϕ(a− b) = b− a,

and consequently

ϕ(x) + ϕ(x) = x (3)

for all x ∈ Q.

From (1) it follows ϕ(ϕ(x)) + ϕ(ϕ(x)) = ϕ(x) + ϕ(x) + x + x, which by
(3) gives ϕ(x) = x + x + x. Substituting this to (3) we get,

x + x + x + x + x + x = x.
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Therefore, x + x + x + x + x = 0 for all x ∈ Q, i.e., each element of the
group (Q,+) is of order 5 or 1. The only �nite groups which satisfy that
condition are (Z5)n, and the group of order 1.

On the other hand, if x + x + x + x + x = 0, for all x ∈ Q, then
ϕ(x) = x + x + x = −x − x, i.e. ϕ(x) = 3x = −2x is an automorphism
satisfying (1) and the operation de�ned by (2) is commutative.

Thus we have proved:

Theorem 2.1. The only non-trivial �nite commutative GS − quasigroups
are the quasigroups obtained in the technique described in Theorem 1.4 from

the group (Z5)n, for some n ∈ N.

From each group (Z5)n we obtain unique GS-quasigroup of order 5n.

Example 2.2. From the group (Z5)2 and the automorphism ϕ(x) = 3x =
−2x we obtain the GS-quasigroup of order 25:

·25 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 0 3 1 4 2 15 18 16 19 17 5 8 6 9 7 20 23 21 24 22 10 13 11 14 12
1 3 1 4 2 0 18 16 19 17 15 8 6 9 7 5 23 21 24 22 20 13 11 14 12 10
2 1 4 2 0 3 16 19 17 15 18 6 9 7 5 8 21 24 22 20 23 11 14 12 10 13
3 4 2 0 3 1 19 17 15 18 16 9 7 5 8 6 24 22 20 23 21 14 12 10 13 11
4 2 0 3 1 4 17 15 18 16 19 7 5 8 21 9 22 20 23 21 24 12 10 13 11 14
5 15 18 16 19 17 5 8 6 9 7 20 23 21 24 22 10 13 11 14 12 0 3 1 4 2
6 18 16 19 17 15 8 6 9 7 5 23 21 24 22 20 13 11 14 12 10 3 1 4 2 0
7 16 19 17 15 18 6 9 7 5 8 21 24 22 20 23 11 14 12 10 13 1 4 2 0 3
8 19 17 15 18 16 9 7 5 8 6 24 22 20 23 21 14 12 10 13 11 4 2 0 3 1
9 17 15 18 16 19 7 5 8 6 9 22 20 23 21 24 12 10 13 11 14 2 0 3 1 4
10 5 8 6 9 7 20 23 21 24 22 10 13 11 14 12 0 3 1 4 2 15 18 16 19 17
11 8 6 9 7 5 23 21 24 22 20 13 11 14 12 10 3 1 4 2 0 18 16 19 17 15
12 6 9 7 5 8 21 24 22 20 23 11 14 12 10 13 1 4 2 0 3 16 19 17 15 18
13 9 7 5 8 6 24 22 20 23 21 14 12 10 13 11 4 2 0 3 1 19 17 15 18 16
14 7 5 8 6 9 22 20 23 21 24 12 10 13 11 14 2 0 3 1 4 17 15 18 16 19
15 20 23 21 24 22 10 13 11 14 12 0 3 1 4 2 15 18 16 19 17 5 8 6 9 7
16 23 21 24 22 20 13 11 14 12 10 3 1 4 2 0 18 16 19 17 15 8 6 9 7 5
17 21 24 22 20 23 11 14 12 10 13 1 4 2 0 3 16 19 17 15 18 6 9 7 5 8
18 24 22 20 23 21 14 12 10 13 11 4 2 0 3 1 19 17 15 18 16 9 7 5 8 6
19 22 20 23 21 24 12 10 13 11 14 2 0 3 1 4 17 15 18 16 19 7 5 8 6 9
20 10 13 11 14 12 0 3 1 4 2 15 18 16 19 17 5 8 6 9 7 20 23 21 24 22
21 13 11 14 12 10 3 1 4 2 0 18 16 19 17 15 8 6 9 7 5 23 21 24 22 20
22 11 14 12 10 13 1 4 2 0 3 16 19 17 15 18 6 9 7 5 8 21 24 22 20 23
23 14 12 10 13 11 4 2 0 3 1 19 17 15 18 16 9 7 5 8 6 24 22 20 23 21
24 12 10 13 11 14 2 0 3 1 4 17 15 18 16 19 7 5 8 6 9 22 20 23 21 24
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2. Cyclic groups

The automorphism ϕ(x) = mx (m is relatively prime to n) of the group Zn

satis�es (1) if and only if m2 −m− 1 ≡ 0(modn).
Now by using Quadratic Reciprocity Law we want to �nd for which

n ∈ N the quadratic congruence has solution m (in that case m and n are
relatively prime).

Since m2 −m− 1 is odd, n cannot be even. Therefore, it seems appro-
priate to begin by considering the congruence

m2 −m− 1 ≡ 0(mod p),

where p is an odd prime and gcd(1, p) = 1. The assumption that p is an
odd prime implies that gcd(4, p) = 1. Thus, the quadratic congruence is
equivalent to

4(m2 −m− 1) ≡ 0(mod p).

Now, completing the square we obtain

4(m2 −m− 1) = (2m− 1)2 − 5

The last quadratic congruence may be expressed as

(2m− 1)2 ≡ 5(mod p).

Now, putting y = 2m− 1 in last congruence, we get

y2 ≡ 5(modp)

Thus, 5 is quadratic residue of p if and only if p = ±1(mod 5). So, that the
solutions are all primes of the form p = 5l± 1, l ∈ Z. Factors of m2−m− 1
are all primes of the form p = 5l ± 1.

This proves the following:

Theorem 2.1. The cyclic group Zn has an automorphism that satis�es

(1) if and only if its order n is a product of primes from the set {5l ± 1},
where l ∈ Z, i.e., if and only if n is an odd integer with any prime factor is

congruent to ±1 modulo 5.

Example 2.2. The group Z11 has two such automorphisms: ϕ(x) = 4x
and ϕ(x) = 8x. So, we obtain two GS-quasigroups of order 11.
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One induced by ϕ(x) = 4x:

·11 0 1 2 3 4 5 6 7 8 9 10
0 0 4 8 1 5 9 2 6 10 3 7
1 8 1 5 9 2 6 10 3 7 0 4
2 5 9 2 6 10 3 7 0 4 8 1
3 2 6 10 3 7 0 4 8 1 5 9
4 10 3 7 0 4 8 1 5 9 2 6
5 7 0 4 8 1 5 9 2 6 10 3
6 4 8 1 5 9 2 6 10 3 7 0
7 1 5 9 2 6 10 3 7 0 4 8
8 9 2 6 10 3 7 0 4 8 1 5
9 6 10 3 7 0 4 8 1 5 9 2
10 3 7 0 4 8 1 5 9 5 6 10

and one induced by ϕ(x) = 8x:

·11 0 1 2 3 4 5 6 7 8 9 10
0 0 8 5 2 10 7 4 1 9 6 3
1 4 1 9 6 3 0 8 5 2 10 7
2 8 5 2 10 7 4 1 9 6 3 0
3 1 9 6 3 0 8 5 2 10 7 4
4 5 2 10 7 4 1 9 6 3 0 8
5 9 6 3 0 8 5 2 10 7 4 1
6 2 10 7 4 1 9 6 3 0 8 5
7 6 3 0 8 5 2 10 7 4 1 9
8 10 7 4 1 9 6 3 0 8 5 2
9 3 0 8 5 2 10 7 4 1 9 6
10 7 4 1 9 6 3 0 8 5 2 10

Remark 2.3. Let p be an odd prime and suppose k > 1. If (a, p) = 1, then
x2 ≡ a(mod pk) has either no solutions or exactly two solutions, according
as x2 ≡ a(mod p) is or not solvable.

Corollary 2.4. The cyclic group Zpk has an automorphism satisfying (1)
if and only if p is a prime from the set {5l ± 1 : l ∈ Z}, i.e., if and only if

p ≡ ±1(mod 5).

3. Conclusions

The following theorem is simple but crucial.

Theorem 3.1. Let G be a commutative group of order m1m2, where m1 and

m2 are relatively prime positive integers, with an automorphism ϕ satisfying

(1). Then there exist groups G1 and G2 such that G = G1×G2, |G1| = m1,

|G2| = m1 with automorphisms satisfying (1).
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Example 3.2. The group Z55 = Z5 × Z11 has two automorphisms ϕ(x) =
8x and ϕ(x) = 48x satisfying (1). Z5 and Z11 have automorphisms ϕ(x) =
3x and ϕ(x) = 4x, ϕ(x) = 8x satisfying (1), respectively.

So, for GS-quasigroups of orders 5k and pk, where p is a prime of the
form 5l± 1 there is no any GS-quasigroup of order pk such that p 6= 5l± 1.

Thus the �nal result:

Theorem 3.3. Let n =
∏n

i=1 li be square free number. Then a GS−quasi-
group of order n exists if and only if each prime factor of n is congruent to

±1 modulo 5, i.e., if and only if li ≡ ±1(mod 5) for all 1 6 i 6 n.
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