Congruences on an inverse AG^{**} -groupoid via the natural partial order

Petar V. Protić

In memory of **Nebojša Stevanović (1962–2009)**, my colleague and dear friend.

Abstract. In this paper we first describe natural partial order on an inverse AG^{**} -groupoid. With it we introduce a notion of pseudo normal congruence pair and normal congruence pair and describe congruences.

1. Introduction

A groupoid S on which the following is true

$$(\forall a, b, c \in S) \quad ab \cdot c = cb \cdot a,$$

is called an *Abel-Grassmann's groupoid* (*AG-groupoid*) [8] (or in some papers Left almost semigroups (*LA-semigroups*)) [3]. It is easy to verify that in every *AG*-groupoid *medial law* $ab \cdot cd = ac \cdot bd$ holds. Thus, *AG*-groupoids belong to the wider class of medial groupoids.

We denote the set of all idempotents of S by E(S).

Abel-Grassmann's groupoid S satisfying

$$(\forall a, b, c \in S) \quad a \cdot bc = b \cdot ac$$

is an AG^{**} -groupoid. It is obvious that in AG^{**} -groupoid for $a, b, c, d \in S$

$$ab \cdot cd = c(ab \cdot d) = c(db \cdot a) = db \cdot ca.$$

2000 Mathematics Subject Classification: 20N02

Keywords: Abel-Grassmann's groupoid, natural partial order, congruence pair Supported by Grant ON 144013 of Ministry of science through Math. Inst. SANU If AG-groupoid S has the left identity e, then

 $a \cdot bc = ea \cdot bc = eb \cdot ac = b \cdot ac,$

so S is an AG^{**} -groupoid.

In [5] an AG-groupoid S is called an *inverse* AG-groupoid if for every $a \in S$ there exists $a' \in S$ such that $a = aa' \cdot a$ and $a' = a'a \cdot a'$. Then a' is an inverse element of a, and by V(a) we shall mean the set of all inverses of a. It is easy to prove that if $a' \in V(a)$, $b' \in V(b)$, then $a'b' \in V(ab)$ and that aa' or a'a are not necessarily idempotents.

Remark 1. In [1] it is proved that in an AG^{**} -groupoid S the set E(S) is a semilattice (Remark 2). Also, in [1] it is proved that in an inverse AG^{**} -groupoid for $a \in S$, by Remark 3, we have |V(a)| = 1. If a^{-1} is a unique inverse for a, then by Lemma 1 $aa^{-1}, a^{-1}a \in E(S)$ if and only if $aa^{-1} = a^{-1}a$.

The following proposition is is trivially true.

Proposition 1. Let S be an inverse AG^{**} -groupoid and ρ congruence relation on S. Then $S/_{\rho}$ is an inverse AG^{**} -groupoid. Also, if $a, b \in S$ then $a\rho b$ if and only if $a^{-1}\rho b^{-1}$.

2. Natural partial order

In this section we define a natural partial relation on inverse AG^{**} -groupoid S and prove some of its properties.

Theorem 1. If S is an inverse AG^{**} -groupoid, then the relation

$$a \leqslant b \Longleftrightarrow a = aa^{-1} \cdot b \tag{1}$$

on S is a natural partial order relation and it is compatible.

Proof. The proof that \leq is reflexive is obvious. For antisymmetry let us suppose that $a \leq b$ and $b \leq a$. Then $a = aa^{-1} \cdot b$ and $b = bb^{-1} \cdot a$, and

$$a = aa^{-1} \cdot b = aa^{-1} \cdot (bb^{-1} \cdot a) = bb^{-1} \cdot (aa^{-1} \cdot a) = bb^{-1} \cdot a = b,$$

imply antisymmetry.

Let us now suppose that $a \leq b$ and $b \leq c$. Then $a = aa^{-1} \cdot b$, $b = bb^{-1} \cdot c$, and

$$\begin{split} a &= aa^{-1} \cdot b = aa^{-1}(bb^{-1} \cdot c) = ((aa^{-1} \cdot a)a^{-1})(bb^{-1} \cdot c) \\ &= (a^{-1}a \cdot aa^{-1})(bb^{-1} \cdot c) = (a^{-1}a \cdot bb^{-1})(aa^{-1} \cdot c) \\ &= b(a^{-1}a \cdot b^{-1}) \cdot (aa^{-1} \cdot c) = b(aa^{-1} \cdot b)^{-1} \cdot (aa^{-1} \cdot c) \\ &= ba^{-1} \cdot (aa^{-1} \cdot c) = ca^{-1} \cdot (aa^{-1} \cdot b) = ca^{-1} \cdot a = aa^{-1} \cdot c, \end{split}$$

imply that $a \leq c$. Hence transitivity holds and \leq is a partial order on S. Let $a \leq b$ and $c \in S$. Then

$$ca = c(aa^{-1} \cdot b) = (cc^{-1} \cdot c)(aa^{-1}) \cdot b = (cc^{-1} \cdot aa^{-1}) \cdot cb$$

= $(ca \cdot c^{-1}a^{-1}) \cdot cb = (ca \cdot (ca)^{-1}) \cdot cb,$

and so the relation \leq is left compatible. Also, since

$$ac = (aa^{-1} \cdot b)c = (aa^{-1} \cdot b)(cc^{-1} \cdot c) = (aa^{-1} \cdot cc^{-1}) \cdot bc$$
$$= (ac \cdot a^{-1}c^{-1}) \cdot bc = (ac \cdot (ac)^{-1}) \cdot bc,$$

therefore the relation \leq is right compatible. Hence, \leq is compatible. \Box

Corollary 1. Let S be an inverse AG^{**} -groupoid and $a, b \in S$. Then

$$a \leqslant b \Longleftrightarrow aa^{-1} = ba^{-1}.$$

Proof. If $a \leq b$ then by (1) we have

 $aa^{-1} = (aa^{-1} \cdot b)a^{-1} = a^{-1}b \cdot aa^{-1} = a^{-1}a \cdot ba^{-1} = b(a^{-1}a \cdot a^{-1}) = ba^{-1}.$

Conversely, for $a, b \in S$, $aa^{-1} = ba^{-1}$ implies that

$$a = aa^{-1} \cdot a = ba^{-1} \cdot a = aa^{-1} \cdot b.$$

So, by (1), $a \leq b$.

3. Normal congruence pair

In this section by S we mean an inverse AG^{**} -groupoid in which for each $a \in S$ we have $aa^{-1} = a^{-1}a$ or equivalently $aa^{-1}, a^{-1}a \in E(S)$.

First, we prove the following consequence of Theorem 1.

Corollary 2. Let $a, b \in S$. Then

 $a \leq b \iff (\exists e \in E(S)) \ a = eb.$

Proof. Let $a, b \in S$. Then $a \leq b$ if and only if $a = (aa^{-1})b$. Since $aa^{-1} \in E(S)$, therefore if $e = aa^{-1}$ implies that a = eb.

Conversely, let $a, b \in S$ be such that $e \in E(S)$ and a = eb. Because $aa^{-1} = a^{-1}a \in E(S)$ and E(S) is a semilattice, we have

$$aa^{-1} \cdot b = (eb \cdot eb^{-1})b = (bb^{-1} \cdot e)b = (bb^{-1} \cdot e)(bb^{-1} \cdot b)$$
$$= (bb^{-1} \cdot bb^{-1}) \cdot eb = bb^{-1} \cdot eb = e(bb^{-1} \cdot b) = eb = a$$

and so $a \leq b$.

Let ρ be a congruence on S. The restriction $\rho|_{E(S)}$ is the *trace* of ρ and it is denoted by tr ρ . Also, kernel ρ is ker $\rho = \{a \in S \mid (\exists e \in E(S)) \ a\rho e\}$.

If ρ is a congruence relation on S, then ker ρ is a subgroupoid of S and $E(S) \subseteq \ker \rho$ it is, ker ρ is a *full* subgroupoid of S. Also, tr ρ is a congruence on semillatice E(S).

Definition 1. Let K be a full subgroupoid of S and τ a congruence on E(S) satisfying the following condition:

(i) For all $a \in S, b \in K, b \leq a$ and $aa^{-1}\tau bb^{-1}$ imply $a \in K$.

We call (K, τ) a pseudo normal congruence pair for S. If, in addition,

(ii) For every $a \in K$, there exists $b \in S$ with $b \leq a$, $aa^{-1}\tau bb^{-1}$ and $b^{-1} \in K$,

then (K, τ) is called a normal congruence pair for S.

For pseudo normal congruence pair (K, τ) , we define a relation

$$a\rho_{(K,\tau)}b \Longleftrightarrow ab^{-1}, a^{-1}b, ba^{-1}, b^{-1}a \in K, \ aa^{-1} \cdot b^{-1}b \,\tau \, aa^{-1}\tau \, bb^{-1}$$

Lemma 1. Let (K, τ) be a pseudo normal congruence pair of S, $a, b \in S$. If $a \rho_{(K,\tau)}b$ and $b \in K$, then $a \in K$.

Proof. From $a \rho_{(K,\tau)} b$ we have $ab^{-1} \in K$ and $aa^{-1} \cdot bb^{-1}\tau aa^{-1}\tau bb^{-1}$. Since $b \in K$, it follows that $ab^{-1} \cdot b = bb^{-1} \cdot a \in K$.

We prove that $ab^{-1} \cdot b \leq a$. Here

$$\begin{split} ((ab^{-1} \cdot b)(ab^{-1} \cdot b)^{-1})a &= ((ab^{-1} \cdot b)(a^{-1}b \cdot b^{-1}))a = ((bb^{-1} \cdot a)(b^{-1}b \cdot a^{-1}))a \\ &= ((bb^{-1} \cdot b^{-1}b)aa^{-1})a = (bb^{-1} \cdot aa^{-1})a \\ &= (aa^{-1} \cdot bb^{-1})a = (aa^{-1} \cdot bb^{-1})(aa^{-1} \cdot a) \\ &= (aa^{-1} \cdot aa^{-1})(bb^{-1} \cdot a) = aa^{-1}(bb^{-1} \cdot a) \\ &= bb^{-1}(aa^{-1} \cdot a) = bb^{-1} \cdot a = ab^{-1} \cdot b. \end{split}$$

Hence, by (1), it follows that $ab^{-1} \cdot b \leq a$. Also

$$\begin{split} (ab^{-1} \cdot b)(ab^{-1} \cdot b)^{-1} &= (ab^{-1} \cdot b)(a^{-1}b \cdot b^{-1}) \\ &= (ab^{-1} \cdot a^{-1}b)bb^{-1} = (aa^{-1} \cdot b^{-1}b)bb^{-1} \\ &= (bb^{-1} \cdot b^{-1}b) \cdot aa^{-1}) = bb^{-1} \cdot aa^{-1}\tau aa^{-1}, \end{split}$$

whence by Definition 1 (i) it follows that $a \in K$.

Theorem 2. If (K, τ) is a pseudo normal congruence pair for S, then $\rho_{(K,\tau)}$ is a congruene on S with

$$\ker \rho_{(K,\tau)} = \{ a \in K \, | \, (\exists b \in S), \ a \ge b, \ aa^{-1}\tau \, bb^{-1}, \ b^{-1} \in K \}$$
(2)

and the trace is equal to τ . Moreover, if (K_1, τ_1) and (K_2, τ_2) are pseudo congruence pairs for S with $K_1 \subseteq K_2$ and $\tau_1 \subseteq \tau_2$, then $\rho_{(K_1,\tau_1)} \subseteq \rho_{(K_2,\tau_2)}$.

Proof. Let (K, τ) be a pseudo normal congruence pair for S and $\rho = \rho_{(K,\tau)}$. Since K is full it follows that ρ is reflexive. Obviously, ρ is symmetric. We verify that ρ is transitive after we prove that ρ is compatible.

Assume now that $a\rho b$ and let $c \in S$. Then

$$ac \cdot (bc)^{-1} = ac \cdot b^{-1}c^{-1} = ab^{-1} \cdot cc^{-1} \subseteq K \cdot E(S) \subseteq K.$$

Similarly,

$$(ac)^{-1} \cdot bc, bc \cdot (ac)^{-1}, (bc)^{-1} \cdot ac \in K.$$

Next we have

$$(ac \cdot (ac)^{-1})((bc)^{-1} \cdot bc)) = (ac \cdot (bc)^{-1})((ac)^{-1} \cdot bc)$$

= $(ac \cdot b^{-1}c^{-1})(a^{-1}c^{-1} \cdot bc)$
= $(ab^{-1} \cdot cc^{-1})(a^{-1}b \cdot c^{-1}c)$
= $(ab^{-1} \cdot a^{-1}b)(cc^{-1} \cdot cc^{-1})$
= $(aa^{-1} \cdot b^{-1}b)cc^{-1}\tau aa^{-1} \cdot cc^{-1}$
= $ac \cdot a^{-1}c^{-1} = ac \cdot (ac)^{-1}$.

By symmetry, it follows that

$$(ac \cdot (ac)^{-1})((bc)^{-1} \cdot bc) \tau bc \cdot (bc)^{-1},$$

whence $ac \rho bc$. Thus ρ is right compatible. Analogously, ρ is left compatible. Hence, ρ is compatible.

Now, suppose that $a \rho b$ and $b \rho c$. Then by right compatibility $ac^{-1} \rho bc^{-1}$ and $bc^{-1} \rho cc^{-1}$. Since $cc^{-1} \in E(S) \subseteq K$ and $bc^{-1} \rho cc^{-1}$, we have $bc^{-1} \in K$ by Lemma 1, and subsequently $ac^{-1} \in K$. Similarly, $aa^{-1}\rho ba^{-1}, ba^{-1}\rho ca^{-1}$ yield $ca^{-1} \in K$ by Lemma 1.

Similarly, by left compatibility, from $a\rho b$ and $b\rho c$ we have $a^{-1}a\rho a^{-1}b$, $a^{-1}b\rho a^{-1}c$, $c^{-1}a\rho c^{-1}b$ and $c^{-1}b\rho c^{-1}c$. So by Lemma 1 it follows that $a^{-1}c, c^{-1}a \in K$.

Also $a\rho b$, $b\rho c$ yields

$$a^{-1}a \cdot bb^{-1}\tau aa^{-1}\tau bb^{-1}, \ b^{-1}b \cdot cc^{-1}\tau bb^{-1}\tau cc^{-1}$$

and by transitivity it follows that $aa^{-1}\tau cc^{-1}$. Moreover,

$$\begin{aligned} (bb^{-1} \cdot cc^{-1})(aa^{-1} \cdot cc^{-1}) &= (bb^{-1} \cdot aa^{-1})cc^{-1}\tau \, aa^{-1} \cdot cc^{-1}, \\ (bb^{-1} \cdot cc^{-1})(aa^{-1} \cdot cc^{-1}) &= (bb^{-1} \cdot aa^{-1})cc^{-1}\tau bb^{-1} \cdot cc^{-1}\tau \, cc^{-1}, \end{aligned}$$

whence $aa^{-1} \cdot cc^{-1}\tau cc^{-1}$.

Now, $ac^{-1}, a^{-1}c, ca^{-1}, c^{-1}a \in K$, $aa^{-1} \cdot cc^{-1}\tau aa^{-1}\tau cc^{-1}$ is equivalent to $a\rho c$. Hence, ρ is a transitive relation and so is a congruence.

It is apparent that for $e, f \in E(S)$, $e\rho f$ if and only if $e\tau f$ whence $\operatorname{tr} \rho = \tau$. We let

$$H = \{ a \in K \, | \, (\exists b \in S) \, a \ge b, b^{-1} \in K, aa^{-1}\tau bb^{-1} \}$$

and we show that $\ker \rho = H$.

Ī

Let $a \in H$, then there exists $b \in K$ such that $b \leq a$, $b^{-1} \in H$ and $aa^{-1}\tau bb^{-1}$. By (1) $b \leq a$ it implies that $b = bb^{-1} \cdot a$. We next prove that $a\rho bb^{-1}$ that is

$$bb^{-1} \cdot a^{-1}, a^{-1} \cdot bb^{-1}, bb^{-1} \cdot a, a \cdot bb^{-1} \in K, bb^{-1} \cdot aa^{-1}\tau aa^{-1}\tau bb^{-1}$$

Now $b = bb^{-1} \cdot a \in K$ and $b^{-1} = bb^{-1} \cdot a^{-1} \in K$. Also we have $a \cdot bb^{-1} \in K \cdot E(S) \subseteq K$ and

$$a^{-1} \cdot bb^{-1} = (a^{-1}a \cdot a^{-1})bb^{-1} = (bb^{-1} \cdot a^{-1})a^{-1}a \in K \cdot E(S) \subseteq K.$$

Conversely, let $a \in \ker \rho$. Then $a\rho e$ for some $e \in E(S)$. If b = ea, then $b \leq a$ by Corollary 2 and $b = ea \in E(S) \cdot K \subseteq K$. From $a\rho e$ it follows that $aa^{-1} = ea^{-1} = b^{-1}$ and since $aa^{-1} \in K$ we have by Lemma 1 that $b^{-1} \in K$. Because $b, b^{-1} \in K$ we have $bb^{-1} = b^{-1}b \in K$ and so $b\rho b^{-1}$. Now

$$bb^{-1}\rho b^{-1}b^{-1} = ea^{-1} \cdot ea^{-1}\rho aa^{-1} \cdot ea^{-1}$$

= $e(a^{-1}a \cdot a^{-1}) = ea^{-1}\rho aa^{-1}$

Thus $a \in H$ implies that $\ker \rho \subseteq H$, that is $H = \ker \rho$.

Theorem 3. If (K, τ) is a normal congruence pair for S, then $\rho_{(K,\tau)}$ is a congruence on S with kernel K and trace τ . Conversely, if ρ is a congruence on S, then $(\ker \rho, \operatorname{tr} \rho)$ is a normal congruence pair for S and $\rho = \rho_{(\ker \rho, \operatorname{tr} \rho)}$.

Proof. Let (K, τ) be a normal congruence pair and let $\rho = \rho_{(K,\tau)}$. Then by Theorem 2, ρ is a congruence with trace equal to τ and ker ρ as in (2). Thus ker $\rho \subseteq K$. Now let $a \in K$. Then by Definition 1 (*ii*) there exist $b \in S$, $b \leq a, \ b^{-1} \in K$ and $bb^{-1}\tau aa^{-1}$ such that $a \in \ker \rho$ due to Theorem 2. Thus $K = \ker \rho$.

Conversely, let ρ be a congruence on S and let $K = \ker \rho$, $\tau = \operatorname{tr} \rho$. Then K is a full subgroupoid of S and τ is a congruence on E(S).

Let $a \in S$, $b \in K$ and $a \ge b$. Suppose that $aa^{-1}\rho bb^{-1}$. Then $b = bb^{-1} \cdot a$ (by (1)). From $aa^{-1}\rho bb^{-1}$ it follows that $a\rho (bb^{-1})a$ and by above argument we have $a\rho b$. Hence $a \in b\rho \subseteq \ker \rho = K$. Thus (i) from the Definition 1 holds for (K, τ) and that it is a pseudo congruence pair for S.

Let $a \in K$. Then there exists $e \in E(S)$ with $a\rho e$. If b = ea, then $b \leq a$ by Corollary 2. From $a\rho e$ it follows that $ea\rho e$ whence $b\rho e$ and so $a\rho b$. Now $a^{-1}\rho b^{-1}$ by Proposition 1 and so $aa^{-1}\rho bb^{-1}$. Moreover, from $a\rho e$ follows that $aa^{-1}\rho ea^{-1} = (ea)^{-1} = b^{-1}$, that is $b^{-1} \in K$. Hence, (K, τ) is a congruence pair for S.

It remains to prove that $\rho = \rho_{(K,\tau)}$. Let $a\rho b$. Then

$$ab^{-1}\rho bb^{-1}, b^{-1}a\rho b^{-1}b, aa^{-1}\rho ba^{-1}, a^{-1}a\rho a^{-1}b$$

and so $ab^1, b^{-1}a, ba^{-1}, a^{-1}b \in \ker \rho = K$. Also

$$aa^{-1} \cdot bb^{-1}\rho \, a^{-1}b \cdot bb^{-1} = (bb^{-1} \cdot b)a^{-1} = ba^{-1}\rho \, aa^{-1},$$

$$aa^{-1} \cdot bb^{-1}\rho \, aa^{-1} \cdot ba^{-1} = b(aa^{-1} \cdot a) = ba^{-1}\rho \, b^{-1}b = bb^{-1},$$

whence it follows that $a\rho_{(K,\tau)}b$ and so $\rho \subseteq a\rho_{(K,\tau)}$.

Let $a\rho_{(K,\tau)}b$. Then ab^{-1} , $a^{-1}b$, ba^{-1} , $b^{-1}a \in K$, $aa^{-1} \cdot bb^{-1}\tau aa^{-1}\tau bb^{-1}$, imply that $ab^{-1}\rho e$, $ba^{-1}\rho f$ for some $e, f \in E(S)$. From $aa^{-1}\rho bb^{-1}$, it follows that

$$a \rho b b^{-1} \cdot a = a b^{-1} \cdot b \rho e b$$
 and $b \rho a a^{-1} \cdot b = b a^{-1} \cdot a \rho f a$.

Also

$$a \rho e b \rho e \cdot f a \rho e(f \cdot e b) = e(e \cdot f b) = ee(e \cdot f b)$$
$$= (f b \cdot e)ee = (f b \cdot e)e = ee \cdot f b = e \cdot f b = f \cdot e b \rho f a \rho b$$

imply that $a\rho b$, that is $\rho_{(K,\tau)} \subseteq \rho$. Then $\rho_{(K,\tau)} = \rho$.

References

- [1] M. Božinović, P. V. Protić and N. Stevanović, Kernel normal system of inverse AG^{**} -groupoids, Quasigroups and Related Systems 17 (2008), 1-8.
- [2] J. Deneš and A. D. Keedwell, Latin squares and their applications, Akadémia Kiadó, Budapest, 1974.
- [3] M. A. Kazim and M. Naseeruddin, On almost semigroups, The Aligarh Bull. Math. 2 (1972), 1-7.
- [4] Q. Mushtaq and Q. Iqbal, Decomposition of a locally associative LAsemigroup, Semigroup Forum 41 (1990), 155 - 164.
- [5] Q. Mushtaq and Q. Iqbal, Partial ordering and congruences on LAsemigroups, Indian J. Pure Appl. 22 (1991), 331-336.
- [6] M. Petrich, *Inverse semigroups*, Pure and Applied Mathematics, John Wiley and Sons, New York, 1984.
- [7] M. Petrich and S. Rankin, The kernel trace approach to right congruences on an inverse semigroup, Trans. Amer. Math. Soc. 330 (1992), 917-932.
- [8] P. V. Protić and N. Stevanović, On Abel-Grassmann's groupoids (review), Proc. Math. Conference, Priština, 1994, 31 – 38.

Received September 4, 2009

Faculty of Civil Engineering University of Niš Aleksandra Medvedeva 14 18000 Niš Serbia e-mail: pvprotic@yahoo.mail.com