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254 A. Krapeº
u3 = 1 (Sokhats'kyi [10℄ after Duplák [4℄), u4 = 2 (Sokhats'kyi [10℄), u5 = 4(Koval' [5℄) and u6 = 14 (Krapeº, Simi¢ and To²i¢ [6℄).In this paper we prove that there are �ve lasses of anellable andunanellable equations with three variables, we give their Krsti¢ graphsand solve �ve parastrophially nonequivalent representative equations.2. Quasigroups and funtional equationsLet us reall neessary de�nitions and results of [7℄. For bare essentialson quasigroups see [7℄. More an be found in standard referenes V. D.Belousov [2℄, O. Chein, H. O. P�ugfelder and J. D. H. Smith [3℄ and H.O. P�ugfelder [9℄. We just state that the language of quasigroups ontainssix binary operations: multipliation (·), left (\) and right (/) division andtheir respetive dual operations: ∗ (dual of ·), \\ (dual of \) and // (dualof /). These six operations are known as parastrophes of · (and of eahother) and the onnetion between them is: xy = z i� x\z = y i� z/y =
x i� y ∗ x = z i� z\\x = y i� y//z = x.When we use pre�x notation for operations and a quasigroup operationis A, we de�ne: A(x1, x2) = x3 i� A(1)(x1, x2) = x3 i� A(12)(x2, x1) =
x3 i� A(13)(x3, x2) = x1 i� A(23)(x1, x3) = x2 i� A(123)(x2, x3) = x1 i�
A(132)(x3, x1) = x2. In general, A(x1, x2) = x3 i� Aσ(xσ(1), xσ(2)) = xσ(3)for σ ∈ S3.We assume that all operations are quasigroups. Further:De�nition 2.1. Funtional equation s = t is quadrati if every objetvariable appears exatly twie in s = t.De�nition 2.2. Funtional equation s = t is generalized if every funtionalvariable F (inluding all parastrophes of F ) appears only one in s = t.We also need the following:De�nition 2.3. Let Eq[F1, . . . , Fn] be a generalized quadrati funtionalequation on quasigroups. We write Fi ∼ Fj (1 6 i, j 6 n) and say that Fiand Fj are neessarily isostrophi if in every solution Q1, . . . , Qn of Eq theoperations Qi and Qj are isostrophi.A funtional variable Fi is loop, group, abelian if Qi is isostrophi to aloop, group, abelian group respetively.De�nition 2.4. A ∼�lass with one or two elements is alled small, other-wise it is big.



Quadrati equations with three variables 255De�nition 2.5. Two equations Eq and Eq′ are parastrophially equivalent(Eq PEEq′) if one of them an be obtained from the other by applying a�nite number of the following steps:1. Renaming objet and/or funtional variables.2. Replaing s = t by t = s.3. Replaing equation A(t1, t2) = t3 by one of the following equations:
Aσ(tσ(1), tσ(2)) = tσ(3) for some σ ∈ S3.4. Replaing a subterm A(t1, t2) of s or t by A(12)(t2, t1).5. Replaing a subterm A(x, t2) by a new variable y and simultane-ously replaing all other ourrenes of x by either A(13)(y, t2) or
A(123)(t2, y).6. Replaing a subterm A(t1, x) by a new variable y and simultane-ously replaing all other ourrenes of x by either A(23)(t1, y) or
A(132)(y, t1).If we use notation Eq[. . . , A, . . . ], we denote by Eq′[. . . , Aσ, . . . ] theequation obtained by one of the steps (3)− (7) above, always preserving theorder of other funtional variables. Using this onvention we get:Theorem 2.6 (Krsti¢ [8℄) . If equations Eq[F1, . . . , Fn] and Eq′[G1, . . . , Gn]are parastrophially equivalent and Q1, . . . , Qn and R1, . . . , Rn are solutionsof respetively Eq, Eq′ on a set S, then the operations Qi and Ri (1 6 i 6 n)are mutually isostrophi.3. Graphs and funtional equationsFollowing S. Krsti¢ [8℄ we represent funtional equations by graphs. These'graphs' may have loops and multiple edges between two verties and aretehnially known as multigraphs.We de�ne graphs as relation systems (V, E; I) with I ⊆ V × E. It isassumed that the sets V of verties and E of edges are disjoint and thatfor every edge e there are at most two verties inident to e. A loop is anedge with a unique vertex inident to it. A loop in a graph should not beonfused with a loop as a quasigroup with an identity.A graph is ubi if for every vertex v there are exatly three edges towhih v is inident, provided that if edge is a loop it is ounted twie.De�nition 3.1. Two verties v1, v2 of a graph G are 3�onneted (and wewrite v1 ≡ v2) if there are three disjoint paths in G from v1 to v2. A graph

G is 3�onneted if all verties of G are 3�onneted.



256 A. KrapeºIn graph theory, 3�onnetedness, as de�ned above, is usually alled
3�edge�onnetedness, but we shortened it to 3�onnetedness. A graph is
3�onneted i� removal of any two edges does not disonnet it. Obviously,a ubi graph G is 3�onneted i� the relation ≡ is a full relation on V .De�nition 3.2. A ≡�lass with one or two elements is alled small, other-wise it is big.Based on the theory of S. Krsti¢ [8℄, two onstrutioins are presentedin [7℄ - the one whih produes the graph K(Eq) for a given generalizedquadrati funtional equation Eq and the other, whih gives an equation
QE(G) for a given �nite onneted ubi graph G.We have:Theorem 3.3 (Krapeº and �ivkovi¢ [7℄ after Krsti¢ [8℄). Generalized qua-drati quasigroup funtional equations Eq and Eq

′ are parastrophially equi-valent i� their Krsti¢ graphs K(Eq) and K(Eq
′

) are isomorphi.The following theorem is also important.Theorem 3.4 (Krsti¢ [8℄). Let Eq[F1, . . . , Fn] be a generalized quadratifuntional equation. Then Fi ∼ Fj in Eq i� Fi ≡ Fj in K(Eq). Moreover:Every Fi is a loop funtional variable.A symbol Fi is a group funtional variable i� Fi/ ≡ is big i� K4 ishomeomorphially embeddable in K(Eq) within Fi/ ≡.A symbol Fi is an abelian funtional variable i� the subgraph of K(Eq)de�ned by Fi/ ≡ is not planar i� K3,3 is homeomorphially embeddable in
K(Eq) within Fi/ ≡.4. Equations with three variablesIn the paper [7℄ A. Krapeº and D. �ivkovi¢ de�ned sequenes (En), (en) and
(πn)(n ≥ 1), where En is the number of generalized quadrati quasigroupfuntional equations with n variables, en is the number of normal equationsamong them and πn is the number of lasses of parastrophially equivalentequations with n variables. By the Theorem 5.9 of [7℄ πn is also the numberof nonisomorphi ubi graphs with 2(n − 1) verties. We have E3 = 3780and e3 = 330. It is announed that π3 = 5. We give the proof of this fatnow but also a new proof that π2 = 2.By the Lemma 5.2 of [7℄, equations with 2, 3 variables have Krsti¢ graphswhih are onneted, ubi and have 2, 4 verties and 3, 6 edges respetively.
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Figure 2. Graphs with four vertiesTheorem 4.1. Every onneted ubi graph with two verties is isomorphito either the dumbbell graph H0 or to the dipole graph D3 (Figure 1). Everyonneted ubi graph with four verties is isomorphi to either one of: H1,
H2, H3, H4, K4 (Figure 2). Consequently, π2 = 2 and π3 = 5.Proof. Let G be a onneted ubi graph with either two or four verties.There are four possibilities:(1) G has a loop,(2) G has no loops but has a triple edge,(3) G has no loops or triple edges but has a double edge,(4) G has no loops or multiple edges.(1) G has a loop. Then there is a vertex, say 1, with the loop. Sine G isubi, there is another edge in 1 onneting it to a new vertex 2. There arethree possibilities:



258 A. Krapeº(11) the vertex 2 has a loop,(12) 2 has no loop but has a double edge,(13) 2 has no loops or double edges.(11) The vertex 2 has a loop. Sine G is ubi and onneted, no furtherextension is possible. Therefore G is isomorphi to the dumbbell graph H0.(12) The vertex 2 has no loop but has a double edge. Let the vertex2 onnets to the vertex 3 by the double edge. The single remaining edgeat 3 has to onnet it to the new vertex 4. All verties exept 4 now havethree edges. Therefore 4 has to onnet to itself by the loop. The graph Gis isomorphi to H2.(13) The vertex 2 has no loops or double edges. Therefore 2 has toonnet to two more verties 3 and 4 by single edges. There are two possi-bilities:(131) there is a loop in 3,(132) there is no loop in 3.(131) There is a loop in 3. There must be a loop in 4 as well and G isisomorphi to H1.(132) There is no loop in 3. Then 3 and 4 must be onneted by thedouble edge. The graph G is isomorphi to H3.(2) G has no loops but has a triple edge. Then two verties 1 and 2are triply onneted and no further extension is possible. The graph G isisomorphi to the dipole graph D3.(3) G has no loops or triple edges but has a double edge. Assume that thevertex 1 has a double edge to the vertex 2 and onsequently a single edgeto another vrtex 3. There are two possibilities:(31) there is an edge onneting verties 2 and 3,(32) there is no suh edge.(31) There is an edge onneting verties 2 and 3. The edge must bea single one sine 2 is onneted to 1 by the double edge. Then 3 must beonneted to the only remaining vertex 4 by the single edge. But then thevertex 4 must have a loop whih ontradits assumption (3).(32) There is no edge onneting 2 and 3. Sine no loops are alowed, 2must be singly and 3 doubly onneted to 4. The graph G is isomorphi to
H4.(4) G has no loops or multiple edges. Therefore 1 is singly onneted to 2, 3and 4. Sine no loops or multiple edges are alowed, 2 must onnet to both3 and 4. Also, the 3 and 4 are onneted and the graph G is isomorphi tothe graph K4.



Quadrati equations with three variables 259We prove four usefull lemmas. They generalize Lemmas 8.1�8.4 from [7℄.Lemma 4.2. Let a, b and e be elements and σ a permutation of a set S. Ageneral solution to the equation
σF (a, b) = e (1)on a set S is given by:

F (x, y) = αL(λx, ̺y)where:� L is an arbitrary loop on S with the identity e,� α, λ and ̺ are arbitrary permutations of S suh that: α = σ−1, λa = eand ̺b = e.Proof. It is trivial to hek that the above formulas always give a solutionto the equation (1). Next, we prove that every solution to the equation (1)is of the form given in the statement of the Lemma.Let F be a partiular quasigroup on S whih satis�es (1). De�ne α =
σ−1, λx = σF (x, b), ̺x = σF (a, x) and L(x, y) = σF (λ−1x, ̺−1y). We seethat λ and ̺ are permutations of S suh that λa = ̺b = e and F (x, y) =
αL(λx, ̺y). The operation L is a quasigroup as an isotope of the quasigroup
F . Moreover, it is a loop, as follows from: L(e, x) = σF (λ−1e, ̺−1x) =
σF (a, ̺−1x) = ̺̺−1x = x and L(x, e) = σF (λ−1x, ̺−1e) = σF (λ−1x, b) =
λλ−1x = x.Lemma 4.3. Let b be an element and γ, σ and τ permutations of a set S.A general solution to the equation

σF (γx, b) = τx (2)on a set S is given by:
F (x, y) = αL(λx, ̺y)where:� L is an arbitrary loop on S with the identity e,� α, λ and ̺ are arbitrary permutations of S suh that: α = σ−1,

λγ = τ and ̺b = e.Proof. It is easy to hek that the above formulas always give a solution tothe equation (2).Assume that a quasigroup F is a solution of (2). We are proving that
F must be of the form indiated in the statement of the Theorem.



260 A. KrapeºTake a ∈ S and de�ne e = τa, α = σ−1, λx = σF (x, b), ̺x = σF (γa, x).Operations α, λ and ̺ are permutations suh that λγx = σF (γx, b) = τxand ̺b = σF (γa, b) = τa = e.De�ne a quasigroup L by L(u, v) = α−1F (λ−1u, ̺−1v). We have L(e, x) =
α−1F (λ−1e, ̺−1x) = σF (γτ−1e, ̺−1x) = σF (γa, ̺−1x) = ̺̺−1x = x and
L(x, e) = α−1F (λ−1x, ̺−1e) = σF (λ−1x, b) = λλ−1x = x proving that L isa loop with the identity e.By duality we have:Lemma 4.4. Let a be an element and δ, σ and τ permutations of a set S.A general solution to the equation

σF (a, δx) = τx (3)on a set S is given by:
F (x, y) = αL(λx, ̺y)where:� L is an arbitrary loop on S with the identity e,� α, λ and ̺ are arbitrary permutations of S suh that: α = σ−1, λa = eand ̺δ = τ .Lemma 4.5. Let e be an element and γ, δ and σ permutations of a set S.A general solution to the equation

σF (γx, δx) = e (4)on a set S is given by:
F (x, y) = αL(23)(λx, ̺y)where:� L is an arbitrary loop on S with the identity e,� α, λ and ̺ are arbitrary permutations of S suh that: σαe = e, λγ = σand ̺δ = σ.Proof. Sine L is a loop, we have L(x, e) = x i.e., L−2(x, x) = e. Therefore

σF (γx, δx)=σαL−2(λγx, ̺δx)=σαL−2(σx, σx)=σαe=e so F satis�es (4).Assume that a quasigroup F is a partiular solution of (4). De�ne
αx = F (γσ−1e, δσ−1x). The funtion α is a permutation and σαe =
σF (γσ−1e, δσ−1e) = e.De�ne also λ = σγ−1 and ̺ = σδ−1. It follows that λγ = σ and ̺δ = σ.If a quasigroup L is de�ned by L(u, v) = ̺F−2(λ−1u, αv) then F (x, y) =
αL−2(λx, ̺y), L(e, x) = ̺F−2(λ−1e, αx) = ̺F−2(λ−1e, F (λ−1e, ̺−1x)) =
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̺̺−1x = x and L(x, e) = ̺F−2(λ−1x, αe) = ̺F−2(λ−1x, F (λ−1x, ̺−1x)) =
̺̺−1x = x. Therefore L is a loop.There are three equations orresponding to the graph H1:

A(B(x, x), C(y, y)) = D(z, z),

A(x, B(C(y, y), D(z, z))) = x, A(B(C(x, x), D(y, y)), z) = z.To redue some spae we shall not write appropriate generalized equa-tions, as above, but the orresponding equations in the language with thesingle operation ·. So the three equations representing generalized equationswhih orrespond to the graph H1 are:
xx.yy = zz x(yy.zz) = x (xx.yy)z = zOne of the equations is also boxed, indiating the equation hosen torepresent the whole PE�lass. The distinguished equation is then writtenin full form and its solution is given in the following theorem. In this asethe representative equation is:

A(B(x, x), C(y, y)) = D(z, z) (5)and the orresponding theorem is:Theorem 4.6. A general solution of the equation (5) on a set S is givenby:






















A(x, y) = L(λx, ̺y)

B(x, y) = λ−1U2(x, y)

C(x, y) = ̺−1U3(x, y)

D(x, y) = U4(x, y)where:� L is an arbitrary loop on S with an identity e,� Ui (2 6 i 6 4) are arbitrary unipotent quasigroups with a ommonidempotent e,� λ and ̺ are arbitrary permutations of S.Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then
A(B(x, x), C(y, y)) = L(B(x, x), C(y, y)) = L(λλ−1U2(x, x), ̺̺−1U3(y, y))
= L(e, e) = e = U4(z, z) = D(z, z). Therefore a quadruple of suh quasi-groups is a solution to (5).



262 A. Krapeº2) Let a quadruple of quasigroups A, B, C, D be a solution to (5). As-sume p, q be arbitrary but �xed elements from S. De�ne b = B(p, p), c =
C(q, q) and e = A(b, c). Fixing x and y in the equation yields D(z, z) = e.We an easily infer B(x, x) = b and C(y, y) = c. From A(b, c) = e, by theLemma 4.2, we �nd A(x, y) = αL(λx, ̺y) where L is a loop on S with anidentity e and α, λ, ̺ are permutations of S suh that α = Id and λb = ̺c =
e. But then λB(x, x) = λb = e and if we de�ne U2(x, y) = λB(x, y) we get
B(x, y) = λ−1U2(x, y). We an de�ne U3 and U4 similarly.The ∼�lasses of (5) are all singletons.The question arises as to why we use unipotent quasigroups to expressthe solutions to funtional equations when the Theorem 3.4 stresses the roleof loops, groups and/or Abelian groups. The reason is pure onvenienesine we ould use loops instead of unipotent quasigroups. Namely, by theLemma 4.5, for every unipotent quasigroup U the quasigroup U (23) withthe (unique) idempotent e is a loop with the identity e, and onversely, if
L is a loop with the identity e, then the quasigroup L(23) is unipotent andhas a unique idempotent e. The alternative general solution to (5) is thengiven in:Theorem 4.7. A general solution of the equation (5) on a set S is givenby:























A(x, y) = L(λx, ̺y)

B(x, y) = λ−1L
(23)
2 (x, y)

C(x, y) = ̺−1L
(23)
3 (x, y)

D(x, y) = L
(23)
4 (x, y)where:� L, L2, L3 and L4 are arbitrary loops on S with an identity e,� λ and ̺ are arbitrary permutations of S.Further on, we state only one version of the solution, the one usingunipotent quasigroups.There are 19 equations orresponding to the graph H2:

x.yy = x.zz xx.y = y.zz xx.y = zz.y

x(x.yy) = zz x(yy.x) = zz (x.yy)x = zz
(xx.y)y = zz x.y(y.zz) = x x.y(zz.y) = x
x.(y.zz)y = x x.(yy.z)z = x xx.(y.zz) = y
xx.(yy.z) = z (x.yy).zz = x (xx.y).zz = y
x(x.yy).z = z x(yy.x).z = z (x.yy)x.z = z

(xx.y)y.z = z



Quadrati equations with three variables 263The ∼�lasses of operations are again singletons. The representativeequation is
A(x, B(y, y)) = C(x, D(z, z)) (6)and its solution is given in the following theorem.Theorem 4.8. A general solution of the equation (6) on a set S is givenby:






















A(x, y) = L1(λ1x, ̺1y)

B(x, y) = ̺−1
1 U2(x, y)

C(x, y) = L3(λ3x, ̺3y)

D(x, y) = ̺−1
3 U4(x, y)where:� L1 and L3 are arbitrary loops on S with a ommon identity e,� U2 and U4 are arbitrary unipotent quasigroups on S with a ommonidempotent e,� λ1, ̺1, λ3 and ̺3 are arbitrary permutations of S suh that λ1 = λ3.Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then

A(x, B(y, y)) = L1(λ1x, ̺1̺
−1
1 U2(y, y)) = L1(λ1x, e) = λ1x = λ3x =

L3(λ3x, e) = L3(λ3x, ̺3̺
−1
3 U4(z, z)) = C(x, D(z, z)). Therefore the quadru-ple of suh quasigroups is a solution to (6).2) Let a quadruple of quasigroups A, B, C, D be a solution to (6). Sup-pose that p, q, r are arbitrary but �xed elements from S and de�ne b =

B(q, q), e = A(p, b), d = D(r, r). Fixing x and y we get C(p, d) = e.De�ne also λ1x = A(x, b), ̺1x = A(p, x), λ3x = C(x, d) and ̺3x =
C(p, x). The relation λ1 = λ3 immediately follows. The equation (6)redues to the system: A(x, b) = λ3x, ̺1B(y, y) = e, C(x, d) = λ1x,
̺3D(z, z) = e.By the Lemma 4.3 we an hoose A(x, y) = L1(λ1x, ̺1y) for some L1.It is rather obvious that we have to take L1(u, v) = A(λ−1

1 u, ̺−1
1 v). Sine

λ1 and ̺1 are translations of A, the operation L1 must be a loop with theidentity e. Analogously, C(x, y) = L3(λ3x, ̺3y) for a suitable loop L3 withthe identity e.If we de�ne U2(x, y) = ̺1B(x, y) we get U2(x, x) = ̺1b = e and
B(x, y) = ̺−1

1 U2(x, y). Similarly, D(x, y) = ̺−1
3 U4(x, y) for a unipotentquasigroup U4 with the idempotent e.



264 A. KrapeºThere are 94 equations orresponding to the graph H3.
x.xy = y.zz x.yx = y.zz x.yy = z.xz

x.yy = z.zx xx.y = z.yz xx.y = z.zy
xy.x = y.zz xy.y = x.zz xx.y = yz.z
xx.y = zy.z xy.x = zz.y xy.y = zz.x

x(y.xy) = zz x(y.yx) = zz x(y.zz) = xy
x(y.zz) = yx x(xy.y) = zz x(yx.y) = zz
x(yy.z) = xz x(yy.z) = zx xx.yz = yz

xx.yz = zy xy.xy = zz xy.yx = zz
xy.zz = xy xy.zz = yx (x.xy)y = zz

(x.yx)y = zz (x.yy)z = xz (x.yy)z = zx
(xx.y)z = yz (xx.y)z = zy (xy.x)y = zz
(xy.y)x = zz x.x(y.zz) = y x.y(x.zz) = y
x.y(z.yz) = x x.y(z.zy) = x x.x(yy.z) = z
x.y(yz.z) = x x.y(zy.z) = x x.y(zz.x) = y
x(xy.zz) = y x(yx.zz) = y x(yy.xz) = z
x(yy.zx) = z x(yz.yz) = x x(yz.zy) = x
x.(x.yy)z = z x.(y.yz)z = x x.(y.zy)z = x
x.(y.zz)x = y x.(yy.x)z = z x.(yy.z)x = z
x.(yz.y)z = x x.(yz.z)y = x xx.(y.yz) = z
xx.(y.zy) = z xy.(x.zz) = y xy.(y.zz) = x
xx.(yz.y) = z xx.(yz.z) = y xy.(zz.x) = y
xy.(zz.y) = x (x.xy).zz = y (x.yx).zz = y
(x.yy).xz = z (x.yy).zx = z (xx.y).yz = z
(xx.y).zy = z (xy.x).zz = y (xy.y).zz = x
x(y.xy).z = z x(y.yx).z = z x(y.zz).x = y
x(y.zz).y = x x(xy.y).z = z x(yx.y).z = z
x(yy.z).x = z x(yy.z).z = x (xx.yz)y = z
(xx.yz)z = y (xy.xy)z = z (xy.yx)z = z
(xy.zz)x = y (xy.zz)y = x (x.xy)y.z = z
(x.yx)y.z = z (x.yy)z.x = z (x.yy)z.z = x
(xx.y)z.y = z (xx.y)z.z = y (xy.x)y.z = z

(xy.y)x.z = zIn this ase we have two ∼�lasses whih are singletons and one lass withtwo elements. The representative equation is
A(x, B(x, y)) = C(y, D(z, z)) (7)and its solution is given in the following theorem.



Quadrati equations with three variables 265Theorem 4.9. A general solution of the equation (7) on a set S is givenby:






















A(x, y) = L
(23)
1 (λ1x, ̺1y)

B(x, y) = ̺−1
1 L1(λ2x, ̺2y)

C(x, y) = L3(λ3x, ̺3y)

D(x, y) = ̺−1
3 U(x, y)where:� L1 and L3 are arbitrary loops on S with a ommon identity e,� U is an unipotent quasigroup with the idempotent e,� λ1, ̺1, λ2, ̺2, λ3, ̺3 are arbitrary permutations of S suh that λ1 = λ2and ̺2 = λ3.Proof. 1) Let quasigroups A, B, C, D be given by the formulas above. Then

A(x, B(x, y)) = L
(23)
1 (λ1x, ̺̺−1L1(λ2x, ̺2y)) = L

(23)
1 (λ2x, L1(λ2x, ̺2y)) =

̺2y = λ3y = L3(λ3y, e) = L3(λ3y, ̺3̺
−1
3 U(z, z)) = C(y, D(z, z)). There-fore the quadruple of suh quasigroups is a solution to (7).2) Let a quadruple of partiular quasigroups A, B, C, D be a solutionto (7). Let p, q, r be arbitrary but �xed elements from S. De�ne b =

B(p, q), d = D(r, r) and e = A(p, b). Fixing x and y in the equation yields
C(q, d) = e. De�ne A2x = A(p, x), B1x = B(x, q), B2x = B(p, x), C1x =
C(x, d) and C2x = C(q, x) and their various ompositions: λ1 = λ2 =
A2B1, ̺1 = A2, ̺2 = A2B2, λ3 = C1, ̺3 = C2. Equation (7) is equivalent tothe system:











A(x, B(x, y)) = λ3y

C(y, d) = ̺2y

̺3D(z, z) = e .Moreover, ̺2 = λ3.By the Lemma 4.2, there is a unipotent quasigroup U suh that D(x, y) =
̺3U(x, y) with a unipotent e. Also, by the Lemma , there is a loop L3 withthe identity e suh that C(x, y) = L3(λ3x, ̺3y). If we de�ne a quasigroup
L1 by L1(u, v) = A(23)(λ1u, ̺1v), then it is a loop with the identity e and
A(x, y) = L

(23)
1 (λ1x, ̺1y), B(x, y) = ̺1L1(λ2x, ̺2y).The rest of the requirements of the Theorem are satis�ed too, whihompletes the proof.



266 A. KrapeºThere are 114 equations orresponding to the graph H4.
x.xy = z.yz x.xy = z.zy x.yx = z.yz
x.yx = z.zy x.yz = x.yz x.yz = x.zy

xy.x = z.yz xy.x = z.zy xy.y = z.xz
xy.y = z.zx xy.z = z.xy xy.z = z.yx
xy.x = yz.z xy.x = zy.z xy.y = xz.z
xy.y = zx.z xy.z = xy.z xy.z = yx.z

x(x.yz) = yz x(x.yz) = zy x(y.yz) = xz
x(y.yz) = zx x(y.zy) = xz x(y.zy) = zx
x(yz.x) = yz x(yz.x) = zy x(yz.y) = xz
x(yz.y) = zx x(yz.z) = xy x(yz.z) = yx
(x.xy)z = yz (x.xy)z = zy (x.yx)z = yz
(x.yx)z = zy (x.yz)x = yz (x.yz)x = zy
(xy.x)z = yz (xy.x)z = zy (xy.y)z = xz
(xy.y)z = zx (xy.z)z = xy (xy.z)z = yx
x.x(y.yz) = z x.x(y.zy) = z x.y(y.xz) = z
x.y(y.zx) = z x.y(z.xz) = y x.y(z.zx) = y
x.x(yz.y) = z x.x(yz.z) = y x.y(xz.y) = z
x.y(xz.z) = y x.y(zx.y) = z x.y(zx.z) = y
x.(y.xy)z = z x.(y.xz)y = z x.(y.yx)z = z
x.(y.yz)x = z x.(y.zx)y = z x.(y.zy)x = z
x.(xy.y)z = z x.(xy.z)z = y x.(yx.y)z = z
x.(yx.z)z = y x.(yz.y)x = z x.(yz.z)x = y
xy.(z.xy) = z xy.(z.xz) = y xy.(z.yx) = z
xy.(z.yz) = x xy.(z.zx) = y xy.(z.zy) = x
xy.(xy.z) = z xy.(xz.z) = y xy.(yx.z) = z
xy.(yz.z) = x xy.(zx.z) = y xy.(zy.z) = x
(x.xy).yz = z (x.xy).zy = z (x.yx).yz = z
(x.yx).zy = z (x.yz).yz = x (x.yz).zy = x
(xy.x).yz = z (xy.x).zy = z (xy.y).xz = z
(xy.y).zx = z (xy.z).xy = z (xy.z).yx = z
x(x.yz).y = z x(x.yz).z = y x(y.yz).x = z
x(y.yz).z = x x(y.zy).x = z x(y.zy).z = x
x(yz.x).y = z x(yz.x).z = y x(yz.y).x = z
x(yz.y).z = x x(yz.z).x = y x(yz.z).y = x
(x.xy)z.y = z (x.xy)z.z = y (x.yx)z.y = z
(x.yx)z.z = y (x.yz)x.y = z (x.yz)x.z = y
(xy.x)z.y = z (xy.x)z.z = y (xy.y)z.x = z
(xy.y)z.z = x (xy.z)z.x = y (xy.z)z.y = x



Quadrati equations with three variables 267There are two ∼�lasses with two elements eah. The representative equa-tion is
A(x, B(y, z)) = C(x, D(y, z)) (8)and its solution is given in the following theorem.Theorem 4.10. A general solution of the equation (8) on a set S is givenby:























A(x, y) = L1(λ1x, ̺1y)

B(x, y) = ̺−1
1 L2(λ2x, ̺2y)

C(x, y) = L1(λ3x, ̺3y)

D(x, y) = ̺−1
3 L2(λ4x, ̺4y)where:� L1 and L2 are arbitrary loops on S with a ommon unit e,� λ1, ̺1, λ2, ̺2, λ3, ̺3, λ4, ̺4 are arbitrary permutations of S suh that

λ1 = λ3, λ2 = λ4, ̺2 = ̺4.Proof. 1) Let quasigroups A, B, C and D be given by the formulas above.Then
A(x, B(y, z)) = L1(λ1x, ̺1̺

−1
1 L2(λ2y, ̺2z))

= L1(λ3x, ̺3̺
−1
3 L2(λ4y, ̺4z)) = C(x, D(y, z))and the quadruple A, B, C, D is a solution to (8).2) Let a quadruple A, B, C, D of quasigroups be a solution to (8) and

p, q, r arbitrary �xed elements from S. De�ne b = B(q, r), e = A(p, b) and
d = D(q, r). It follows that C(p, d) = e.De�ne also λ1x = A(x, b), ̺1x = A(p, x), λ2x = ̺1B(x, r), ̺2x =
̺1B(q, x), λ3x = C(x, d), ̺3x = C(p, x), λ4x = ̺3D(x, r), and ̺4x =
̺3D(q, x). It follows that λ1x = A(x, b) = A(x, B(q, r)) = C(x, D(q, r)) =
C(x, d) = λ3x and λ2y = ̺1B(y, r) = A(p, B(y, r)) = C(p, D(y, r)) =
̺3D(y, r) = λ4y. Analogously ̺2z = ̺4z.Let us de�ne quasigroups L1(u, v) = A(λ−1

1 u, ̺−1
1 v) and L2(u, v) =

̺1B(λ−1
2 u, ̺−1

2 v). It is easy to hek that L1 and L2 are both loops witha ommon identity e. Trivially A(x, y) = L1(λ1x, ̺1y) and B(x, y) =
̺−1
1 L2(λ2x, ̺2y). Also C(x, ̺−1

3 λ4y) = C(x, ̺−1
3 ̺3D(y, r)) = C(x, D(y, r))

= A(x, B(y, r)) = A(x, ̺−1
1 ̺1B(y, r)) = A(x, ̺−1

1 λ2y) = L1(λ1x, ̺1̺
−1
1 λ2y)

= L1(λ3x, ̺3̺
−1
3 λ4y). Consequently C(x, y) = L1(λ3x, ̺3y).Finally, D(y, z) = ̺−1

3 ̺3D(y, z) = ̺−1
3 C(p, D(y, z)) = ̺−1

3 A(p, B(y, z))
= ̺−1

3 ̺1B(y, z) = ̺−1
3 L2(λ2y, ̺2z) = ̺−1

3 L2(λ4y, ̺4z).



268 A. KrapeºThere are 100 equations orresponding to the graph K4.
x.yz = y.xz x.yz = y.zx x.yz = z.xy
x.yz = z.yx xy.z = x.yz xy.z = x.zy

xy.z = y.xz xy.z = y.zx xy.z = xz.y
xy.z = yz.x xy.z = zx.y xy.z = zy.x

x(y.xz) = yz x(y.xz) = zy x(y.zx) = yz
x(y.zx) = zy x(xy.z) = yz x(xy.z) = zy
x(yx.z) = yz x(yx.z) = zy xy.xz = yz

xy.xz = zy xy.yz = xz xy.yz = zx
xy.zx = yz xy.zx = zy xy.zy = xz
xy.zy = zx (x.yz)y = xz (x.yz)y = zx

(x.yz)z = xy (x.yz)z = yx (xy.z)x = yz
(xy.z)x = zy (xy.z)y = xz (xy.z)y = zx
x.y(x.yz) = z x.y(x.zy) = z x.y(z.xy) = z
x.y(z.yx) = z x.y(xy.z) = z x.y(yx.z) = z
x.y(yz.x) = z x.y(zy.x) = z x(xy.yz) = z
x(xy.zy) = z x(yx.yz) = z x(yx.zy) = z
x(yz.xy) = z x(yz.xz) = y x(yz.yx) = z
x(yz.zx) = y x.(x.yz)y = z x.(x.yz)z = y
x.(y.xz)z = y x.(y.zx)z = y x.(xy.z)y = z
x.(yx.z)y = z x.(yz.x)y = z x.(yz.x)z = y
xy.(x.yz) = z xy.(x.zy) = z xy.(y.xz) = z
xy.(y.zx) = z xy.(xz.y) = z xy.(yz.x) = z
xy.(zx.y) = z xy.(zy.x) = z (x.yz).xy = z
(x.yz).xz = y (x.yz).yx = z (x.yz).zx = y
(xy.z).xz = y (xy.z).yz = x (xy.z).zx = y
(xy.z).zy = x x(y.xz).y = z x(y.xz).z = y
x(y.zx).y = z x(y.zx).z = y x(xy.z).y = z
x(xy.z).z = y x(yx.z).y = z x(yx.z).z = y
(xy.xz)y = z (xy.xz)z = y (xy.yz)x = z
(xy.yz)z = x (xy.zx)y = z (xy.zx)z = y
(xy.zy)x = z (xy.zy)z = x (x.yz)y.x = z
(x.yz)y.z = x (x.yz)z.x = y (x.yz)z.y = x
(xy.z)x.y = z (xy.z)x.z = y (xy.z)y.x = z

(xy.z)y.z = xThere is just one ∼�lass with four elements. The representative equationis
A(B(x, y), z) = C(x, D(y, z)) (9)



Quadrati equations with three variables 269and its solution is given in the following theorem.Theorem 4.11 (Azél, Belousov, Hosszú [1℄). A general solution of thegeneralized assoiativity equation (9) on a set S is given by:






















A(x, y) = λ1x · ̺1y

B(x, y) = λ−1
1 (λ2x · ̺2y)

C(x, y) = λ3x · ̺3y

D(x, y) = ̺−1
3 (λ4x · ̺4y)where:� · is an arbitrary group on S,� λ1, ̺1, λ2, ̺2, λ3, ̺3, λ4, ̺4 are arbitrary permutations of S suh that:

λ2 = λ3, ̺2 = λ4, ̺1 = ̺4.The results are summarized in the Table 1.PE�lass Graph Number of
∼�lasses Number ofequations Representativeequation

1 H1 4 3 (5)
2 H2 4 19 (6)
3 H3 3 94 (7)
4 H4 2 114 (8)
5 K4 1 100 (9)Table 1: Equations with 3 variables � summaryReferenes[1℄ J. Azél, V. D. Belousov, M. Hosszú, Generalized assoiativity and bi-symmetry on quasigroups, Ata Math. Aad. Si. Hungar. 11 (1960), 127 −

136.[2℄ V. D. Belousov, Foundations of the Theory of Quasigroups and Loops (Rus-sian), Nauka, Mosow, 1967.[3℄ O. Chein, H. O. P�ugfelder, J. D. H. Smith, Quasigroups and Loops:Theory and Appliations, Sigma Series in Pure Math. 9, Heldermann Verlag,Berlin, 1990.[4℄ J. Duplák, Identities and deleting maps on quasigroups, Czeh. Math. J.38(113) (1988), 1 − 7.
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