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Construction for subdirectly irreducible sloops

of cardinality n2™

Enas M. A. E |-Zayat and Magdi H. Armanious

Abstract. Guelzow [8] and similarly Armanious [1] [2] gave generalized doubling con-
structions to construct nilpotent subdirectly irreducible SQS-skeins and sloops. In [5] the
authors have given recursive construction theorems as n — 2n for subdirectly irreducible
sloops and SQS-skeins, these constructions supplies us with a subdirectly irreducible
sloop of cardinality 2n satisfying that the cardinality of the congruence class of its mono-
lith is equal to 2. In this article, we give a construction for subdirectly irreducible sloops
of cardinality n2"" having a monolith with a congruence class of cardinality 2™ for each
integer m > 2. This construction supplies us with the fact that each sloop is isomor-
phic to the homomorphic image of the constructed subdirectly irreducible sloop over its

monolith.

1. Introduction

A Steiner triple system is a pair (L; B) where L is a finite set and B is a
collection of 3-subsets called blocks of L such that every 2-subset of L is
contained in exactly one block of B (cf. [7]). Let STS(n) denote a Steiner
triple system ( briefly a triple system ) of cardinality n. It is well known
that an STS(n) exists iff n =1 or 3 (mod6) (cf. [7] and [9]).

There is one to one correspondence between STSs and sloops (Steiner
loops) (see |7] and [8]). A sloop L = (L;e,1) is a groupoid with a neutral
element 1 satisfying the identities:

rToey=yeux,
lex=ux,

ze(ey) =y.

A sloop L is called Boolean sloop if the binary operation satisfies in
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addition the associative law. Each Boolean sloop is a group that is also
called a Boolean group.

Let SL(n) denote a sloop of cardinality n. Then SL(n) exists iff n = 2
or 4 (mod6) (cf. [7], [10]). If SL(n) is Boolean, then n = 2™ for m > 1.
Notice that for any a and b € L the equation a ¢ x = b has the unique
solution x = a e (a @ x) = aeb; i.e., L is a quasigroup [6].

A subsloop N is called a normal subsloop of L if and only if :

ze(yeN)=(rxey)e N forall zye€L.

Equivalently, a subsloop N of L is normal if and only if N = [1]0 for a
congruence 6 on L (cf. [7], [10]).

In fact, there is an isomorphism between the lattice of normal subsloops
and the congruence lattice of the sloop [10]. Quackenbush has also proved
that the congruences of the sloops are permutable, regular and uniform.
Moreover, he has shown that for any finite SL(n), a subsloop N of cardi-
nality %n is normal.

Guelzow [8] and Armanious ([1], [2]) gave generalized doubling construc-
tions for nilpotent subdirectly irreducible SQS -skeins and sloops of cardi-
nality 2n. In [5] the authors gave recursive construction theorems as n — 2n
for subdiredtly irreducible sloops. All these constructions supplies us with
subdirectly irreducible sloops having a monolith 6 satisfying |[x]0| = 2 (the
minimal possible order of a proper normal subsloop). Also in these construc-
tions, the authors begin with a subdirectly irreducible SL(n) to construct
a subdirectly irreducible SL(2n) satisfying that the cardinality of the con-
gruence class of its monolith is equal 2. Armanious [3] has given another
construction of a subdirectly irreducible SL(2n). He begins with a finite
simple SL(n) to costruct a subdirectly irreducible SL(2n) having a monolith
0 with |[z]0] = n (the maximal possible order of a proper normal subsloop).

In this article, we begin with an arbitrary SL(n) for each possible value
n > 4 to construct a subdirectly irreducible SL(n2™) for each integer m > 2.
This construction enables us to construct a subdirectly irreducible sloop
having a monolith 6 satisfying that the congruence class containing the
identity is a Boolean SL(2"). Moreover, its homomorphic image modulo 6
is isomorphic to L.

In view of this result, we may construct several distinct examples of
subdirectly irreducible sloops that cannot be able to consrtuct by the well
known constructions (cf. 1], [2], [3], [5], [8])-
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2. Construction of subdirectly irreducible sloops
of cardinality n2™

Let L = (L;*,1) be an SL(n) and B = (B;e, 1) be a Boolean SL(2™), where
L={l,z1,22,...,2p—1} and B = {1,a1,az,...,a,m_, ;. In this section we
extend the sloop L to a subdireclty irreducible sloop L X, B of cardinality
n2™ having L as a homomorphic image.

We divide the set of elements of the direct product L x B into two
subsets {1, z1} x B and {z2,...,z,—1} x B. Consider the cyclic permutation
a = (a1az...a,m_,) on the set {1,a1,a9,...,a,m_,} and the characteristic
function y from the direct product L x B to B defined as follows

aea~l(a) for x=1,y=ua,

bea (b)) for z=uxz1,y=1,

ceafc) for x =21 =yandaeb=c,

1 otherwise.

The last term means that x((z,a),(y,b)) = 1 when x =y = 1, (z,a) ¢
{1,z1} x B or (y,b) ¢ {1,z1} x B.

Lemma 1. The chamcteristic function x has the following properties:

X(((L’, CL), (y7 b)) =

(1) x((z,a),(1,1)) =

(i) x((z,a),(z,a)) =

(#1) x((z,a),(y,b)) = ((y,b)( a));

(iv) x((z,a), (x*y,aebex((z, a) (,0)))) = x((z,a), (y,0)).

Proof. To prove (i), let & = z1. Then x((z1,a),(1,1)) = 1ea~1(1) = 1.
Otherwise if © # z1, then x((x,a),(1,1)) = 1.

Also in (i7), if x = z1, then x((z1,a),(z1,a)) = aeaealaea) = 1.
Otherwise, if x # z1, then x((z,a), (z,a)) = 1.

According to the definition of x, we may deduce that x((z,a), (y,b)) =
x((y,b), (z,a)) i.e., (iii) is also valid.

To prove the fourth property we consider four cases:
(1) If z =27 and y = 1, then

X(($17 a)v (1'1 * 1a aebe X((mlv CL), (1’ b)))) = X((xl,a)i((g:)l)’ (I.(O[_l(b)) (b))
)-

=bea '(b) = x((z1,a), (1,b)
(2) If z =1 and y = x1, then
X((La)’(l*xl’a.b.X((lva)’(xlvb)))) (( )v(xl’b.a l(a))
=aea !(a) =x((1,a),(z1,b)).
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(3) If z =y = x1, then

x((z1,a),(1,aebeceac))
x((z1,0), (1, a(c)) = cealc)
x((z1,a), (961, b)) = 1.

(4) Otherwise, when x = y = 1 or when (z,a) or (y,b) ¢ {1,21} x B, we

have ((z,a), (4.b)) = x(2,a), (& * y,a o b e x((z0), (4,1)))) = 1, because
{x, 2 xy} € {1,21}. This completes the proof of the lemma. O

X((xlv a): (xl *T,ae be X((xlv a)v (1‘1, ))))

Lemma 2. Let L = (L;*,1) be an arbitrary SL(n), and B = (B;e,1) be
a Boolean SL(2™) for m > 2. Also let o be a binary operation on the set
L x B defined by:

(z,a) 0 (y,0) == (x xy,a e bex((x,a),(y,b)))-
Then L x4 B = (L x B;o,(1,1)) is an SL(n2™) for each possible number
n > 4.

Proof. Let L = {1,z1,29,...,2n—1} and B = {1,a1,0a2,...,aym_,}. We
note that the operation o is the same operation of the direct product L x B
for all elements (z,a), (y,b) of the set {2, x3,...,zn_1} x B. The difference
occurs only if x,y € {1,21}.

For all (z,a), (y,b) € L x B, we have:
(1) According to Lemma 1 (i)

(z,a)o (1,1)=(x*x1,aelex((x,a),(1,1))) = (z,a).
(2) By using Lemma 1 (i7)
(r,a) o (xz,a) = (z*xx,a0aex((x,a),(z,a)))=(1,1).

(3) Using Lemma 1 (i4i) we obtain:

(z,a) 0 (y,b) = (zxy,aebex((z,a),(y,b)))
= (y*xz,beaex((y,b),(z,a)))
= (y,b) o (z,a).
(4

Lemma 1 (iv) gives:

)

(z,a) o ((z,a) o (y,b)) = (z,a) o (x xy,a e bex((x,a),(y,b)))

= Ey a)Oa-b°x((w ,a), (y,0)) e x((z,a), (z+xy,aebex((z,a),(y,b)))))
y?

(1), (2), (3) and (4) imply that Lx, B = (L x B;o,(1,1)) is asloop. O
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We note that ((z,a;)) o (x1,a5) o (z1,ar) # (x,a;) o ((x1,0a;) o (21, ax)),
for any = ¢ {1, 21} and a; # ay, i.e., the operation o is not associative even
if the operation * is associative.

In the next theorem we prove that the constructed Lx,B is a subdirectly
irreducible sloop having a monolith #; satisfying that |[(1,1)] 61| = 2™.

Theorem 3. The constructed sloop Lx,B = (L x B;o,(1,1)) is a subdi-
rectly irreducible sloop.

Proof. The projection II : (z,a) — x from L x B into L is an onto homo-
morphism and the congruence Ker Il := 0 on Lx,B is given by

0, = Utol (zi, 1), (z5,a1) ..., (xi7a2m_1)}2,

where zg = 1; so one can directly see that

[(1,1)]61 = {(1,1),(1,a1),..., (L, apm_,)}-

Now Con(L) = Con((L x4 B)/61) = [61 : 1]. Our proof will now be
complete if we show that 6; is the unique atom of Con(L X, B).

First, assume that 6; is not an atom of Con(L x, B). Then we can
find an atom ~ such that v C 6; and |[(1,1)]v] =r < |[(1,1)] 61| =2™. In
this case we get a contradiction by proving that [(1,1)]~ is not a normal
subsloop of L x, B.

Suppose that [(1,1)]y = {(1,1), (1, as,), (1,as,), ..., (1,as._,)} . We will
prove that there are two elements (z, a) (y,b) € L x B such that:

((z,a) o (y,0)) o [(1, 1)7] # (,a) o ((y,0) o [(1, D]).

It {asl,a52, RN asr_l} is an increasing subsequence of {al, a2y ..., azm_l}
and if a(as ) = as,, for all i = 1,2,...,7r — 1, then a(as, ,) = as, ¢
{asl,a52, e ,asr_l}. If {asl,a52, e ,asr_l} is increasing and not succes-
sive subsequence of {al, as,. .. ,aszl} then there exists an element a; €
{as,, sy, ... as,_, } such that a(a;) = aj41 ¢ {as,as,,...,as,_,}. For
both cases, we can always find an element (1,ax) € [(1,1)]7 such that
(1,a(ar)) ¢ [(1,1)]y (ax = as,_, for the first case, and ap = a; for the
second case).

Consider the two elements (z1,a1) and (z2,a2) with 1 # x2 # 1, and
assume that ((z2,a2) o (z1,a1)) o [(1, )]y = (z2,a2) o ((z1,a1) o [(1,1)] ),
then for the element (1,ay) (determined above) there exists an element
(1,as,) € [(1,1)] v such that

((w2,a2) o (v1,a1)) o (1,ar) = (w2,a2) o ((z1,a1) o (1,as,)).
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In this case ((x2,a2) o (z1,a1)) o (1,a;) = (x2 * x1,a2 @ a1) o (1,a;) =
(9 * 21,02 ® a1 ® ag) and (z2,a2) o ((z1,a1) o (1,as,)) = (x2,a2) o (x1,a1 ®
a Y as,)) = (z2 % x1,a2 ® a1 ® a"(as,)) we obtain a; = a~'(as,), which
implies a(ar) = as,. This contradicts the assumption that (1,a(ay)) ¢
[(1,1)]y. Hence, we may say that there is no atom v of Con(L x, B) sat-
isfying v C 601. Therefore, #; is an atom of the lattice Con(L x, B).

Secondly, 6 is the unique atom of Con(L X, B). Indeed, if 0 is another
atom of Con(Lx, B), then §;Nd = 0. Hence, one can easily see that there is
only one element (z,a1) € [(z,a1)]d with the first component x (note that
[(z,a:)]61 = {(z,1),(z,a1),...,(z,a),...,(x,aym_,)}). For this reason
we may say that the class [(1,1)]d has at most one pair (z1,a;) with first
component z1. So we have two possibilities: either

(¢) [(1,1)]6 contains only one pair (x1,a;) with first component z;, or

(7i) [(1,1)]0 has no pairs with first component z;.

For the first case, we choose two elements (z,a)&(x1,as) € L x B such
that 1 # x # z1, and ag # a; then

((z,a) o (x1,as)) o (z1,a;) = (x xx1,a @ as) o (x1,a;) = (x,a ®as e a;).
Also,
(z,a) o ((x1,as) o (z1,a;)) = (xz,a) o (1,a(as @ a;)) = (z,a ® afas ® a;)).

Since the class ((z,a) o ((x1,as))o[(1,1)]d contains at most one element
with a first component z, it follows that if ((x,a) o (z1,as)) o [(1,1)]0 =
(z,a) o ((x1,as) o [(1,1)]5), then a(as ® a;) = as ® a; hence a5 ® a; = 1,
which contradicts the choice that as # a;. This implies that [(1,1)]d is not
normal.

For the second case [(1,1)]d has no pairs with first component ;. Let
(z,a),(x,b) € [(1,1)]0 such that 1 # x # 1, and a # b Then

((x1,¢) o (w,a)) o (x,b) = (z1 *x,cea)o (x,b) = (x1,ceaeb).
Also,
(z1,¢) o ((x,a) o (z,b)) = (z1,¢) 0 (1,a 8 b) = (z1,cea '(aeb)).

By using the fact that the class ((z1,¢) o (x,a)) o[(1,1)]é contains only one
element with the first component x;, we may say that if

((z1,¢) 0 (x,a)) o [(1,1)]6 = (z1,¢) o ((z,a) o [(1,1)]5),
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then o~ '(a @b) = a b, hence a b = 1, which contradicts that a # b.
Thus [(1,1)]¢ is not a normal subsloop of L x, B. This mean that there is
no another atom 0, and 6; is the unique atom of Con(L x,, B). Therefore,
L x4 B is a subdirectly irreducible sloop. O

Note that in the constructed sloop L X, B, we may choose B a Boolean
SL(2™) for each m > 2. Therefore, as a consequence of the proof of Theorem
3, the following holds.

Corollary 4. Let B be a Boolean SL(2™) for an integer m > 2. Then the
congruence class [(1,1)]01 of the monolith 01 of the constucted subdirectly
irreducible sloop L X B is a Boolean SL(2™).

Also, Theorem 3 enable us to construct a subdirectly irreducible sloop
L x4 B having a monolith 6 satisfying that (L x, B)/ 61 = L. Then we
have the following result.

Corollary 5. Ewvery sloop L is isomorphic to the homomorphic image of
the subdirectly irreducible sloop L X, B over its monolith, for each Boolean
sloop B.

In view of these results, we may construct several distinct examples of
subdirectly irreducible sloops.

The smallest non-trivial application of our construction is of cardinal-
ity 16. Indeed, if we choose two SL(4)s, L = ({1,z1,x2,23};%,1) and
B = ({1,a,b,c};e,1), then the constructed sloop L X, B is a subdirectly
irreducible SL(16) having 3 normal sub-SL(8)s:

S = {(17 1)7 (1,&), (17 b)? (17 C), (1)1, 1)7 (‘Tlﬂ a)? (‘Tla b)? (‘Tla C)} ’

S2 = {(L 1)7 (1,&), (17 b)? (17 C)? (an 1)7 (CL‘Q,CL), (.Tg, b)a (.1'2, C)} and
S3 = {(L 1)7 (1,&), (1, b)? (1,0), (x3,1), (.%'3, a), (‘T?n b)7 (1‘3, C)} .
The constructed SL(16) corresponds to an STS(15) having 3 sub-STS(7)s.

In the classification of all subdirectly irreducible SL(32) given in [5]
there are two classes having a monolith 6; satisfying |[(1,1)]61] = 4 and 8.
The well-known constructions for subdirectly irreducible sloops given in [1],
[2], [3]. [5], [8] dose not enable us to construct examples for these classes.

In the following example we apply our construction to describe subdi-
rectly irreducible SL(32) having a monolith 6; satisfying |[(1,1)]01| =4 (or
8).
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Example. Let L be the Boolean SL(8) (or SL(4)), B be the Boolean SL(4)
(or SL(8)) and « be the cyclic permutation on the non-unit elements of B.
By apply our construction L x,, B, we get a subdirectly irreducible SL(32)
having a monolith 6; satisfying (L x, B), /01 = L = SL(8) (or SL(4)) in
which its monolith 6; satisfying |[(1,1)]01] =4 (or 8).

This example of an SL(32) corresponds to a subdirectly irreducible
SL(32) having exactly 7 normal sub-SL(16)s. (or 3 normal sub-SL(16)s).

Similarly, we can use our construction to give an example for a subdi-
rectly irreducible SL(n2™) having a monolith 6; satisfying |[(1,1)]0;] = 2™
for each possible n > 4 and each integer m > 2.
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