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Construction for subdirectly irreducible sloops

of cardinality n2m

Enas M. A. E l-Zayat and Magdi H. Armanious

Abstract. Guelzow [8] and similarly Armanious [1] [2] gave generalized doubling con-
structions to construct nilpotent subdirectly irreducible SQS-skeins and sloops. In [5] the
authors have given recursive construction theorems as n→ 2n for subdirectly irreducible
sloops and SQS-skeins, these constructions supplies us with a subdirectly irreducible
sloop of cardinality 2n satisfying that the cardinality of the congruence class of its mono-
lith is equal to 2. In this article, we give a construction for subdirectly irreducible sloops
of cardinality n2m having a monolith with a congruence class of cardinality 2m for each
integer m > 2. This construction supplies us with the fact that each sloop is isomor-
phic to the homomorphic image of the constructed subdirectly irreducible sloop over its
monolith.

1. Introduction

A Steiner triple system is a pair (L;B) where L is a �nite set and B is a
collection of 3-subsets called blocks of L such that every 2-subset of L is
contained in exactly one block of B (cf. [7]). Let STS(n) denote a Steiner
triple system ( brie�y a triple system ) of cardinality n. It is well known
that an STS(n) exists i� n ≡ 1 or 3 (mod 6) (cf. [7] and [9]).

There is one to one correspondence between STSs and sloops (Steiner
loops) (see [7] and [8]). A sloop L = (L; •, 1) is a groupoid with a neutral
element 1 satisfying the identities:

x • y = y • x,

1 • x = x,

x • (x • y) = y.

A sloop L is called Boolean sloop if the binary operation satis�es in
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addition the associative law. Each Boolean sloop is a group that is also
called a Boolean group.

Let SL(n) denote a sloop of cardinality n. Then SL(n) exists i� n ≡ 2
or 4 (mod 6) (cf. [7], [10]). If SL(n) is Boolean, then n = 2m for m > 1.
Notice that for any a and b ∈ L the equation a • x = b has the unique
solution x = a • (a • x) = a • b; i.e., L is a quasigroup [6].

A subsloop N is called a normal subsloop of L if and only if :

x • (y •N) = (x • y) •N for all x, y ∈ L.

Equivalently, a subsloop N of L is normal if and only if N = [1]θ for a
congruence θ on L (cf. [7], [10]).

In fact, there is an isomorphism between the lattice of normal subsloops
and the congruence lattice of the sloop [10]. Quackenbush has also proved
that the congruences of the sloops are permutable, regular and uniform.
Moreover, he has shown that for any �nite SL(n), a subsloop N of cardi-
nality 1

2n is normal.

Guelzow [8] and Armanious ([1], [2]) gave generalized doubling construc-
tions for nilpotent subdirectly irreducible SQS -skeins and sloops of cardi-
nality 2n. In [5] the authors gave recursive construction theorems as n → 2n
for subdiredtly irreducible sloops. All these constructions supplies us with
subdirectly irreducible sloops having a monolith θ satisfying |[x]θ| = 2 (the
minimal possible order of a proper normal subsloop). Also in these construc-
tions, the authors begin with a subdirectly irreducible SL(n) to construct
a subdirectly irreducible SL(2n) satisfying that the cardinality of the con-
gruence class of its monolith is equal 2. Armanious [3] has given another
construction of a subdirectly irreducible SL(2n). He begins with a �nite
simple SL(n) to costruct a subdirectly irreducible SL(2n) having a monolith
θ with |[x]θ| = n (the maximal possible order of a proper normal subsloop).

In this article, we begin with an arbitrary SL(n) for each possible value
n > 4 to construct a subdirectly irreducible SL(n2m) for each integer m > 2.
This construction enables us to construct a subdirectly irreducible sloop
having a monolith θ satisfying that the congruence class containing the
identity is a Boolean SL(2m). Moreover, its homomorphic image modulo θ
is isomorphic to L.

In view of this result, we may construct several distinct examples of
subdirectly irreducible sloops that cannot be able to consrtuct by the well
known constructions (cf. [1], [2], [3], [5], [8]).
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2. Construction of subdirectly irreducible sloops

of cardinality n2m

Let L = (L; ∗, 1) be an SL(n) and B = (B; •, 1) be a Boolean SL(2m), where
L = {1, x1, x2, . . . , xn−1} and B = {1, a1, a2, . . . , a2m−1}. In this section we
extend the sloop L to a subdireclty irreducible sloop L×α B of cardinality
n2m having L as a homomorphic image.

We divide the set of elements of the direct product L × B into two
subsets {1, x1}×B and {x2, . . . , xn−1}×B. Consider the cyclic permutation
α = (a1a2 . . . a2m−1) on the set {1, a1, a2, . . . , a2m−1} and the characteristic
function χ from the direct product L× B to B de�ned as follows

χ((x, a), (y, b)) =


a • α−1(a) for x = 1, y = x1,
b • α−1(b) for x = x1, y = 1,
c • α(c) for x = x1 = y and a • b = c,
1 otherwise.

The last term means that χ((x, a), (y, b)) = 1 when x = y = 1, (x, a) /∈
{1, x1} ×B or (y, b) /∈ {1, x1} ×B.

Lemma 1. The characteristic function χ has the following properties:

(i) χ((x, a), (1, 1)) = 1;
(ii) χ((x, a), (x, a)) = 1;

(iii) χ((x, a), (y, b)) = χ((y, b), (x, a));
(iv) χ((x, a), (x ∗ y, a • b • χ((x, a), (y, b)))) = χ((x, a), (y, b)).

Proof. To prove (i), let x = x1. Then χ((x1, a), (1, 1)) = 1 • α−1(1) = 1.
Otherwise if x 6= x1, then χ((x, a), (1, 1)) = 1.

Also in (ii), if x = x1, then χ((x1, a), (x1, a)) = a • a • α(a • a) = 1.
Otherwise, if x 6= x1, then χ((x, a), (x, a)) = 1.

According to the de�nition of χ, we may deduce that χ((x, a), (y, b)) =
χ((y, b), (x, a)) i.e., (iii) is also valid.

To prove the fourth property we consider four cases:
(1) If x = x1 and y = 1, then

χ((x1, a), (x1 ∗ 1, a • b • χ((x1, a), (1, b)))) = χ((x1, a), (x1, a • α−1(b))
= a•a •α−1(b))•α(a•a •α−1(b))
= b • α−1(b) = χ((x1, a), (1, b)).

(2) If x = 1 and y = x1, then

χ((1, a), (1 ∗ x1, a • b • χ((1, a), (x1, b)))) = χ((1, a), (x1, b • α−1(a))
= a • α−1(a) = χ((1, a), (x1, b)).
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(3) If x = y = x1, then

χ((x1, a), (x1 ∗ x1, a • b • χ((x1, a), (x1, b)))) = χ((x1, a), (1, a • b • c • α(c))
= χ((x1, a), (1, α(c)) = c • α(c)
= χ((x1, a), (x1, b)) = 1.

(4) Otherwise, when x = y = 1 or when (x, a) or (y, b) /∈ {1, x1} × B, we
have χ((x, a), (y, b)) = χ(x, a), (x ∗ y, a • b • χ((x, a), (y, b)))) = 1, because
{x, x ∗ y} * {1, x1}. This completes the proof of the lemma.

Lemma 2. Let L = (L; ∗, 1) be an arbitrary SL(n), and B = (B; •, 1) be

a Boolean SL(2m) for m > 2. Also let ◦ be a binary operation on the set

L×B de�ned by:

(x, a) ◦ (y, b) := (x ∗ y, a • b • χ((x, a), (y, b))).

Then L ×a B = (L × B; ◦, (1, 1)) is an SL(n2m) for each possible number

n > 4.

Proof. Let L = {1, x1, x2, . . . , xn−1} and B = {1, a1, a2, . . . , a2m−1}. We
note that the operation ◦ is the same operation of the direct product L×B
for all elements (x, a), (y, b) of the set {x2, x3, . . . , xn−1}×B. The di�erence
occurs only if x, y ∈ {1, x1}.

For all (x, a), (y, b) ∈ L×B, we have:
(1) According to Lemma 1 (i)

(x, a) ◦ (1, 1) = (x ∗ 1, a • 1 • χ((x, a), (1, 1))) = (x, a).

(2) By using Lemma 1 (ii)

(x, a) ◦ (x, a) = (x ∗ x, a • a • χ((x, a), (x, a))) = (1, 1).

(3) Using Lemma 1 (iii) we obtain:

(x, a) ◦ (y, b) = (x ∗ y, a • b • χ((x, a), (y, b)))
= (y ∗ x, b • a • χ((y, b), (x, a)))
= (y, b) ◦ (x, a).

(4) Lemma 1 (iv) gives:

(x, a) ◦ ((x, a) ◦ (y, b)) = (x, a) ◦ (x ∗ y, a • b • χ((x, a), (y, b)))
= (y, a • a • b • χ((x, a), (y, b)) • χ((x, a), (x ∗ y, a • b • χ((x, a), (y, b)))))
= (y, b).

(1), (2), (3) and (4) imply that L×α B = (L×B; ◦, (1, 1)) is a sloop.
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We note that ((x, ai)) ◦ (x1, aj) ◦ (x1, ak) 6= (x, ai) ◦ ((x1, aj) ◦ (x1, ak)),
for any x /∈ {1, x1} and aj 6= ak, i.e., the operation ◦ is not associative even
if the operation ∗ is associative.

In the next theorem we prove that the constructed L×αB is a subdirectly
irreducible sloop having a monolith θ1 satisfying that |[(1, 1)] θ1| = 2m .

Theorem 3. The constructed sloop L×αB = (L × B; ◦, (1, 1)) is a subdi-

rectly irreducible sloop.

Proof. The projection Π : (x, a) → x from L × B into L is an onto homo-
morphism and the congruence Ker Π := θ1 on L×αB is given by

θ1 = ∪n−1
i=0

{
(xi, 1) , (xi, a1) , . . . ,

(
xi, a2m−1

)}2
,

where x0 = 1; so one can directly see that

[(1, 1)]θ1 =
{
(1, 1), (1, a1), . . . , (1, a2m−1)

}
.

Now Con(L) ∼= Con((L ×α B)/θ1) ∼= [θ1 : 1]. Our proof will now be
complete if we show that θ1 is the unique atom of Con(L×α B).

First, assume that θ1 is not an atom of Con(L ×α B). Then we can
�nd an atom γ such that γ ⊂ θ1 and |[(1, 1)] γ| = r < |[(1, 1)] θ1| = 2m. In
this case we get a contradiction by proving that [(1, 1)] γ is not a normal
subsloop of L×α B .

Suppose that [(1, 1)]γ =
{
(1, 1), (1, as1), (1, as2), . . . , (1, asr−1)

}
. We will

prove that there are two elements (x, a), (y, b) ∈ L×B such that:

((x, a) ◦ (y, b)) ◦ [(1, 1)γ] 6= (x, a) ◦ ((y, b) ◦ [(1, 1)]γ).

If
{
as1 , as2 , . . . , asr−1

}
is an increasing subsequence of

{
a1, a2, . . . , a2m−1

}
and if α(asi

) = asi+1 for all i = 1, 2, . . . , r − 1, then α(asr−1) = asr /∈{
as1 , as2 , . . . , asr−1

}
. If

{
as1 , as2 , . . . , asr−1

}
is increasing and not succes-

sive subsequence of
{
a1, a2, . . . , a2m−1

}
then there exists an element aj ∈{

as1 , as2 , . . . , asr−1

}
such that α(aj) = aj+1 /∈

{
as1 , as2 , . . . , asr−1

}
. For

both cases, we can always �nd an element (1, ak) ∈ [(1, 1)] γ such that
(1, α(ak)) /∈ [(1, 1)] γ (ak = asr−1 for the �rst case, and ak = aj for the
second case).

Consider the two elements (x1, a1) and (x2, a2) with x1 6= x2 6= 1, and
assume that ((x2, a2) ◦ (x1, a1)) ◦ [(1, 1)] γ = (x2, a2) ◦ ((x1, a1) ◦ [(1, 1)] γ),
then for the element (1, ak) (determined above) there exists an element
(1, as1) ∈ [(1, 1)] γ such that

((x2, a2) ◦ (x1, a1)) ◦ (1, ak) = (x2, a2) ◦ ((x1, a1) ◦ (1, as1)).
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In this case ((x2, a2) ◦ (x1, a1)) ◦ (1, ak) = (x2 ∗ x1, a2 • a1) ◦ (1, ak) =
(x2 ∗ x1, a2 • a1 • ak) and (x2, a2) ◦ ((x1, a1) ◦ (1, as1)) = (x2, a2) ◦ (x1, a1 •
α−1(as1)) = (x2 ∗ x1, a2 • a1 • α−1(as1)) we obtain ak = α−1(as1), which
implies α(ak) = ast . This contradicts the assumption that (1, α(ak)) /∈
[(1, 1)]γ. Hence, we may say that there is no atom γ of Con(L ×α B) sat-
isfying γ ⊂ θ1. Therefore, θ1 is an atom of the lattice Con(L×α B).

Secondly, θ1 is the unique atom of Con(L×α B). Indeed, if δ is another
atom of Con(L×αB), then θ1∩δ = 0. Hence, one can easily see that there is
only one element (x, a1) ∈ [(x, a1)]δ with the �rst component x (note that
[(x, ai)] θ1 =

{
(x, 1), (x, a1), . . . , (x, ai), . . . , (x, a2m−1)

}
). For this reason

we may say that the class [(1, 1)]δ has at most one pair (x1, ai) with �rst
component x1. So we have two possibilities: either

(i) [(1, 1)]δ contains only one pair (x1, ai) with �rst component x1, or
(ii) [(1, 1)]δ has no pairs with �rst component x1.
For the �rst case, we choose two elements (x, a)&(x1, as) ∈ L×B such

that 1 6= x 6= x1, and as 6= ai then

((x, a) ◦ (x1, as)) ◦ (x1, ai) = (x ∗ x1, a • as) ◦ (x1, ai) = (x, a • as • ai).

Also,

(x, a) ◦ ((x1, as) ◦ (x1, ai)) = (x, a) ◦ (1, α(as • ai)) = (x, a • α(as • ai)).

Since the class ((x, a) ◦ ((x1, as)) ◦ [(1, 1)]δ contains at most one element
with a �rst component x, it follows that if ((x, a) ◦ (x1, as)) ◦ [(1, 1)]δ =
(x, a) ◦ ((x1, as) ◦ [(1, 1)]δ), then α(as • ai) = as • ai hence as • ai = 1,
which contradicts the choice that as 6= ai. This implies that [(1, 1)]δ is not
normal.

For the second case [(1, 1)]δ has no pairs with �rst component x1. Let
(x, a), (x, b) ∈ [(1, 1)]δ such that 1 6= x 6= x1, and a 6= b Then

((x1, c) ◦ (x, a)) ◦ (x, b) = (x1 ∗ x, c • a) ◦ (x, b) = (x1, c • a • b).

Also,

(x1, c) ◦ ((x, a) ◦ (x, b)) = (x1, c) ◦ (1, a • b) = (x1, c • α−1(a • b)).

By using the fact that the class ((x1, c) ◦ (x, a)) ◦ [(1, 1)]δ contains only one
element with the �rst component x1, we may say that if

((x1, c) ◦ (x, a)) ◦ [(1, 1)]δ = (x1, c) ◦ ((x, a) ◦ [(1, 1)]δ),
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then α−1(a • b) = a • b, hence a • b = 1, which contradicts that a 6= b.
Thus [(1, 1)]δ is not a normal subsloop of L×α B . This mean that there is
no another atom δ, and θ1 is the unique atom of Con(L×α B). Therefore,
L×α B is a subdirectly irreducible sloop.

Note that in the constructed sloop L×α B , we may choose B a Boolean
SL(2m) for each m > 2. Therefore, as a consequence of the proof of Theorem
3, the following holds.

Corollary 4. Let B be a Boolean SL(2m) for an integer m > 2. Then the

congruence class [(1, 1)]θ1 of the monolith θ1 of the constucted subdirectly

irreducible sloop L×α B is a Boolean SL(2m).

Also, Theorem 3 enable us to construct a subdirectly irreducible sloop
L ×α B having a monolith θ1 satisfying that (L ×α B)/ θ1

∼= L. Then we
have the following result.

Corollary 5. Every sloop L is isomorphic to the homomorphic image of

the subdirectly irreducible sloop L×α B over its monolith, for each Boolean

sloop B.

In view of these results, we may construct several distinct examples of
subdirectly irreducible sloops.

The smallest non-trivial application of our construction is of cardinal-
ity 16. Indeed, if we choose two SL(4)s, L = ({1, x1, x2, x3}; ∗, 1) and
B = ({1, a, b, c}; •, 1), then the constructed sloop L ×α B is a subdirectly
irreducible SL(16) having 3 normal sub-SL(8)s:

S1 = {(1, 1), (1, a), (1, b), (1, c), (x1, 1), (x1, a), (x1, b), (x1, c)} ,

S2 = {(1, 1), (1, a), (1, b), (1, c), (x2, 1), (x2, a), (x2, b), (x2, c)} and

S3 = {(1, 1), (1, a), (1, b), (1, c), (x3, 1), (x3, a), (x3, b), (x3, c)} .

The constructed SL(16) corresponds to an STS(15) having 3 sub-STS(7)s.

In the classi�cation of all subdirectly irreducible SL(32) given in [5]
there are two classes having a monolith θ1 satisfying |[(1, 1)]θ1| = 4 and 8.
The well-known constructions for subdirectly irreducible sloops given in [1],
[2], [3], [5], [8] dose not enable us to construct examples for these classes.

In the following example we apply our construction to describe subdi-
rectly irreducible SL(32) having a monolith θ1 satisfying |[(1, 1)]θ1| = 4 (or
8).
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Example. Let L be the Boolean SL(8) (or SL(4)), B be the Boolean SL(4)
(or SL(8)) and α be the cyclic permutation on the non-unit elements of B.
By apply our construction L×α B, we get a subdirectly irreducible SL(32)
having a monolith θ1 satisfying (L ×α B)�θ1

∼= L ∼= SL(8) (or SL(4)) in
which its monolith θ1 satisfying |[(1, 1)]θ1| = 4 (or 8).

This example of an SL(32) corresponds to a subdirectly irreducible
SL(32) having exactly 7 normal sub-SL(16)s. (or 3 normal sub-SL(16)s).

Similarly, we can use our construction to give an example for a subdi-
rectly irreducible SL(n2m) having a monolith θ1 satisfying |[(1, 1)]θ1| = 2m

for each possible n > 4 and each integer m > 2.
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