Construction for subdirectly irreducible sloops of cardinality n2^m

Enas M. A. E I-Zayat and Magdi H. Armanious

Abstract. Guelzow [8] and similarly Armanious [1] [2] gave generalized doubling constructions to construct nilpotent subdirectly irreducible SQS-skeins and sloops. In [5] the authors have given recursive construction theorems as $n \to 2n$ for subdirectly irreducible sloops and SQS-skeins, these constructions supplies us with a subdirectly irreducible sloop of cardinality 2n satisfying that the cardinality of the congruence class of its monolith is equal to 2. In this article, we give a construction for subdirectly irreducible sloops of cardinality $n2^m$ having a monolith with a congruence class of cardinality 2^m for each integer $m \ge 2$. This construction supplies us with the fact that each sloop is isomorphic to the homomorphic image of the constructed subdirectly irreducible sloop over its monolith.

1. Introduction

A Steiner triple system is a pair (L; B) where L is a finite set and B is a collection of 3-subsets called blocks of L such that every 2-subset of L is contained in exactly one block of B (cf. [7]). Let $\mathbf{STS}(n)$ denote a Steiner triple system (briefly a triple system) of cardinality n. It is well known that an $\mathbf{STS}(n)$ exists iff $n \equiv 1$ or $3 \pmod{6}$ (cf. [7] and [9]).

There is one to one correspondence between **STSs** and sloops (Steiner loops) (see [7] and [8]). A *sloop* $L = (L; \bullet, 1)$ is a groupoid with a neutral element 1 satisfying the identities:

$$\begin{aligned} x \bullet y &= y \bullet x, \\ 1 \bullet x &= x, \\ x \bullet (x \bullet y) &= y. \end{aligned}$$

A sloop L is called *Boolean sloop* if the binary operation satisfies in

2000 Mathematics Subject Classification: 05B07, 20N05

Keywords: Steiner loop, sloop, subdirectly irreducible sloop, Steiner triple system.

addition the associative law. Each Boolean sloop is a group that is also called a Boolean group.

Let $\mathbf{SL}(n)$ denote a sloop of cardinality n. Then $\mathbf{SL}(n)$ exists iff $n \equiv 2$ or $4 \pmod{6}$ (cf. [7], [10]). If $\mathbf{SL}(n)$ is Boolean, then $n = 2^m$ for $m \ge 1$. Notice that for any a and $b \in L$ the equation $a \bullet x = b$ has the unique solution $x = a \bullet (a \bullet x) = a \bullet b$; i.e., L is a quasigroup [6].

A subsloop N is called a *normal subsloop* of L if and only if :

$$x \bullet (y \bullet N) = (x \bullet y) \bullet N$$
 for all $x, y \in L$.

Equivalently, a subsloop N of L is normal if and only if $N = [1]\theta$ for a congruence θ on L (cf. [7], [10]).

In fact, there is an isomorphism between the lattice of normal subsloops and the congruence lattice of the sloop [10]. Quackenbush has also proved that the congruences of the sloops are permutable, regular and uniform. Moreover, he has shown that for any finite $\mathbf{SL}(n)$, a subsloop N of cardinality $\frac{1}{2}n$ is normal.

Guelzow [8] and Armanious ([1], [2]) gave generalized doubling constructions for nilpotent subdirectly irreducible **SQS** -skeins and sloops of cardinality 2n. In [5] the authors gave recursive construction theorems as $n \to 2n$ for subdiredtly irreducible sloops. All these constructions supplies us with subdirectly irreducible sloops having a monolith θ satisfying $||x|\theta| = 2$ (the minimal possible order of a proper normal subsloop). Also in these constructions, the authors begin with a subdirectly irreducible **SL**(n) to construct a subdirectly irreducible **SL**(2n) satisfying that the cardinality of the congruence class of its monolith is equal 2. Armanious [3] has given another construction of a subdirectly irreducible **SL**(2n). He begins with a finite simple **SL**(n) to costruct a subdirectly irreducible **SL**(2n) having a monolith θ with $||x|\theta| = n$ (the maximal possible order of a proper normal subsloop).

In this article, we begin with an arbitrary $\mathbf{SL}(n)$ for each possible value $n \ge 4$ to construct a subdirectly irreducible $\mathbf{SL}(n2^m)$ for each integer $m \ge 2$. This construction enables us to construct a subdirectly irreducible sloop having a monolith θ satisfying that the congruence class containing the identity is a Boolean $\mathbf{SL}(2^m)$. Moreover, its homomorphic image modulo θ is isomorphic to L.

In view of this result, we may construct several distinct examples of subdirectly irreducible sloops that cannot be able to construct by the well known constructions (cf. [1], [2], [3], [5], [8]).

2. Construction of subdirectly irreducible sloops of cardinality n2^m

Let L = (L; *, 1) be an $\mathbf{SL}(n)$ and $B = (B; \bullet, 1)$ be a Boolean $\mathbf{SL}(2^m)$, where $L = \{1, x_1, x_2, \ldots, x_{n-1}\}$ and $B = \{1, a_1, a_2, \ldots, a_{2m-1}\}$. In this section we extend the sloop L to a subdirectly irreducible sloop $L \times_{\alpha} B$ of cardinality $n2^m$ having L as a homomorphic image.

We divide the set of elements of the direct product $L \times B$ into two subsets $\{1, x_1\} \times B$ and $\{x_2, \ldots, x_{n-1}\} \times B$. Consider the cyclic permutation $\alpha = (a_1 a_2 \ldots a_{2m-1})$ on the set $\{1, a_1, a_2, \ldots, a_{2m-1}\}$ and the characteristic function χ from the direct product $L \times B$ to B defined as follows

$$\chi((x,a),(y,b)) = \begin{cases} a \bullet \alpha^{-1}(a) & \text{for } x = 1, y = x_1, \\ b \bullet \alpha^{-1}(b) & \text{for } x = x_1, y = 1, \\ c \bullet \alpha(c) & \text{for } x = x_1 = y \text{ and } a \bullet b = c, \\ 1 & \text{otherwise.} \end{cases}$$

The last term means that $\chi((x,a),(y,b)) = 1$ when x = y = 1, $(x,a) \notin \{1, x_1\} \times B$ or $(y, b) \notin \{1, x_1\} \times B$.

Lemma 1. The characteristic function χ has the following properties:

- (i) $\chi((x,a),(1,1)) = 1;$
- (*ii*) $\chi((x, a), (x, a)) = 1;$
- (*iii*) $\chi((x, a), (y, b)) = \chi((y, b), (x, a));$
- $(iv) \quad \chi((x,a),(x*y,a\bullet b\bullet \chi((x,a),(y,b))))=\chi((x,a),(y,b)).$

Proof. To prove (i), let $x = x_1$. Then $\chi((x_1, a), (1, 1)) = 1 \bullet \alpha^{-1}(1) = 1$. Otherwise if $x \neq x_1$, then $\chi((x, a), (1, 1)) = 1$.

Also in (*ii*), if $x = x_1$, then $\chi((x_1, a), (x_1, a)) = a \bullet a \bullet \alpha(a \bullet a) = 1$. Otherwise, if $x \neq x_1$, then $\chi((x, a), (x, a)) = 1$.

According to the definition of χ , we may deduce that $\chi((x, a), (y, b)) = \chi((y, b), (x, a))$ i.e., (*iii*) is also valid.

To prove the fourth property we consider four cases:

(1) If $x = x_1$ and y = 1, then

$$\chi((x_1, a), (x_1 * 1, a \bullet b \bullet \chi((x_1, a), (1, b)))) = \chi((x_1, a), (x_1, a \bullet \alpha^{-1}(b)))$$

= $a \bullet a \bullet \alpha^{-1}(b)) \bullet \alpha(a \bullet a \bullet \alpha^{-1}(b))$
= $b \bullet \alpha^{-1}(b) = \chi((x_1, a), (1, b)).$

(2) If x = 1 and $y = x_1$, then

$$\chi((1,a), (1 * x_1, a \bullet b \bullet \chi((1,a), (x_1, b)))) = \chi((1,a), (x_1, b \bullet \alpha^{-1}(a)))$$

= $a \bullet \alpha^{-1}(a) = \chi((1,a), (x_1, b)).$

(3) If $x = y = x_1$, then

$$\chi((x_1, a), (x_1 * x_1, a \bullet b \bullet \chi((x_1, a), (x_1, b)))) = \chi((x_1, a), (1, a \bullet b \bullet c \bullet \alpha(c)))$$

= $\chi((x_1, a), (1, \alpha(c)) = c \bullet \alpha(c))$
= $\chi((x_1, a), (x_1, b)) = 1.$

(4) Otherwise, when x = y = 1 or when (x, a) or $(y, b) \notin \{1, x_1\} \times B$, we have $\chi((x, a), (y, b)) = \chi(x, a), (x * y, a \bullet b \bullet \chi((x, a), (y, b)))) = 1$, because $\{x, x * y\} \nsubseteq \{1, x_1\}$. This completes the proof of the lemma. \Box

Lemma 2. Let L = (L; *, 1) be an arbitrary $\mathbf{SL}(n)$, and $B = (B; \bullet, 1)$ be a Boolean $\mathbf{SL}(2^m)$ for $m \ge 2$. Also let \circ be a binary operation on the set $L \times B$ defined by:

$$(x,a) \circ (y,b) := (x * y, a \bullet b \bullet \chi((x,a), (y,b))).$$

Then $L \times_a B = (L \times B; \circ, (1, 1))$ is an $\mathbf{SL}(n2^m)$ for each possible number $n \ge 4$.

Proof. Let $L = \{1, x_1, x_2, \ldots, x_{n-1}\}$ and $B = \{1, a_1, a_2, \ldots, a_{2m-1}\}$. We note that the operation \circ is the same operation of the direct product $L \times B$ for all elements (x, a), (y, b) of the set $\{x_2, x_3, \ldots, x_{n-1}\} \times B$. The difference occurs only if $x, y \in \{1, x_1\}$.

For all $(x, a), (y, b) \in L \times B$, we have:

(1) According to Lemma 1 (i)

$$(x,a) \circ (1,1) = (x*1, a \bullet 1 \bullet \chi((x,a), (1,1))) = (x,a).$$

(2) By using Lemma 1 (ii)

$$(x, a) \circ (x, a) = (x * x, a \bullet a \bullet \chi((x, a), (x, a))) = (1, 1).$$

(3) Using Lemma 1 (iii) we obtain:

$$\begin{aligned} (x,a) \circ (y,b) &= (x * y, a \bullet b \bullet \chi((x,a),(y,b))) \\ &= (y * x, b \bullet a \bullet \chi((y,b),(x,a))) \\ &= (y,b) \circ (x,a). \end{aligned}$$

- (4) Lemma 1 (iv) gives:
 - $\begin{aligned} & (x,a) \circ ((x,a) \circ (y,b)) = (x,a) \circ (x * y, a \bullet b \bullet \chi((x,a), (y,b))) \\ & = (y,a \bullet a \bullet b \bullet \chi((x,a), (y,b)) \bullet \chi((x,a), (x * y, a \bullet b \bullet \chi((x,a), (y,b))))) \\ & = (y,b). \end{aligned}$

(1), (2), (3) and (4) imply that $L \times_{\alpha} B = (L \times B; \circ, (1, 1))$ is a sloop. \Box

We note that $((x, a_i)) \circ (x_1, a_j) \circ (x_1, a_k) \neq (x, a_i) \circ ((x_1, a_j) \circ (x_1, a_k))$, for any $x \notin \{1, x_1\}$ and $a_j \neq a_k$, i.e., the operation \circ is not associative even if the operation * is associative.

In the next theorem we prove that the constructed $L \times_{\alpha} B$ is a subdirectly irreducible sloop having a monolith θ_1 satisfying that $|[(1,1)] \theta_1| = 2^m$.

Theorem 3. The constructed sloop $L \times_{\alpha} B = (L \times B; \circ, (1, 1))$ is a subdirectly irreducible sloop.

Proof. The projection $\Pi : (x, a) \to x$ from $L \times B$ into L is an onto homomorphism and the congruence Ker $\Pi := \theta_1$ on $L \times_{\alpha} B$ is given by

$$\theta_1 = \bigcup_{i=0}^{n-1} \left\{ (x_i, 1), (x_i, a_1), \dots, (x_i, a_{2m-1}) \right\}^2,$$

where $x_0 = 1$; so one can directly see that

$$[(1,1)]\theta_1 = \{(1,1), (1,a_1), \dots, (1,a_{2m-1})\}.$$

Now $\mathbf{Con}(L) \cong \mathbf{Con}((L \times_{\alpha} B)/\theta_1) \cong [\theta_1 : 1]$. Our proof will now be complete if we show that θ_1 is the unique atom of $\mathbf{Con}(L \times_{\alpha} B)$.

First, assume that θ_1 is not an atom of $\mathbf{Con}(L \times_{\alpha} B)$. Then we can find an atom γ such that $\gamma \subset \theta_1$ and $|[(1,1)] \gamma| = r < |[(1,1)] \theta_1| = 2^m$. In this case we get a contradiction by proving that $[(1,1)] \gamma$ is not a normal subsloop of $L \times_{\alpha} B$.

Suppose that $[(1,1)]\gamma = \{(1,1), (1,a_{s_1}), (1,a_{s_2}), \dots, (1,a_{s_{r-1}})\}$. We will prove that there are two elements $(x,a), (y,b) \in L \times B$ such that:

$$((x,a) \circ (y,b)) \circ [(1,1)\gamma] \neq (x,a) \circ ((y,b) \circ [(1,1)]\gamma).$$

If $\{a_{s_1}, a_{s_2}, \ldots, a_{s_{r-1}}\}$ is an increasing subsequence of $\{a_1, a_2, \ldots, a_{2m-1}\}$ and if $\alpha(a_{s_i}) = a_{s_{i+1}}$ for all $i = 1, 2, \ldots, r-1$, then $\alpha(a_{s_{r-1}}) = a_{s_r} \notin \{a_{s_1}, a_{s_2}, \ldots, a_{s_{r-1}}\}$. If $\{a_{s_1}, a_{s_2}, \ldots, a_{s_{r-1}}\}$ is increasing and not successive subsequence of $\{a_1, a_2, \ldots, a_{2m-1}\}$ then there exists an element $a_j \in \{a_{s_1}, a_{s_2}, \ldots, a_{s_{r-1}}\}$ such that $\alpha(a_j) = a_{j+1} \notin \{a_{s_1}, a_{s_2}, \ldots, a_{s_{r-1}}\}$. For both cases, we can always find an element $(1, a_k) \in [(1, 1)]\gamma$ such that $(1, \alpha(a_k)) \notin [(1, 1)]\gamma$ ($a_k = a_{s_{r-1}}$ for the first case, and $a_k = a_j$ for the second case).

Consider the two elements (x_1, a_1) and (x_2, a_2) with $x_1 \neq x_2 \neq 1$, and assume that $((x_2, a_2) \circ (x_1, a_1)) \circ [(1, 1)] \gamma = (x_2, a_2) \circ ((x_1, a_1) \circ [(1, 1)] \gamma)$, then for the element $(1, a_k)$ (determined above) there exists an element $(1, a_{s_1}) \in [(1, 1)] \gamma$ such that

$$((x_2, a_2) \circ (x_1, a_1)) \circ (1, a_k) = (x_2, a_2) \circ ((x_1, a_1) \circ (1, a_{s_1})).$$

In this case $((x_2, a_2) \circ (x_1, a_1)) \circ (1, a_k) = (x_2 * x_1, a_2 \bullet a_1) \circ (1, a_k) = (x_2 * x_1, a_2 \bullet a_1 \bullet a_k)$ and $(x_2, a_2) \circ ((x_1, a_1) \circ (1, a_{s_1})) = (x_2, a_2) \circ (x_1, a_1 \bullet \alpha^{-1}(a_{s_1})) = (x_2 * x_1, a_2 \bullet a_1 \bullet \alpha^{-1}(a_{s_1}))$ we obtain $a_k = \alpha^{-1}(a_{s_1})$, which implies $\alpha(a_k) = a_{s_t}$. This contradicts the assumption that $(1, \alpha(a_k)) \notin [(1, 1)]\gamma$. Hence, we may say that there is no atom γ of $\mathbf{Con}(L \times_{\alpha} B)$ satisfying $\gamma \subset \theta_1$. Therefore, θ_1 is an atom of the lattice $\mathbf{Con}(L \times_{\alpha} B)$.

Secondly, θ_1 is the unique atom of $\mathbf{Con}(L \times_{\alpha} B)$. Indeed, if δ is another atom of $\mathbf{Con}(L \times_{\alpha} B)$, then $\theta_1 \cap \delta = 0$. Hence, one can easily see that there is only one element $(x, a_1) \in [(x, a_1)]\delta$ with the first component x (note that $[(x, a_i)] \theta_1 = \{(x, 1), (x, a_1), \dots, (x, a_i), \dots, (x, a_{2m-1})\}$). For this reason we may say that the class $[(1, 1)]\delta$ has at most one pair (x_1, a_i) with first component x_1 . So we have two possibilities: either

(i) $[(1,1)]\delta$ contains only one pair (x_1, a_i) with first component x_1 , or

(*ii*) $[(1,1)]\delta$ has no pairs with first component x_1 .

For the first case, we choose two elements $(x, a)\&(x_1, a_s) \in L \times B$ such that $1 \neq x \neq x_1$, and $a_s \neq a_i$ then

$$((x, a) \circ (x_1, a_s)) \circ (x_1, a_i) = (x * x_1, a \bullet a_s) \circ (x_1, a_i) = (x, a \bullet a_s \bullet a_i).$$

Also,

$$(x,a)\circ((x_1,a_s)\circ(x_1,a_i))=(x,a)\circ(1,\alpha(a_s\bullet a_i))=(x,a\bullet\alpha(a_s\bullet a_i)).$$

Since the class $((x, a) \circ ((x_1, a_s)) \circ [(1, 1)]\delta$ contains at most one element with a first component x, it follows that if $((x, a) \circ (x_1, a_s)) \circ [(1, 1)]\delta =$ $(x, a) \circ ((x_1, a_s) \circ [(1, 1)]\delta)$, then $\alpha(a_s \bullet a_i) = a_s \bullet a_i$ hence $a_s \bullet a_i = 1$, which contradicts the choice that $a_s \neq a_i$. This implies that $[(1, 1)]\delta$ is not normal.

For the second case $[(1,1)]\delta$ has no pairs with first component x_1 . Let $(x,a), (x,b) \in [(1,1)]\delta$ such that $1 \neq x \neq x_1$, and $a \neq b$ Then

$$((x_1, c) \circ (x, a)) \circ (x, b) = (x_1 * x, c \bullet a) \circ (x, b) = (x_1, c \bullet a \bullet b).$$

Also,

$$(x_1, c) \circ ((x, a) \circ (x, b)) = (x_1, c) \circ (1, a \bullet b) = (x_1, c \bullet \alpha^{-1}(a \bullet b)).$$

By using the fact that the class $((x_1, c) \circ (x, a)) \circ [(1, 1)]\delta$ contains only one element with the first component x_1 , we may say that if

$$((x_1, c) \circ (x, a)) \circ [(1, 1)]\delta = (x_1, c) \circ ((x, a) \circ [(1, 1)]\delta),$$

then $\alpha^{-1}(a \bullet b) = a \bullet b$, hence $a \bullet b = 1$, which contradicts that $a \neq b$. Thus $[(1,1)]\delta$ is not a normal subsloop of $L \times_{\alpha} B$. This mean that there is no another atom δ , and θ_1 is the unique atom of $\mathbf{Con}(L \times_{\alpha} B)$. Therefore, $L \times_{\alpha} B$ is a subdirectly irreducible sloop.

Note that in the constructed sloop $L \times_{\alpha} B$, we may choose B a Boolean $\mathbf{SL}(2^m)$ for each $m \ge 2$. Therefore, as a consequence of the proof of Theorem 3, the following holds.

Corollary 4. Let B be a Boolean $\mathbf{SL}(2^m)$ for an integer $m \ge 2$. Then the congruence class $[(1,1)]\theta_1$ of the monolith θ_1 of the constucted subdirectly irreducible sloop $L \times_{\alpha} B$ is a Boolean $\mathbf{SL}(2^m)$.

Also, Theorem 3 enable us to construct a subdirectly irreducible sloop $L \times_{\alpha} B$ having a monolith θ_1 satisfying that $(L \times_{\alpha} B) / \theta_1 \cong L$. Then we have the following result.

Corollary 5. Every sloop L is isomorphic to the homomorphic image of the subdirectly irreducible sloop $L \times_{\alpha} B$ over its monolith, for each Boolean sloop B.

In view of these results, we may construct several distinct examples of subdirectly irreducible sloops.

The smallest non-trivial application of our construction is of cardinality 16. Indeed, if we choose two $\mathbf{SL}(4)$ s, $L = (\{1, x_1, x_2, x_3\}; *, 1)$ and $B = (\{1, a, b, c\}; \bullet, 1)$, then the constructed sloop $L \times_{\alpha} B$ is a subdirectly irreducible $\mathbf{SL}(16)$ having 3 normal sub- $\mathbf{SL}(8)$ s:

$$\mathbf{S}_{1} = \{(1,1), (1,a), (1,b), (1,c), (x_{1},1), (x_{1},a), (x_{1},b), (x_{1},c)\},\$$
$$\mathbf{S}_{2} = \{(1,1), (1,a), (1,b), (1,c), (x_{2},1), (x_{2},a), (x_{2},b), (x_{2},c)\} \text{ and }\$$
$$\mathbf{S}_{3} = \{(1,1), (1,a), (1,b), (1,c), (x_{3},1), (x_{3},a), (x_{3},b), (x_{3},c)\}.$$

The constructed SL(16) corresponds to an STS(15) having 3 sub-STS(7)s.

In the classification of all subdirectly irreducible $\mathbf{SL}(32)$ given in [5] there are two classes having a monolith θ_1 satisfying $|[(1,1)]\theta_1| = 4$ and 8. The well-known constructions for subdirectly irreducible sloops given in [1], [2], [3], [5], [8] dose not enable us to construct examples for these classes.

In the following example we apply our construction to describe subdirectly irreducible **SL**(32) having a monolith θ_1 satisfying $|[(1,1)]\theta_1| = 4$ (or 8). **Example.** Let *L* be the Boolean $\mathbf{SL}(8)$ (or $\mathbf{SL}(4)$), *B* be the Boolean $\mathbf{SL}(4)$ (or $\mathbf{SL}(8)$) and α be the cyclic permutation on the non-unit elements of *B*. By apply our construction $L \times_{\alpha} B$, we get a subdirectly irreducible $\mathbf{SL}(32)$ having a monolith θ_1 satisfying $(L \times_{\alpha} B) \neq \theta_1 \cong L \cong \mathbf{SL}(8)$ (or $\mathbf{SL}(4)$) in which its monolith θ_1 satisfying $|[(1,1)]\theta_1| = 4$ (or 8).

This example of an SL(32) corresponds to a subdirectly irreducible SL(32) having exactly 7 normal sub-SL(16)s. (or 3 normal sub-SL(16)s).

Similarly, we can use our construction to give an example for a subdirectly irreducible $\mathbf{SL}(n\mathbf{2}^m)$ having a monolith θ_1 satisfying $|[(1,1)]\theta_1| = 2^m$ for each possible $n \ge 4$ and each integer $m \ge 2$.

References

- M. H. Armanious, Construction of nilpotent sloops of class n, Discrete Math. 171 (1997), 17 – 25.
- [2] M. H. Armanious, Nilpotent SQS-skeins with nilpotent derived sloops, Ars Combin. 56 (2000), 193 - 200.
- [3] M. H. Armanious, On subdirectly irreducible Steiner loops of cardinality 2n, Beitrage zur Algebra and Geometrie 43 (2002), 325 - 331.
- M. H. Armanious and E. M. Elzayat, Extending sloops of cardinality 16 to SQS-skeins with all possible congruence lattices, Quasigroups and Related Systems 12 (2004), 1-12.
- [5] M. H. Armanious and E. M. Elzayat, Subdirectly irreducible sloops and SQS-skeins, Quasigroups and Reelated Systems 15 (2007), 233 – 250.
- [6] O. Chein, H. O. Pflugfelder, and J. D. H. Smith, Quasigroups and loops, Theory and Applications, Sigma Series in Pure Math., Heldermann Verlag, Berlin, 1990.
- [7] B. Ganter and H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980), 3 – 24.
- [8] A. J. Guelzow, The structure of nilpotent Steiner quadruple systems, J. Comb. Designs 1 (1993), 301 - 321.
- [9] C. C. Lindner and A. Rosa, Steiner quadruple system, Discrete Math. 21 (1978), 147 - 181.
- [10] R. W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canada J. Math. 28 (1976), 11087 – 11098.

Received July 4, 2009

Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt E-mail: enaselzyat@yahoo.com