Construction for subdirectly irreducible sloops of cardinality $\mathrm{n} 2^{\mathrm{m}}$

Enas M. A. El-Zayat and Magdi H. Armanious

Abstract

Guelzow [8] and similarly Armanious [1] [2] gave generalized doubling constructions to construct nilpotent subdirectly irreducible SQS-skeins and sloops. In [5] the authors have given recursive construction theorems as $n \rightarrow 2 n$ for subdirectly irreducible sloops and SQS-skeins, these constructions supplies us with a subdirectly irreducible sloop of cardinality $2 n$ satisfying that the cardinality of the congruence class of its monolith is equal to 2 . In this article, we give a construction for subdirectly irreducible sloops of cardinality $n 2^{m}$ having a monolith with a congruence class of cardinality 2^{m} for each integer $m \geqslant 2$. This construction supplies us with the fact that each sloop is isomorphic to the homomorphic image of the constructed subdirectly irreducible sloop over its monolith.

1. Introduction

A Steiner triple system is a pair $(L ; B)$ where L is a finite set and B is a collection of 3 -subsets called blocks of L such that every 2 -subset of L is contained in exactly one block of B (cf. [7]). Let $\mathbf{S T S}(n)$ denote a Steiner triple system (briefly a triple system) of cardinality n. It is well known that an $\mathbf{S T S}(n)$ exists iff $n \equiv 1$ or $3(\bmod 6)$ (cf. [7] and [9]).

There is one to one correspondence between STSs and sloops (Steiner loops) (see [7] and [8]). A sloop $L=(L ; \bullet, 1)$ is a groupoid with a neutral element 1 satisfying the identities:

$$
\begin{aligned}
x \bullet y & =y \bullet x, \\
1 \bullet x & =x, \\
x \bullet(x \bullet y) & =y .
\end{aligned}
$$

A sloop L is called Boolean sloop if the binary operation satisfies in
2000 Mathematics Subject Classification: 05B07, 20N05
Keywords: Steiner loop, sloop, subdirectly irreducible sloop, Steiner triple system.
addition the associative law. Each Boolean sloop is a group that is also called a Boolean group.

Let $\mathbf{S L}(n)$ denote a sloop of cardinality n. Then $\mathbf{S L}(n)$ exists iff $n \equiv 2$ or $4(\bmod 6)(c f .[7],[10])$. If $\mathbf{S L}(n)$ is Boolean, then $n=2^{m}$ for $m \geqslant 1$. Notice that for any a and $b \in L$ the equation $a \bullet x=b$ has the unique solution $x=a \bullet(a \bullet x)=a \bullet b$; i.e., L is a quasigroup [6].

A subsloop N is called a normal subsloop of L if and only if :

$$
x \bullet(y \bullet N)=(x \bullet y) \bullet N \quad \text { for all } \quad x, y \in L
$$

Equivalently, a subsloop N of L is normal if and only if $N=[1] \theta$ for a congruence θ on L (cf. [7], [10]).

In fact, there is an isomorphism between the lattice of normal subsloops and the congruence lattice of the sloop [10]. Quackenbush has also proved that the congruences of the sloops are permutable, regular and uniform. Moreover, he has shown that for any finite $\mathbf{S L}(n)$, a subsloop N of cardinality $\frac{1}{2} n$ is normal.

Guelzow [8] and Armanious ([1], [2]) gave generalized doubling constructions for nilpotent subdirectly irreducible SQS -skeins and sloops of cardinality $2 n$. In [5] the authors gave recursive construction theorems as $n \rightarrow 2 n$ for subdiredtly irreducible sloops. All these constructions supplies us with subdirectly irreducible sloops having a monolith θ satisfying $|[x] \theta|=2$ (the minimal possible order of a proper normal subsloop). Also in these constructions, the authors begin with a subdirectly irreducible $\mathbf{S L}(n)$ to construct a subdirectly irreducible $\mathbf{S L}(2 n)$ satisfying that the cardinality of the congruence class of its monolith is equal 2. Armanious [3] has given another construction of a subdirectly irreducible $\mathbf{S L}(2 n)$. He begins with a finite simple $\mathbf{S L}(n)$ to costruct a subdirectly irreducible $\mathbf{S L}(2 n)$ having a monolith θ with $|[x] \theta|=n$ (the maximal possible order of a proper normal subsloop).

In this article, we begin with an arbitrary $\mathbf{S L}(n)$ for each possible value $n \geqslant 4$ to construct a subdirectly irreducible $\mathbf{S L}\left(n 2^{m}\right)$ for each integer $m \geqslant 2$. This construction enables us to construct a subdirectly irreducible sloop having a monolith θ satisfying that the congruence class containing the identity is a Boolean $\mathbf{S L}\left(2^{m}\right)$. Moreover, its homomorphic image modulo θ is isomorphic to L.

In view of this result, we may construct several distinct examples of subdirectly irreducible sloops that cannot be able to consrtuct by the well known constructions (cf. [1], [2], [3], [5], [8]).

2. Construction of subdirectly irreducible sloops of cardinality $\mathrm{n} 2^{\mathrm{m}}$

Let $L=(L ; *, 1)$ be an $\mathbf{S L}(n)$ and $B=(B ; \bullet, 1)$ be a Boolean $\mathbf{S L}\left(2^{m}\right)$, where $L=\left\{1, x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ and $B=\left\{1, a_{1}, a_{2}, \ldots, a_{2 m_{-1}}\right\}$. In this section we extend the sloop L to a subdireclty irreducible sloop $L \times{ }_{\alpha} B$ of cardinality $n 2^{m}$ having L as a homomorphic image.

We divide the set of elements of the direct product $L \times B$ into two subsets $\left\{1, x_{1}\right\} \times B$ and $\left\{x_{2}, \ldots, x_{n-1}\right\} \times B$. Consider the cyclic permutation $\alpha=\left(a_{1} a_{2} \ldots a_{2 m_{-1}}\right)$ on the set $\left\{1, a_{1}, a_{2}, \ldots, a_{2 m_{-1}}\right\}$ and the characteristic function χ from the direct product $L \times B$ to B defined as follows

$$
\chi((x, a),(y, b))= \begin{cases}a \bullet \alpha^{-1}(a) & \text { for } x=1, y=x_{1} \\ b \bullet \alpha^{-1}(b) & \text { for } x=x_{1}, y=1 \\ c \bullet \alpha(c) & \text { for } x=x_{1}=y \text { and } a \bullet b=c \\ 1 & \text { otherwise }\end{cases}
$$

The last term means that $\chi((x, a),(y, b))=1$ when $x=y=1,(x, a) \notin$ $\left\{1, x_{1}\right\} \times B$ or $(y, b) \notin\left\{1, x_{1}\right\} \times B$.
Lemma 1. The characteristic function χ has the following properties:
(i) $\chi((x, a),(1,1))=1$;
(ii) $\quad \chi((x, a),(x, a))=1$;
(iii) $\quad \chi((x, a),(y, b))=\chi((y, b),(x, a))$;
(iv) $\chi((x, a),(x * y, a \bullet b \bullet \chi((x, a),(y, b))))=\chi((x, a),(y, b))$.

Proof. To prove (i), let $x=x_{1}$. Then $\chi\left(\left(x_{1}, a\right),(1,1)\right)=1 \bullet \alpha^{-1}(1)=1$. Otherwise if $x \neq x_{1}$, then $\chi((x, a),(1,1))=1$.

Also in $(i i)$, if $x=x_{1}$, then $\chi\left(\left(x_{1}, a\right),\left(x_{1}, a\right)\right)=a \bullet a \bullet \alpha(a \bullet a)=1$. Otherwise, if $x \neq x_{1}$, then $\chi((x, a),(x, a))=1$.

According to the definition of χ, we may deduce that $\chi((x, a),(y, b))=$ $\chi((y, b),(x, a))$ i.e., $(i i i)$ is also valid.

To prove the fourth property we consider four cases:
(1) If $x=x_{1}$ and $y=1$, then

$$
\begin{aligned}
\chi\left(\left(x_{1}, a\right),\left(x_{1} * 1, a \bullet b \bullet \chi\left(\left(x_{1}, a\right),(1, b)\right)\right)\right) & =\chi\left(\left(x_{1}, a\right),\left(x_{1}, a \bullet \alpha^{-1}(b)\right)\right. \\
& \left.=a \bullet a \bullet \alpha^{-1}(b)\right) \bullet \alpha\left(a \bullet a \bullet \alpha^{-1}(b)\right) \\
& =b \bullet \alpha^{-1}(b)=\chi\left(\left(x_{1}, a\right),(1, b)\right) .
\end{aligned}
$$

(2) If $x=1$ and $y=x_{1}$, then

$$
\begin{aligned}
\chi\left((1, a),\left(1 * x_{1}, a \bullet b \bullet \chi\left((1, a),\left(x_{1}, b\right)\right)\right)\right) & =\chi\left((1, a),\left(x_{1}, b \bullet \alpha^{-1}(a)\right)\right. \\
& =a \bullet \alpha^{-1}(a)=\chi\left((1, a),\left(x_{1}, b\right)\right)
\end{aligned}
$$

(3) If $x=y=x_{1}$, then

$$
\begin{aligned}
\chi\left(\left(x_{1}, a\right),\left(x_{1} * x_{1}, a \bullet b \bullet \chi\left(\left(x_{1}, a\right),\left(x_{1}, b\right)\right)\right)\right) & =\chi\left(\left(x_{1}, a\right),(1, a \bullet b \bullet c \bullet \alpha(c))\right. \\
& =\chi\left(\left(x_{1}, a\right),(1, \alpha(c))=c \bullet \alpha(c)\right. \\
& =\chi\left(\left(x_{1}, a\right),\left(x_{1}, b\right)\right)=1 .
\end{aligned}
$$

(4) Otherwise, when $x=y=1$ or when (x, a) or $(y, b) \notin\left\{1, x_{1}\right\} \times B$, we have $\chi((x, a),(y, b))=\chi(x, a),(x * y, a \bullet b \bullet \chi((x, a),(y, b))))=1$, because $\{x, x * y\} \nsubseteq\left\{1, x_{1}\right\}$. This completes the proof of the lemma.

Lemma 2. Let $L=(L ; *, 1)$ be an arbitrary $\mathbf{S L}(n)$, and $B=(B ; \bullet, 1)$ be a Boolean $\mathbf{S L}\left(2^{m}\right)$ for $m \geqslant 2$. Also let \circ be a binary operation on the set $L \times B$ defined by:

$$
(x, a) \circ(y, b):=(x * y, a \bullet b \bullet \chi((x, a),(y, b))) .
$$

Then $L \times_{a} B=(L \times B ; \circ,(1,1))$ is an $\mathbf{S L}\left(n 2^{m}\right)$ for each possible number $n \geqslant 4$.

Proof. Let $L=\left\{1, x_{1}, x_{2}, \ldots, x_{n-1}\right\}$ and $B=\left\{1, a_{1}, a_{2}, \ldots, a_{2 m_{-1}}\right\}$. We note that the operation \circ is the same operation of the direct product $L \times B$ for all elements $(x, a),(y, b)$ of the set $\left\{x_{2}, x_{3}, \ldots, x_{n-1}\right\} \times B$. The difference occurs only if $x, y \in\left\{1, x_{1}\right\}$.

For all $(x, a),(y, b) \in L \times B$, we have:
(1) According to Lemma 1 (i)

$$
(x, a) \circ(1,1)=(x * 1, a \bullet 1 \bullet \chi((x, a),(1,1)))=(x, a) .
$$

(2) By using Lemma 1 (ii)

$$
(x, a) \circ(x, a)=(x * x, a \bullet a \bullet \chi((x, a),(x, a)))=(1,1) .
$$

(3) Using Lemma 1 (iii) we obtain:

$$
\begin{aligned}
(x, a) \circ(y, b) & =(x * y, a \bullet b \bullet \chi((x, a),(y, b))) \\
& =(y * x, b \bullet a \bullet \chi((y, b),(x, a))) \\
& =(y, b) \circ(x, a) .
\end{aligned}
$$

(4) Lemma 1 (iv) gives:

$$
\begin{aligned}
& (x, a) \circ((x, a) \circ(y, b))=(x, a) \circ(x * y, a \bullet b \bullet \chi((x, a),(y, b))) \\
& =(y, a \bullet a \bullet b \bullet \chi((x, a),(y, b)) \bullet \chi((x, a),(x * y, a \bullet b \bullet \chi((x, a),(y, b))))) \\
& =(y, b) .
\end{aligned}
$$

(1), (2), (3) and (4) imply that $L \times{ }_{\alpha} B=(L \times B ; \circ,(1,1))$ is a sloop.

We note that $\left(\left(x, a_{i}\right)\right) \circ\left(x_{1}, a_{j}\right) \circ\left(x_{1}, a_{k}\right) \neq\left(x, a_{i}\right) \circ\left(\left(x_{1}, a_{j}\right) \circ\left(x_{1}, a_{k}\right)\right)$, for any $x \notin\left\{1, x_{1}\right\}$ and $a_{j} \neq a_{k}$, i.e., the operation \circ is not associative even if the operation $*$ is associative.

In the next theorem we prove that the constructed $L \times{ }_{\alpha} B$ is a subdirectly irreducible sloop having a monolith θ_{1} satisfying that $\left|[(1,1)] \theta_{1}\right|=2^{m}$.
Theorem 3. The constructed sloop $L \times{ }_{\alpha} B=(L \times B ; \circ,(1,1))$ is a subdirectly irreducible sloop.

Proof. The projection $\Pi:(x, a) \rightarrow x$ from $L \times B$ into L is an onto homomorphism and the congruence Ker $\Pi:=\theta_{1}$ on $L \times{ }_{\alpha} B$ is given by

$$
\theta_{1}=\cup_{i=0}^{n-1}\left\{\left(x_{i}, 1\right),\left(x_{i}, a_{1}\right), \ldots,\left(x_{i}, a_{2 m_{-1}}\right)\right\}^{2},
$$

where $x_{0}=1$; so one can directly see that

$$
[(1,1)] \theta_{1}=\left\{(1,1),\left(1, a_{1}\right), \ldots,\left(1, a_{2 m_{-1}}\right)\right\} .
$$

Now $\operatorname{Con}(L) \cong \operatorname{Con}\left(\left(L \times_{\alpha} B\right) / \theta_{1}\right) \cong\left[\theta_{1}: 1\right]$. Our proof will now be complete if we show that θ_{1} is the unique atom of $\boldsymbol{\operatorname { C o n }}\left(L \times_{\alpha} B\right)$.

First, assume that θ_{1} is not an atom of $\boldsymbol{\operatorname { C o n }}\left(L \times{ }_{\alpha} B\right)$. Then we can find an atom γ such that $\gamma \subset \theta_{1}$ and $|[(1,1)] \gamma|=r<\left|[(1,1)] \theta_{1}\right|=2^{m}$. In this case we get a contradiction by proving that $[(1,1)] \gamma$ is not a normal subsloop of $L \times_{\alpha} B$.

Suppose that $[(1,1)] \gamma=\left\{(1,1),\left(1, a_{s_{1}}\right),\left(1, a_{s_{2}}\right), \ldots,\left(1, a_{s_{r-1}}\right)\right\}$. We will prove that there are two elements $(x, a),(y, b) \in L \times B$ such that:

$$
((x, a) \circ(y, b)) \circ[(1,1) \gamma] \neq(x, a) \circ((y, b) \circ[(1,1)] \gamma) .
$$

If $\left\{a_{s_{1}}, a_{s_{2}}, \ldots, a_{s_{r-1}}\right\}$ is an increasing subsequence of $\left\{a_{1}, a_{2}, \ldots, a_{2 m_{-1}}\right\}$ and if $\alpha\left(a_{s_{i}}\right)=a_{s_{i+1}}$ for all $i=1,2, \ldots, r-1$, then $\alpha\left(a_{s_{r-1}}\right)=a_{s_{r}} \notin$ $\left\{a_{s_{1}}, a_{s_{2}}, \ldots, a_{s_{r-1}}\right\}$. If $\left\{a_{s_{1}}, a_{s_{2}}, \ldots, a_{s_{r-1}}\right\}$ is increasing and not successive subsequence of $\left\{a_{1}, a_{2}, \ldots, a_{2 m_{-1}}\right\}$ then there exists an element $a_{j} \in$ $\left\{a_{s_{1}}, a_{s_{2}}, \ldots, a_{s_{r-1}}\right\}$ such that $\alpha\left(a_{j}\right)=a_{j+1} \notin\left\{a_{s_{1}}, a_{s_{2}}, \ldots, a_{s_{r-1}}\right\}$. For both cases, we can always find an element $\left(1, a_{k}\right) \in[(1,1)] \gamma$ such that $\left(1, \alpha\left(a_{k}\right)\right) \notin[(1,1)] \gamma\left(a_{k}=a_{s_{r-1}}\right.$ for the first case, and $a_{k}=a_{j}$ for the second case).

Consider the two elements $\left(x_{1}, a_{1}\right)$ and (x_{2}, a_{2}) with $x_{1} \neq x_{2} \neq 1$, and assume that $\left(\left(x_{2}, a_{2}\right) \circ\left(x_{1}, a_{1}\right)\right) \circ[(1,1)] \gamma=\left(x_{2}, a_{2}\right) \circ\left(\left(x_{1}, a_{1}\right) \circ[(1,1)] \gamma\right)$, then for the element $\left(1, a_{k}\right)$ (determined above) there exists an element $\left(1, a_{s_{1}}\right) \in[(1,1)] \gamma$ such that

$$
\left(\left(x_{2}, a_{2}\right) \circ\left(x_{1}, a_{1}\right)\right) \circ\left(1, a_{k}\right)=\left(x_{2}, a_{2}\right) \circ\left(\left(x_{1}, a_{1}\right) \circ\left(1, a_{s_{1}}\right)\right) .
$$

In this case $\left(\left(x_{2}, a_{2}\right) \circ\left(x_{1}, a_{1}\right)\right) \circ\left(1, a_{k}\right)=\left(x_{2} * x_{1}, a_{2} \bullet a_{1}\right) \circ\left(1, a_{k}\right)=$ $\left(x_{2} * x_{1}, a_{2} \bullet a_{1} \bullet a_{k}\right)$ and $\left(x_{2}, a_{2}\right) \circ\left(\left(x_{1}, a_{1}\right) \circ\left(1, a_{s_{1}}\right)\right)=\left(x_{2}, a_{2}\right) \circ\left(x_{1}, a_{1} \bullet\right.$ $\left.\alpha^{-1}\left(a_{s_{1}}\right)\right)=\left(x_{2} * x_{1}, a_{2} \bullet a_{1} \bullet \alpha^{-1}\left(a_{s_{1}}\right)\right)$ we obtain $a_{k}=\alpha^{-1}\left(a_{s_{1}}\right)$, which implies $\alpha\left(a_{k}\right)=a_{s_{t}}$. This contradicts the assumption that $\left(1, \alpha\left(a_{k}\right)\right) \notin$ $[(1,1)] \gamma$. Hence, we may say that there is no atom γ of $\operatorname{Con}\left(L \times_{\alpha} B\right)$ satisfying $\gamma \subset \theta_{1}$. Therefore, θ_{1} is an atom of the lattice $\operatorname{Con}\left(L \times{ }_{\alpha} B\right)$.

Secondly, θ_{1} is the unique atom of $\boldsymbol{\operatorname { C o n }}\left(L \times_{\alpha} B\right)$. Indeed, if δ is another atom of $\operatorname{Con}\left(L \times_{\alpha} B\right)$, then $\theta_{1} \cap \delta=0$. Hence, one can easily see that there is only one element $\left(x, a_{1}\right) \in\left[\left(x, a_{1}\right)\right] \delta$ with the first component x (note that $\left.\left[\left(x, a_{i}\right)\right] \theta_{1}=\left\{(x, 1),\left(x, a_{1}\right), \ldots,\left(x, a_{i}\right), \ldots,\left(x, a_{2 m_{-1}}\right)\right\}\right)$. For this reason we may say that the class $[(1,1)] \delta$ has at most one pair $\left(x_{1}, a_{i}\right)$ with first component x_{1}. So we have two possibilities: either
(i) $[(1,1)] \delta$ contains only one pair $\left(x_{1}, a_{i}\right)$ with first component x_{1}, or
(ii) $[(1,1)] \delta$ has no pairs with first component x_{1}.

For the first case, we choose two elements $(x, a) \&\left(x_{1}, a_{s}\right) \in L \times B$ such that $1 \neq x \neq x_{1}$, and $a_{s} \neq a_{i}$ then

$$
\left((x, a) \circ\left(x_{1}, a_{s}\right)\right) \circ\left(x_{1}, a_{i}\right)=\left(x * x_{1}, a \bullet a_{s}\right) \circ\left(x_{1}, a_{i}\right)=\left(x, a \bullet a_{s} \bullet a_{i}\right) .
$$

Also,

$$
(x, a) \circ\left(\left(x_{1}, a_{s}\right) \circ\left(x_{1}, a_{i}\right)\right)=(x, a) \circ\left(1, \alpha\left(a_{s} \bullet a_{i}\right)\right)=\left(x, a \bullet \alpha\left(a_{s} \bullet a_{i}\right)\right) .
$$

Since the class $\left((x, a) \circ\left(\left(x_{1}, a_{s}\right)\right) \circ[(1,1)] \delta\right.$ contains at most one element with a first component x, it follows that if $\left((x, a) \circ\left(x_{1}, a_{s}\right)\right) \circ[(1,1)] \delta=$ $(x, a) \circ\left(\left(x_{1}, a_{s}\right) \circ[(1,1)] \delta\right)$, then $\alpha\left(a_{s} \bullet a_{i}\right)=a_{s} \bullet a_{i}$ hence $a_{s} \bullet a_{i}=1$, which contradicts the choice that $a_{s} \neq a_{i}$. This implies that $[(1,1)] \delta$ is not normal.

For the second case $[(1,1)] \delta$ has no pairs with first component x_{1}. Let $(x, a),(x, b) \in[(1,1)] \delta$ such that $1 \neq x \neq x_{1}$, and $a \neq b$ Then

$$
\left(\left(x_{1}, c\right) \circ(x, a)\right) \circ(x, b)=\left(x_{1} * x, c \bullet a\right) \circ(x, b)=\left(x_{1}, c \bullet a \bullet b\right) .
$$

Also,

$$
\left(x_{1}, c\right) \circ((x, a) \circ(x, b))=\left(x_{1}, c\right) \circ(1, a \bullet b)=\left(x_{1}, c \bullet \alpha^{-1}(a \bullet b)\right) .
$$

By using the fact that the class $\left(\left(x_{1}, c\right) \circ(x, a)\right) \circ[(1,1)] \delta$ contains only one element with the first component x_{1}, we may say that if

$$
\left(\left(x_{1}, c\right) \circ(x, a)\right) \circ[(1,1)] \delta=\left(x_{1}, c\right) \circ((x, a) \circ[(1,1)] \delta),
$$

then $\alpha^{-1}(a \bullet b)=a \bullet b$, hence $a \bullet b=1$, which contradicts that $a \neq b$. Thus $[(1,1)] \delta$ is not a normal subsloop of $L \times_{\alpha} B$. This mean that there is no another atom δ, and θ_{1} is the unique atom of $\boldsymbol{\operatorname { C o n }}\left(L \times_{\alpha} B\right)$. Therefore, $L \times{ }_{\alpha} B$ is a subdirectly irreducible sloop.

Note that in the constructed sloop $L \times{ }_{\alpha} B$, we may choose B a Boolean $\mathbf{S L}\left(2^{m}\right)$ for each $m \geqslant 2$. Therefore, as a consequence of the proof of Theorem 3 , the following holds.

Corollary 4. Let B be a Boolean $\mathbf{S L}\left(2^{m}\right)$ for an integer $m \geqslant 2$. Then the congruence class $[(1,1)] \theta_{1}$ of the monolith θ_{1} of the constucted subdirectly irreducible sloop $L \times_{\alpha} B$ is a Boolean $\mathbf{S L}\left(2^{m}\right)$.

Also, Theorem 3 enable us to construct a subdirectly irreducible sloop $L \times{ }_{\alpha} B$ having a monolith θ_{1} satisfying that $\left(L \times{ }_{\alpha} B\right) / \theta_{1} \cong L$. Then we have the following result.

Corollary 5. Every sloop L is isomorphic to the homomorphic image of the subdirectly irreducible sloop $L \times_{\alpha} B$ over its monolith, for each Boolean sloop B.

In view of these results, we may construct several distinct examples of subdirectly irreducible sloops.

The smallest non-trivial application of our construction is of cardinality 16 . Indeed, if we choose two $\mathbf{S L}(4) \mathrm{s}, L=\left(\left\{1, x_{1}, x_{2}, x_{3}\right\} ; *, 1\right)$ and $B=(\{1, a, b, c\} ; \bullet, 1)$, then the constructed sloop $L \times{ }_{\alpha} B$ is a subdirectly irreducible $\mathbf{S L}(16)$ having 3 normal sub-SL(8)s:

$$
\begin{aligned}
& \mathbf{S}_{1}=\left\{(1,1),(1, a),(1, b),(1, c),\left(x_{1}, 1\right),\left(x_{1}, a\right),\left(x_{1}, b\right),\left(x_{1}, c\right)\right\}, \\
& \mathbf{S}_{2}=\left\{(1,1),(1, a),(1, b),(1, c),\left(x_{2}, 1\right),\left(x_{2}, a\right),\left(x_{2}, b\right),\left(x_{2}, c\right)\right\} \text { and } \\
& \mathbf{S}_{3}=\left\{(1,1),(1, a),(1, b),(1, c),\left(x_{3}, 1\right),\left(x_{3}, a\right),\left(x_{3}, b\right),\left(x_{3}, c\right)\right\} .
\end{aligned}
$$

The constructed $\mathbf{S L}(16)$ corresponds to an $\mathbf{S T S}(15)$ having 3 sub-STS(7)s.
In the classification of all subdirectly irreducible $\mathbf{S L}(32)$ given in [5] there are two classes having a monolith θ_{1} satisfying $\left|[(1,1)] \theta_{1}\right|=4$ and 8 . The well-known constructions for subdirectly irreducible sloops given in [1], [2], [3], [5], [8] dose not enable us to construct examples for these classes.

In the following example we apply our construction to describe subdirectly irreducible $\mathbf{S L}(32)$ having a monolith θ_{1} satisfying $\left|[(1,1)] \theta_{1}\right|=4$ (or 8).

Example. Let L be the Boolean SL(8) (or SL(4)), B be the Boolean SL(4) (or $\mathbf{S L}(8)$) and α be the cyclic permutation on the non-unit elements of B. By apply our construction $L \times{ }_{\alpha} B$, we get a subdirectly irreducible $\mathbf{S L}(32)$ having a monolith θ_{1} satisfying $\left(L \times_{\alpha} B\right) / \theta_{1} \cong L \cong \mathbf{S L}(8)$ (or $\mathbf{S L}(4)$) in which its monolith θ_{1} satisfying $\left|[(1,1)] \theta_{1}\right|=4$ (or 8).

This example of an $\mathbf{S L}(32)$ corresponds to a subdirectly irreducible SL(32) having exactly 7 normal sub-SL(16)s. (or 3 normal sub-SL(16)s).

Similarly, we can use our construction to give an example for a subdirectly irreducible $\mathbf{S L}\left(n \mathbf{2}^{m}\right)$ having a monolith θ_{1} satisfying $\left|[(1,1)] \theta_{1}\right|=2^{m}$ for each possible $n \geqslant 4$ and each integer $m \geqslant 2$.

References

[1] M. H. Armanious, Construction of nilpotent sloops of class n, Discrete Math. 171 (1997), 17 - 25.
[2] M. H. Armanious, Nilpotent SQS-skeins with nilpotent derived sloops, Ars Combin. 56 (2000), 193 - 200.
[3] M. H. Armanious, On subdirectly irreducible Steiner loops of cardinality $2 n$, Beitrage zur Algebra and Geometrie 43 (2002), 325 - 331.
[4] M. H. Armanious and E. M. Elzayat, Extending sloops of cardinality 16 to SQS-skeins with all possible congruence lattices, Quasigroups and Related Systems 12 (2004), 1 - 12.
[5] M. H. Armanious and E. M. Elzayat, Subdirectly irreducible sloops and SQS-skeins, Quasigroups and Reelated Systems 15 (2007), 233 - 250.
[6] O. Chein, H. O. Pflugfelder, and J. D. H. Smith, Quasigroups and loops, Theory and Applications, Sigma Series in Pure Math., Heldermann Verlag, Berlin, 1990.
[7] B. Ganter and H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980), 3-24.
[8] A. J. Guelzow, The structure of nilpotent Steiner quadruple systems, J. Comb. Designs 1 (1993), $301-321$.
[9] C. C. Lindner and A. Rosa, Steiner quadruple system, Discrete Math. 21 (1978), $147-181$.
[10] R. W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canada J. Math. 28 (1976), 11087 - 11098.

Received July 4, 2009
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
E-mail: enaselzyat@yahoo.com

