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Skew endomorphisms on some n-ary groups

Wieslaw A. Dudek and Nikolay A. Shchuchkin

Abstract. We characterize n-ary groups de�ned on a cyclic group and describe a group
of their automorphisms induced by the skew operation. Finally, we consider splitting
automorphisms.

1. Introduction
The idea of investigations of n-ary groupoids, i.e., algebras of the form
(G, f), where G is a non-empty set and f : Gn → G, (n > 2), seems to
be going back to E. Kasner's lecture [21] at the �fty-third annual meeting
of the American Association for the Advancement of Science in 1904 where
the subsets of groups closed under group multiplication of n elements are
considered. But the �rst paper containing signi�cant results on some n-
ary groupoids, called now n-ary groups, was written (under inspiration of
Emmy Noether) by W. Dörnte [2]. In this paper Dörnte observed that any
n-ary groupoid (G, f) with the operation of the form f(x1, x2, . . . , xn) =
x1 ◦ x2 ◦ . . . ◦ xn, where (G, ◦) is a group, is an n-ary group but for every
n > 2 there are n-ary groups which are not of this form.

In recent years, n-ary operations �nd interesting applications in physics.
For example, Y. Nambu [23] proposed in 1973 the generalization of classical
Hamiltonian mechanics based on the Poisson bracket to the case when the
new bracket, called the Nambu bracket, is an n-ary operation on classical
observables. The author of [33] suspects that di�erent n-ary structures
such as n-Lie algebras, Lie ternary systems and linear spaces with additional
internal n-ary operations, might clarify many important problems of modern
mathematical physics (Yang-Baxter equation, Poisson-Lie groups, quantum
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groups). For example, ternary Z3�graded algebras are important (cf. [22])
for their applications in physics of elementary interactions.

2. Preliminaries
An n-ary groupoid (G, f) is solvable at the place i if for all a1, ..., an, b ∈ G
there exists xi ∈ G such that

f(a1, ..., ai−1, xi, ai+1, ..., an) = b . (1)

If this solution is unique, we say that this groupoid is uniquely i-solvable.
An n-ary groupoid which is uniquely i-solvable for every i = 1, 2, . . . , n is
called an n-ary quasigroup or n-quasigroup (cf. [1]).

An n-ary groupoid (G, f) is called (i, j)-associative if

f(x1, . . . , xi−1, f(xi, . . . , xn+i−1), xn+i, . . . , x2n−1) =

f(x1, . . . , xj−1, f(xj , . . . , xn+j−1), xn+j , . . . , x2n−1)

holds for all x1, . . . , x2n−1 ∈ G. If this identity holds for all 1 6 i < j 6 n,
then we say that the operation f is associative and (G, f) is called an n-ary
semigroup. An associative n-ary quasigroup is called an n-ary group. Note
that for n = 2 it is an arbitrary group.

It is worth to note that in the de�nition of an n-ary group, under the
assumption of the associativity of the operation f , it su�ces to postulate
the existence of a solution of (1) at the places i = 1 and i = n or at one
place i other than 1 and n. Then one can prove uniqueness of the solution
of (1) for all i = 1, . . . , n (cf. [25], p.21317).

Proposition 2.1. (Dudek, Gªazek, Gleichgewicht, 1977)
An n-ary groupoid (G, f) is an n-ary group if and only if (at least) one of
the following conditions is satis�ed:

(a) the (1, 2)-associative law holds and the equation (1) is solvable for
i = n and uniquely solvable for i = 1,

(b) the (n−1, n)-associative law holds and the equation (1) is solvable for
i = 1 and uniquely solvable for i = n,

(c) the (i, i + 1)-associative law holds for some i ∈ {2, ..., n− 2} and the
equation (1) is uniquely solvable for i and some j > i. 2
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In some n-ary groups exists an element e (called a neutral element) such
that

f(e, . . . , e︸ ︷︷ ︸
i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) = x

for all x ∈ G and for all i = 1, . . . , n. There are n-ary groups without neutral
elements and n-ary groups with two, three and more neutral elements. The
set of all neutral elements of a given n-ary group (if it is non-empty) forms
an n-ary subgroup (cf. [9] or [16]).

Directly from the de�nition of an n-ary group (G, f) it follows that for
every x ∈ G there exists only one z ∈ G satisfying the equation

f(x, . . . , x, z) = x.

This element is called skew to x and is denoted by x.
One can prove (cf. [2]) that in any n-ary group (G, f) the following two

identities are satis�ed

f(y, x, . . . , x︸ ︷︷ ︸
n−j−1

, x̄, x, . . . , x︸ ︷︷ ︸
j−1

) = y (1 6 j 6 n− 1) (2)

f(x, . . . , x︸ ︷︷ ︸
i−1

, x̄, x, . . . , x︸ ︷︷ ︸
n−i−1

, y) = y (1 6 i 6 n− 1) (3)

Thus, in some sense, the skew element is a generalization of the inverse
element in binary groups. In some n-ary groups we have x = x, but there
are n-ary groups in which one �xed element is skew to all elements (see
Theorem 2.3 below) and n-ary groups in which any element is skew to
itself.

A very nice description of n-ary groups is given by the following theorem.

Theorem 2.2. (Hosszú, 1963)
An n-ary group (G, f), n > 2, has the form

f(x1, . . . , xn) = x1 ◦ ϕ(x2) ◦ ϕ2(x3) ◦ ϕ3(x4) ◦ . . . ◦ ϕn−1(xn) ◦ b, (4)

where (G, ◦) is a some group, b � a �xed element of G, ϕ � an automorphism
of (G, ◦) such that ϕ(b) = b and ϕn−1(x) ◦ b = b ◦ x for every x ∈ G. 2

In connection with this fact we say that any n-ary group (G, f) is (ϕ, b)-
derived from some group (G, ◦). In the case when ϕ is the identity mapping,
we say that an n-ary group (G, f) is b-derived from (G, ◦). If e is the identity
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of (G, ◦), then an n-ary group e-derived from (G, ◦) is called reducible to
(G, ◦) or derived from (G, ◦). An n-ary group is reducible if and only if it
contains at least one neutral element (cf. [2]).

One can prove (cf. for example [14] or [32]) that for a given n-ary group
(G, f) the group (G, ◦) from the above theorem is determined uniquely up
to isomorphism and can be identi�ed with the group (G, ·) = reta(G, f),
where x · y = f(x, a, . . . , a, a, y). Fixing in an n-ary operation f arbitrary
n − 2 internal elements we obtain a new operation which depends only on
two external elements. Choosing di�erent sequences a2, . . . , an−1 we obtain
di�erent binary groupoids (G, ¦) of the form x ¦ y = f(x, a2, . . . , an−1, y).
For a given n-ary group (G, f) all these groupoids are groups. Moreover,
all these groups are isomorphic to the retract reta(G, f).

An n-ary group having a commutative retract is called semicommutative.
It satis�es the identity

f(x1, x2, . . . , xn−1, xn) = f(xn, x2, . . . , xn−1, x1).

An n-group (G, f) satisfying the identity

f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n)),

where σ is an arbitrary permutation of the set {1, 2, . . . , n}, is called com-
mutative. In view of Theorem 2.2 any commutative n-ary group is b-derived
from some abelian group.

An n-ary power of x in an n-ary group (G, f) is de�ned in the following
way: x<0> = x and x<k+1> = f(x, . . . , x, x<k>) for all k > 0. x<−k> is
an element z such that f(x<k−1>, x, . . . , x, z) = x<0> = x (cf. [25]). Then
x = x<−1> and

f(x<k1>, . . . , x<kn>) = x<k1+...+kn+1> (5)

(x<k>)<t> = x<kt(n−1)+k+t>. (6)

The order of the smallest subgroup of (G, f) containing an element x of
G is called the n-ary order of x and is denoted by ordn(x). It is the smallest
positive integer k such that x<k> = x (cf. [25]). If ordn(x) = k, then the
smallest subgroup of (G, f) containing x has the form

〈x〉 = {x, x<1>, x<2>, . . . , x<k−1>}.
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It is called cyclic. From (5) it follows that a cyclic n-ary group is commuta-
tive. A cyclic n-ary group of order k can be identi�ed with the n-ary group
(Zk, f1), where

f1(x1, . . . , xn) = (x1 + x2 + . . . + xn + 1)(mod k).

The n-ary group (Zk, f1) is generated by 0. In the case when all n-ary powers
of x are di�erent, we say that x has an in�nite n-ary order. The smallest
n-ary subgroup containing all these n-ary powers is called the in�nite cyclic
n-ary group generated by x. It is isomorphic to (Z, g1), where

g1(x1, . . . , xn) = x1 + x2 + . . . + xn + 1. (7)

This isomorphism has the form h(x<s>) = s.
Observe also that according to Theorem 2.2 any cyclic n-ary group

(G, f) generated by a can be considered as an n-ary group a<1−n>-derived
from a cyclic group (G, ∗), where x ∗ y = f(x, a, . . . , a, y). Then a is the
identity of (G, ∗) and a<k> = ak+1 in (G, ∗), which means that (G, ∗) and
(G, f) are generated by the same element a.

Consider the sequence of elements: x, x, x (2), x (3), . . ., where x (k+1)

denotes the element skew to x (k) and x(0) = x. All these elements belong
to the same n-ary subgroup generated by x. Moreover, in view of (6) and
x = x<−1>, we have

x (2) = (x<−1>)<−1> = x<n−3>,

x (3) = ( (x<−1>)<−1>)<−1>,

and so on. Generally: x (m) = (x (m−1))<−1> for all m > 1. This implies
that

x (m) = x<Sm> for Sm = −
m−1∑

i=0

(2− n)i =
(2− n)m − 1

n− 1
(8)

(cf. [6] and [10]). If ordn(x) = k is �nite, then x = x<k−1>, x (2) = x<n−3>,
x (3) = x<2−n>. Since x belongs to the n-ary subgroup generated by x, from
Lagrange's theorem for �nite n-ary groups (cf. [25], p.222), we obtain

ordn(x) > ordn(x) > ordn(x (2)) > ordn(x (3)) > . . .

In fact, ordn(x) is a divisor of ordn(x) (cf. [3]). Moreover, if ordn(x) < ∞,
then ordn(x) = ordn(x) if and only if ordn(x) and n−2 are relatively prime.
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In this case ordn(x (s)) = ordn(x) for every s. Thus lim
s→∞ ordn(x (s)) = 1 if

and only if ordn(x) is a divisor of n − 2 (cf. [3]). Obviously x (t) 6= y (t)

means that also x (s) 6= y (s) for every 0 6 s < t.
Note by the way, that in some n-ary groups (described in [5] and [8])

we have x<s> = x (n−s−1). Such n-ary groups are the set-theoretic union of
disjoint cyclic n-ary subgroups of order k isomorphic to the subgroup

{x, x, x (2), . . . , x (k−1)}.
The problem when one �xed element is skew to others was solved by

the following theorem proved in [7].

Theorem 2.3. (Dudek, 1990)
x = y for all elements x, y of an n-ary group (G, f) if and only if (G, f) is
derived from a binary group of the exponent t|n− 2. 2

Generally, as it was observed in [28], from Theorem 2.2 it follows that
x = y if and only if the sequences x, . . . , x︸ ︷︷ ︸

n−2

and y, . . . , y︸ ︷︷ ︸
n−2

are equivalent in the

sense of Post (cf. [25]).

3. Skew endomorphisms of n-ary groups
In [17] was proved that in semiabelian n-ary groups we have

f(x1, . . . , xn) = f(x1, . . . , xn),

i.e., the operation ¯ : x → x is an endomorphism. In this case also h(x) =
x (s) is an endomorphism for every s > 0. The converse is not true since, for
example, in all ternary (n = 3) groups x = x and f(x, y, z) = f(z, y, x) (cf.
[2]). So, h(x) = x is an endomorphism, but ¯ : x → x is an endomorphism
only for ternary groups satisfying the identity f(x, y, z) = f(z, y, x).

This means that h(x) = x (s) is an automorphism of semiabelian n-ary
groups in which x (k) = x holds for all x ∈ G and some �xed k.

Any map of the form h(x) = x (s), where s > 0, is called a skew map or
a skew endomorphism if it is an endomorphism.

The natural question (posed in [6], see also [10]) is:
When h(x) = x is an endomorphism?

The �rst partial answer was given in [10]. The full, rather complicated,
characterization of n-ary groups for which h(x) = x is an endomorphism is
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presented in [31]. It is based on two identities. Later it was proved that
such n-ary groups can be characterized by one identity containing n + 2
variables [27].

Below we present new characterizations of such n-ary groups .

Theorem 3.1. The map h(x) = x (s) is an automorphism of a cyclic n-ary
group of order k if and only if k and n− 2 are relatively prime.

Proof. A cyclic n-ary group of order k is isomorphic to the n-ary group
(Zk, f1) in which the skew element has the form x = ((2−n)x− 1)(mod k).
Since (Zk, f1) is commutative, h(x) = x (s) is an endomorphism.

Assume that h(x) = x (s) is an automorphism and gcd(k, n − 2) = d.
Then k = dv and n− 2 = du for some u, v. Since

f1(v, . . . , v, 0) = (n− 2)v + v = duv + v = ku + v = v(mod k),

we have 0 = v. Thus h(k) = h(0) = 0 (s) = v (s) = h(v). Hence k = v and
d = 1, i.e., k and n− 2 are relatively prime.

Conversely, if k and n − 2 are relatively prime, then h(u) = h(v) im-
plies (2 − n)s(u − v) = 0(mod k). Hence u = v. So, h(x) = x (s) is an
automorphism.

Corollary 3.2. If each element of an n-ary group (G, f) has a �nite n-ary
order, then h(x) = x (s) is a bijective map if and only if for every x ∈ G
gcd(ordn(x), n− 2) = 1.

Proof. If h(x) = x (s) is a bijection, then the restriction of h to an arbitrary
cyclic n-ary subgroup 〈a〉 of (G, f) is an automorphism. Hence, by Theorem
3.1, ordn(a) and n− 2 are relatively prime.

Conversely, let a (s) = c (s) for some a, c ∈ G. If ordn(a) = k < ∞
and n − 2 are relatively prime, then ordn(a) = ordn(a) = ordn(a (s)) =
ordn(c (s)) = ordn(c) and 〈a〉 = 〈a〉 = 〈a (s)〉 = 〈c (s)〉 = 〈c〉 = 〈c〉 since
x (t) ∈ 〈x〉 for every t. Thus c = a<m> for some 0 < m 6 k. Hence,
by (8), for some S we have c (s) = c<S> = (a<m>)<S> = (a<S>)<m> =
(a (s) )<m> = (c (s) )<m>, which implies m = k. So, c = a<k> = a. This
proves that h(x) = x (s) is a bijection.

Corollary 3.3. If each element of a semiabelin n-ary group (G, f) has �nite
n-ary order, then the skew map h(x) = x (s) is an automorphism of (G, f)
if and only if gcd(ordn(x), n− 2) = 1 for every x ∈ G. 2
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Corollary 3.4. The skew map h(x) = x (s) is an automorphism of a semi-
abelian n-ary group of �nite order k if and only if k and n− 2 are relatively
prime. 2

Corollary 3.5. For n > 3 an n-ary group b-derived from an in�nite cyclic
group has no non-trivial skew endomorphisms.
Proof. Let (G, f) be an n-ary group b-derived from a cyclic group generated
by a. Then b = at for some t and am (s) = am(2−n)s+T for every am ∈ 〈a〉,
where T = −t(2 − n)s−1 − t(2 − n)s−2 − . . . − t. So, if h(x) = x (s) is a
non-trivial automorphism, then for every ap ∈ 〈a〉 there exists am ∈ 〈a〉
such that ap = h(am). In particular, for a1+T there exists ak such that
a1+T = h(ak) = ak(2−n)s+T , which implies 1 = k(2− n)s. Thus n = 3. So,
for n > 3 no non-trivial skew endomorphisms.

A ternary group b-derived from an in�nite cyclic group has a non-trivial
skew endomorphism. Indeed, in such ternary groups x 6= x, x = x and
f(x, y, z) = f(z, y, x) = f(x, y, z) (cf. [2]). So, h(x) = x is a non-trivial
skew automorphism of this group.

All n-ary groups b-derived from �nite cyclic groups have non-trivial skew
endomorphisms since, as it is not di�cult to see, h(x) = x = x2−nb−1 is
such endomorphism.

4. Precyclic n-ary groups
In this section we describe n-ary groups (ϕ, b)-derived from cyclic groups.
Such n-ary groups are called semicyclic or precyclic.

An in�nite cyclic group has only two automorphisms: ϕ(x) = x and
ϕ(x) = x−1. Hence, according to Theorem 2.2, on an in�nite group 〈a〉 we
can de�ne two types of n-ary groups. The operation of an n-ary group of
the �rst type is induced by the identity automorphism ϕ(x) = x and has
the form

f(as1 , as2 , as3 , . . . , asn−1 , asn) = as1+s2+s3+...+sn−1+sn+l. (9)

The operation of an n-ary group of the second type is induced by the auto-
morphism ϕ(x) = x−1. Since, by Theorem 2.2, ϕn−1(x) = x for all x ∈ 〈a〉,
n must be odd. Moreover, in this case for b = al should be ϕ(al) = al,
which means that b must be the identity of 〈a〉. Thus, in this case

f(as1 , as2 , as3 , . . . , asn−1 , asn) = as1−s2+s3−s4+...−sn−1+sn , (10)
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where n is odd.
In the �rst case we say that this n-ary group id (1, l)-derived from an

in�nite cyclic group, in the second case that it is (−1, 0)-derived.
Now, consider n-ary groups (ϕ, b)-derived from �nite cyclic groups. Au-

tomorphisms of a cyclic group of order 2 < k < ∞ have the form ϕ(x) = xm,
where 0 < m < k and gcd(m, k) = 1. So, the operation of an n-ary group
de�ned on a cyclic group 〈a〉 of order k has the form

f(as1 , as2 , . . . , asn−1 , asn) = as1+ms2+m2s3+m3s4+...+mn−2sn−1+sn+l, (11)

where 0 < m < k, gcd(m, k) = 1, mn−1 = 1(mod k), 0 6 l < k and
lm ≡ l(mod k). We say that such n-ary group is (m, l)-derived from a �nite
cyclic group of order k.

It is clear that n-ary groups (ϕ, b)-derived from the same group may
be isomorphic. The answer to the question when two n-ary groups (ϕ, b)-
derived fom cyclic groups of the same order are isomorphic can be deduced
from the existence of some special isomorphisms of their retracts (cf. [15]
or [12]) or from the following theorem proved in [14].

Theorem 4.1. (Dudek, Michalski, 1982)
Let an n-ary group (A, f) be (ϕ, a)-derived from a group (A, ·) and an n-ary
group (B, g) be (ψ, b)-derived from a group (B, ◦). Then (A, f) and (B, g)
are isomorphic if and only if there exists an isomorphism β : (A, ·) → (B, ◦)
of groups and an element c ∈ B such that

β(a) = c ◦ ψ(c) ◦ . . . ◦ ψn−2(c) ◦ b and β(ϕ(x)) ◦ c = c ◦ ψ(β(x))

for all x ∈ A. 2

As a consequence of the above theorem we obtain two important cha-
racterizations of n-ary groups de�ned on the same in�nite cyclic group.

Corollary 4.2. Two n-ary groups (1, l1) and (1, l2)-derived from the ad-
ditive group (Z, +) are isomorphic if and only if l1 ≡ l2(mod (n − 1)) or
l1 ≡ −l2(mod (n− 1)). 2

Corollary 4.3. On an in�nite cyclic group one can de�ned [n−1
2 ] non-

isomorphic commutative n-ary groups. Each such n-ary group is isomorphic
to one of the n-ary groups (1, l)-derived (0 6 l 6 n−1

2 ) from the group (Z,+).
2
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Below, for the simplicity of formulations of our results for n-ary groups
(m, l)-derived from �nite cyclic groups, by S(m) we will denote the sum
1 + m + m2 + . . . + mn−2.

We start from one arithmetical lemma. The proof of this lemma is
analogous to the proof of Lemma A in [18].
Lemma 4.4. Let 0 < l1, l2,m < k. Then for k, n > 2 the congruence

xl1 ≡ (yS(m) + l2)(mod k),

where gcd(m, k) = 1, has a solution in x and y if and only if

gcd(l1, S(m), k) = gcd(l2, S(m), k). 2

Using this lemma and Theorem 4.1 we can prove
Theorem 4.5. Two n-ary groups (m1, l1) and (m2, l2)-derived from a cyclic
group of a �nite order k are isomorphic if and only if

gcd(l1, S(m1), k) = gcd(l2, S(m2), k) and m1 = m2. 2

Corollary 4.6. Any k-element n-ary group de�ned on a cyclic group is
isomorphic to one of the n-ary groups (m, l)-derived from the group (Zk,+),
where l is a divisor of gcd(S(m), k). 2

Proposition 4.7. For n > 3, a precyclic n-ary group has a non-trivial skew
endomorphism if and only if it is �nite and non-idempotent.
Proof. A precyclic n-ary group is semiabelian, hence h(x) = x is its skew
endomorphism. It is non-trivial only in the case when an n-ary group is
non-idempotent.

If a precyclic n-ary group is in�nite, then its operation f is de�ned by
(9) or (10). In the �rst case it is commutative. Hence, by Corollary 3.5,
for n > 3 it has no non-trivial skew endomorphism. In the second case it is
idempotent and has only trivial skew endomorphism.

Any ternary non-idempotent group has a non-trivial skew endomor-
phism. Since in ternary groups x = x, a skew endomorphism is an au-
tomorphism. An in�nite precyclic n-ary group has no non-trivial skew au-
tomorphisms.
Corollary 4.8. A skew endomorphism of a precyclic n-ary group of a �nite
order k is its automorphism if and only if gcd(n− 2, k) = 1.
Proof. It follows from Corollary 3.4.
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5. Subgroups of n-ary precyclic groups
It is not di�cult to verify that in an n-ary group (G, f) which is (m, l)-
derived from a �nite cyclic group 〈a〉, each coset ar〈av〉 of 〈a〉, where
rS(m) + l ≡ 0(mod v), is an n-ary subgroup of (G, f). But not all n-ary
subgroups of (G, f) are of this form. For example, in a 5-ary group (1, 0)-
derived from a cyclic group 〈a〉 of order 4 two 5-ary subgroups S0 = {a0, a2}
and S1 = {a1, a3} are cosets of 〈a〉 with respect to S0. Subgroups {a0}, {a1},
{a2}, {a3} are cosets of 〈a〉 with respect to {a0} but not with respect to S0.

Obviously, each n-ary subgroup of an n-ary group (G, f) is a subgroup
of some retract of (G, f). Indeed, if H is an n-ary subgroup of an n-ary
group (G, f), then reta(H, f) is a subgroup of reta(G, f) for every a ∈ H.
This means that any n-ary subgroup of a precyclic n-ary group (〈a〉, f) is
normal subgroup of some cyclic group isomorphic to 〈a〉.

In any precyclic n-ary group (G, f) the map h(x) = x is an endomor-
phism. So, h(G) = G(1) = {x |x ∈ G} is an n-ary subgroup of (G, f). Also
h2(G) = G(2) = {x |x ∈ G} is an n-ary subgroup of (G, f). In this way we
obtain the sequence of n-ary subgroups

G ⊇ G(1) ⊇ G(2) ⊇ G(3) ⊇ . . .

In �nite n-ary groups G(k) = G(k+1) = . . . for some natural k, but
there are n-ary groups for which G(k) 6= G(k+1) for all k. Moreover, G(1)

is an n-ary subgroup also in some n-ary groups for which h(x) = x is not
an endomorphism. For example, in a 4-ary group (G, f) derived from the
symmetric group S3 we have x = x for x3 = e and x = e for x2 = e. Thus
G(1) = A3 is a subgroup of (G, f) but h(x) = x is not an endomorphism of
(G, f) because f(y, z, y, z) 6= f(y, z, y, z) for y = (1 2) and z = (1 2 3).

The list of unsolved problems connected with G(k) one can �nd in [6]
and [10].

If h(x) = x is an endomorphism of (G, f), then the relation

xρy ⇐⇒ x = y (12)

is a congruence on (G, f). We say that this relation is determined by the
skew endomorphism. Obviously, ρ is a congruence on any precyclic n-ary
group.

It is not di�cult to see that a congruence τ of an n-ary group (G, f) is a
congruence of its retract reta(G, f). The converse is not true. A congruence
θ of a group (G, ◦) is a congruence of an n-ary group (ϕ, b)-derived from
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(G, ◦) only in the case when for all x, y ∈ G from xθy it follows ϕ(x)θϕ(y),
or equivalently, if ϕ(H) ⊆ H for a normal subgroup H of (G, ◦) determining
θ. Thus, a relation θ de�ned on an n-ary group (G, f) b-derived from a
group (G, ◦) is a congruence if and only if it is a congruence on (G, ◦). The
similar result is valid for precyclic n-ary group since for any automorphism
ϕ and any subgroup 〈am〉 of a cyclic group 〈a〉 holds ϕ(〈am〉) ⊆ 〈am〉.

Thus we have proved

Proposition 5.1. A relation θ de�ned on a precyclic group is a congruence
if and only if it is a congruence of the corresponding cyclic group. 2

For relation de�ned by (12) we have stronger result.

Proposition 5.2. On an n-ary group (m, l)-derived from a cyclic group 〈a〉
of order k the relation ρ determined by its skew endomorphism is a congru-
ence which coincides with the congruence on 〈a〉 induced by the subgroup
〈a k

d 〉, where d = gcd(S(m) − 1, k). In this case, the class [as]ρ coincides
with the coset as〈a k

d 〉.
Proof. At �rst we consider the case m = 1. In this case d = gcd(n−2, k), i.e.,
n− 2 = dd1 and k = dk1 for some natural d1, k1 such that gcd(d1, k1) = 1.
Since an n-ary group (G, f) is (1, l)-derived from a cyclic group 〈a〉 of order
k, we have as = as(2−n)−l for every as ∈ 〈a〉. Thus as1ρ as2 if and only if
s1(n − 2) ≡ s2(n − 2)(mod k), i.e., if and only if s1dd1 ≡ s2dd1(mod dk1).
This is equivalent to s1d1 ≡ s2d1(mod k1). In view of gcd(d1, k1) = 1,
the last congruence means that s1 ≡ s2(mod k

d ). So, as1ρ as2 if and only if
as1−s2 ∈ 〈a k

d 〉.
Now let m 6= 1, gcd(m, k) = 1 and d = gcd(S(m)− 1, k). Then as1ρ as2

if and only if s1(S(m) − 1) ≡ s2(S(m) − 1)(mod k), i.e., if and only if
s1

mn−2−1
m−1 ≡ s2

mn−2−1
m−1 (mod k). Since S(m)− 1 = mmn−2−1

m−1 = mdm1 and
k = dk1, where gcd(m1, k1) = 1. The last congruence, similarly as in the
�rst part of this proof, means that s1 ≡ s2(mod k

d ). So, as1ρ as2 if and only
if as1−s2 ∈ 〈a k

d 〉.

As is well known in binary groups one equivalence class of any congru-
ence is a subgroup. This class coincides with a normal subgroup determining
this congruence. For n-ary group it is not true. In a ternary group 1-derived
from the additive group Z2 the congruence ρ de�ned by (12) has two equi-
valence classes: [0]ρ and [1]ρ. These classes are not ternary subgroups. But
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the same congruence de�ned on a ternary group 2-derived from the group
Z4 has two classes which are not ternary subgroups and two classes which
are ternary subgroups. So, the natural question is: how many (and which)
the classes are n-ary subgroups. For precyclic n-ary groups the answer is
given by the following theorem.

Theorem 5.3. Let (〈a〉, f) be an n-ary group (m, l)-derived from a cyclic
group 〈a〉 of order k. If gcd(S(m), k) divides l, then the congruence deter-
mined by the skew endomorphism of (〈a〉, f) has exactly gcd(S(m), k) equi-
valence classes which are n-ary subgroups. These classes are de�ned by ele-
ments as, where sS(m) ≡ 0(mod k

gcd(S(m)−1,k)). In the case gcd(S(m), k) - l
no such classes.

Proof. According to Proposition 5.2, in an n-ary group (m, l)-derived from
a cyclic group 〈a〉 of order k the equivalence class [as]ρ coincides with the
coset as〈a k

d 〉, where d = gcd(S(m)− 1, k). As it is easy to see, this coset is
an n-ary subgroup only in the case when

sS(m) + l ≡ 0(mod
k

d
). (13)

At �rst we consider the case when m = 1. In this case S(m) = n − 1
and (13) has the form

s(n− 1) + l ≡ 0(mod
k

d
), (14)

where d = gcd(n− 2, k).
Since n−1 and n−2 are relatively prime, gcd(n−1, k) = gcd(n−1, k

d ).
Thus gcd(n−1, k) is a divisor of n−1 and k

d . This together with (14) proves
that gcd(n − 1, k) is a divisor of l. So, gcd(l, n − 1, k) = gcd(0, n − 1, k).
Hence, by Theorem 4.5, this n-ary group is isomorphic to the n-ary group
(1, 0)-derived from a cyclic group 〈a〉 of order k. But in the last n-ary
group the equivalence class [as]ρ is an n-ary subgroup only in the case when
s(n− 1) ≡ 0(modk

d ).
Since gcd(n − 1, n − 2) = 1, the equation x(n − 1) ≡ 0(modk

d ) has
gcd(n − 1, k) solutions. So, exactly gcd(n − 1, k) classes of the form [as]ρ
are n-ary subgroups. In the case gcd(n− 1, k) - l no s satisfying (14).

This completes the proof for m = 1 .
Now let m 6= 1. In this case we have gcd(S(m), k) = gcd(S(m), k

d ),
where d = gcd(S(m)−1, k). Indeed, since k = dk1, for any common divisor
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p > 1 of S(m) = mn−1−1
m−1 and k, in view of gcd(m, k) = 1,

S(m)− 1 = m
mn−2 − 1

m− 1
and S(m) =

mn−2 − 1
m− 1

+ mn−2,

from p|d it follows p|mn−2−1
m−1 . Hence p|m which is a contradiction because

gcd(m, k) = 1. Thus p - d, i.e., p|k1 = k
q . So, gcd(S(m), k) = gcd(S(m), k

q ).
If gcd(S(m), k)|l, then, according to Theorem 4.5, an n-ary group (m, l)-

derived from a cyclic group of order k is isomorphic to some n-ary group
(m, 0)-derived from this group. In this n-ary group the class [as]ρ is an
n-ary subgroup only in the case when sS(m) ≡ 0(modk

d ).
Further argumentation is similar to the argumentation used in the �rst

part of this proof.

Corollary 5.4. If an n-ary group (G, f) is (m, l)-derived from a cyclic
group 〈a〉 of order k, then the image of G under the skew endomorphism
h(x) = x of (G, f) coincides with the coset a−l〈ad〉 of 〈a〉, where d =
gcd(S(m)− 1, k).
Proof. Indeed, h(G) = {as | as ∈ 〈a〉} = {a−l−s(S(m)−1)} = a−l〈ad〉, where
d = gcd(S(m)− 1, k).

6. Automorphisms of precyclic n-ary groups
Theorem 6.1. Any endomorphism ψ of a precyclic n-ary group (〈a〉, f)
can be presented in the form ψ(x) = ϕ(x)at, where ϕ is an endomorphism
of a group 〈a〉 and at = ψ(e).
Proof. Let ϕ(x) = ψ(x)a−t, where at = ψ(e). Since ψ is an endomorphism
of n-ary group (m, l)-derived from a cyclic group 〈a〉, we have ψ(x) = ψ(x)
for every x ∈ 〈a〉 and e = a0 = a−l. Thus ψ(e) = ψ(a−l) = a−(n−2)t−l for
m = 1, and ψ(a−l) = a−

m(mn−2−1)
m−1

t−l for m 6= 1. Hence in the case m = 1
for all as1 , as2 ∈ 〈a〉 we have

ϕ(as1as2) = ψ(as1as2)a−t = ψ(f(as1 , e, . . . , e, e, as2))a−t

= f(ψ(as1), ψ(e), . . . , ψ(e), ψ(e), ψ(as2))a−t

= f(ψ(as1), at, . . . , at, a−(n−2)t−l, ψ(as2))a−t

= ψ(as1)a−tψ(as2)a−t = ϕ(as1)ϕ(as2),

which proves that ϕ is an endomorphism of 〈a〉.
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For m 6= 1 the proof is analogous. Similarly for in�nite precyclic n-ary
groups.

Since in the above theorem ψ is bijective if and only if ϕ is bijective, we
obtain

Corollary 6.2. If ψ is an automorphism of a precyclic n-ary group (〈a〉, f),
then ϕ(x)= ψ(x)a−t with at = ψ(e), is an automorphism of a group 〈a〉. 2

Theorem 6.3. If ϕ(x) = xw is an automorphism of a cyclic group 〈a〉 of
order k, then ψ(x) = ϕ(x)at is an automorphism of an n-ary group (〈a〉, f)
(m, l)-derived from 〈a〉 if and only if tS(m) ≡ l(w − 1)(mod k).

Proof. The map ψ is a bijection because ϕ is an automorphism of 〈a〉. We
prove that ψ is an endomorphism of an n-ary group (〈a〉, f).

Since (〈a〉, f) is (m, l)-derived from 〈a〉, for ψ(x) = ϕ(x)at and m 6= 1
we obtain
ψ(f(as1 , . . . , asn)) = ψ(as1+ms2+...+mn−2sn−1+sn+l) =

= aw(s1+ms2+...+mn−2sn−1+sn+l)+t = aws1+wms2+...+wmn−2sn−1+wsn+tawl

and
f(ψ(as1), . . . , ψ(asn)) = aws1+tam(ws2+t) . . . amn−2(wsn−1+t)awsn+tal

= aws1+wms2+...+wmn−2sn−1+wsn+tat(1+m+...+mn−2)+l.
This means that ψ is an endomorphism of an n-ary group (〈a〉, f) if

and only if wl ≡ (t(1 + m + . . . + mn−2) + l)(mod k), i.e., if and only if
tS(m) ≡ l(w − 1)(mod k).

For m = 1 the proof is analogous.

Corollary 6.4. Any automorphism ψ of an n-ary group (m, l)-derived from
a cyclic group 〈a〉 of order k can be presented in the form ψ(as) = aws+t,
where gcd(w, k) = 1 and tS(m) ≡ l(w − 1)(mod k).

Proof. Let ψ be an arbitrary automorphism of an n-ary group (m, l)-derived
from a cyclic group 〈a〉 of order k. Then, according to Theorem 6.1, the
map ϕ : as → ψ(as)a−t, where ψ(e) = at, is an automorphism of 〈a〉. Thus
ψ(as) = ϕ(as)at = aws+t for some w relatively prime to k and tS(m) ≡
l(w − 1)(mod k).

This means that any automorphism of an n-ary group (m, l)-derived
from a �nite cyclic group is uniquely determined by two numbers: w and t.
Hence, it will be denoted by ψw,t.
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Corollary 4.6 shows that each precyclic n-ary group of order k is iso-
morphic to some n-ary group (m, l)-derived from the group Zk, where l is
a divisor of d = gcd(S(m), k). For such de�ned l and d

A∗d/l = {w ∈ Z∗k |w ≡ 1(mod
d

l
)}

is a subgroup of the multiplicative group Z∗k of the ring (Zk, +, ·).
We use this subgroup to the description of the automorphism group of

�nite precyclic n-ary groups.
Theorem 6.5. The automorphism group of an n-ary group (m, l)-derived
from a cyclic group of order k is isomorphic to the extension of a cyclic
group of order k

d , where d = gcd(S(m), k), by the multiplicative group A∗d/l.

Proof. Let (〈a〉, f) be an n-ary group (m, l)-derived from a cyclic group
〈a〉 of order k. Then 〈a k

d 〉, where d = gcd(S(m), k), is a group of order d
contained in 〈a〉.

Consider the homomorphism ζ : A∗d/l → Aut〈a k
d 〉 such that ζ(w) = ϕr,

where r is the remainder of w after dividing by d. In this way, we obtain the
extension A∗d/l 〈a

k
d 〉 of the group 〈a k

d 〉 by the group A∗d/l (see for example
[19]) with the group operation

w1a
v1

k
d · w2a

v2
k
d = (w1w2)a(w2v1+v2) k

d . (15)

The map τ : Aut(〈a〉, f) → A∗d/l 〈a
k
d 〉, where τ(ψw,v) = wav k

d , is a
bijection. Moreover, for ψw1,v1 , ψw2,v2 ∈ Aut(〈a〉, f) and as ∈ 〈a〉 we have

ψw1,v1 ◦ ψw2,v2(a
s) = ψw2,v2(ψw1,v1(a

s)) = ψw2,v2(a
sw1+t1)

= a(sw1+t1)w2+t2 = asw1w2+t1w2+t2

= asw1w2+(t′1w2+t′2)+(w2v1+v2) k
d

= ψw1w2,w2v1+v2(a
s),

for t1 = t′1 + v1
k
d , t2 = t′2 + v2

k
d and (t′1w2 + t′2)

S(m)
d ≡ l(w1w2−1)

d (modk
d ).

Thus
ψw1,v1 ◦ ψw2,v2 = ψw1w2,w2v1+v2 .

This together with (15), implies

τ(ψw1,v1 ◦ ψw2,v2) = (w1w2)a(w2v1+v2) k
d = τ(ψw1,v1) · τ(ψw2,v2).

So, τ is an isomorphism. Therefore Aut(〈a〉, f) ∼= A∗d/l 〈a
k
d 〉.
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Corollary 6.6. The automorphism group of a cyclic n-ary group of a �nite
order k is isomorphic to the direct sum A∗d

⊕〈a k
d 〉, where d = gcd(n− 1, k).

Proof. Any cyclic n-ary group of order k < ∞ can be identi�ed with
(Zk, f1). So, it is (1, 1)-derived from Zk. Its automorphism group is isomor-
phic to A∗d 〈a

k
d 〉, where d = gcd(n−1, k) and A∗d = {w ∈ Z∗k |w ≡ 1(mod d)}.

Since A∗d and 〈a k
d 〉 are subgroups of A∗d 〈a

k
d 〉 which can be identi�ed with

A∗d × 〈a0〉 and {1} × 〈a k
d 〉, respectively, and 1av k

d · wa0 k
d = wa0 k

d · 1av k
d for

all w ∈ A∗d, av k
d ∈ 〈a k

d 〉 we obtain A∗d 〈a
k
d 〉 ∼= A∗d

⊕〈a k
d 〉.

Corollary 6.7. The automorphism group of a cyclic n-ary group of a prime
order p is isomorphic to Z∗p or to Z∗p × Zp.
Proof. In this case d = 1 or d = p. If d = 1, then A∗d = Z∗p and 〈a p

d 〉 = {a0}.
Thus, A∗d 〈a

k
d 〉 ∼= Z∗p. For d = p we obtain A∗d = Z∗p and 〈a p

d 〉 = 〈a〉 ∼= Zp.
Hence A∗d 〈a

k
d 〉 ∼= Z∗p × Zp.

Corollary 6.8. If S(m) and k are relatively prime, then the automorphism
group of an n-ary group (m, 1)-derived from a cyclic group of order k is iso-
morphic to the multiplicative group Z∗k.
Proof. Indeed, in this case d = gcd(S(m), k) = 1, A∗d/l = Z∗k and 〈a k

d 〉 =

〈ak〉 = {a0}. Hence A∗d/l 〈a
k
d 〉 = A∗d/l = Z∗k.

Theorem 6.9. A commutative precyclic n-ary group of in�nite order has
at most two automorphisms.

Proof. Any in�nite precyclic n-ary group is isomorphic to some n-ary group
(m, l)-derived from the additive group Z of all integers. If it is commutative,
then, by Corollary 4.3, there exists 0 6 l 6

[
n−1

2

]
for which this n-ary group

is isomorphic to an n-ary group (1, l)-derived from the group Z. But, by
Theorem 6.1, for any automorphism ψ of an n-ary group (1, l)- derived from
the group Z the map ϕ(x) = ψ(x)− t, where t = ψ(0), is an automorphism
of (Z, +). Thus ψ(x) = x + t or ψ(x) = −x + t.

Let ψ(x) = x + t. Then ψ(f(0, . . . , 0)) = l + t and f(ψ(0), . . . , ψ(0)) =
nt + l, which implies l + t = l + nt. Thus t = 0. Hence ψ(x) = x.

In the case ψ(x) = −x + t we obtain ψ(f(0, . . . , 0)) = −l + t and
f(ψ(0), . . . , ψ(0)) = nt + l. Thus n−1

2 (−t) = l. If l = 0, then also t = 0.
So, an n-ary group (1, 0)-derived from the group Z has two automorphisms:
ψ(x) = x and ψ(x) = −x.
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If l = n−1
2 (in this case n must be odd), then t = −1. This means that

an n-ary group (1, n−1
2 )-derived from the group Z has two automorphisms:

ψ(x) = x and ψ(x) = −x− 1.
For 0 < l < n−1

2 no t ∈ Z such that n−1
2 (−t) = l. So, in this case is

only one automorphism: ψ(x) = x.

Corollary 6.10. For 0 < l < n−1
2 , an n-ary group (1, l)-derived from an

in�nite cyclic group has no non-trivial automorphisms. 2

Corollary 6.11. An in�nite cyclic n-ary group has no non-trivial auto-
morphisms.
Proof. Indeed, an in�nite cyclic n-ary group is isomorphic to the n-ary
group (Z, g1), where g1 is de�ned by (7). Hence, it is isomorphic to an
n-ary group (1, l)-derived from the group Z, which , by Corollary 6.10 has
no non-trivial automorphisms.

Lemma 6.12. A non-commutative n-ary group (〈a〉, f) of in�nite order
has in�nitely many automorphisms. All these automorphism have the form
as → as+t or as → a−s+t, where t is an arbitrary �xed integer.
Proof. A non-commutative n-ary group (〈a〉, f) of in�nite order exists only
for odd n. Its operation is de�ned by (10).

By Theorem 6.1, any automorphism ψ of such n-ary group induces on
〈a〉 an automorphism ϕ(x) = ψ(x)a−t, where at = ψ(a0). Thus, ψ(x) =
ϕ(x)at, i.e., ψ(as) = as+t or ψ(as) = a−s+t.

Theorem 6.13. The automorphism group of an in�nite non-commutative
precyclic n-ary group is isomorphic to the holomorph of the group (Z, +).

Proof. Consider the holomorph Z∗Z of the group (Z, +) with the group
operation

w1t1 · w2t2 = (w1w2)(w2t1 + t2),

where w1, w2 ∈ Z∗ = {−1, 1} (see for example [19]). Since any automor-
phism of an n-ary group (−1, 0)-derived from the in�nite cyclic group 〈a〉
has the form ψw,t(as) = aws+t, where w = ±1, t ∈ Z, (Lemma 6.12) the
map τ : Aut(〈a〉, f) → Z∗Z de�ned by τ(ψw,t) = wt is a bijection.

Moreover, for all ψw1,t1 , ψw2,t2 ∈ Aut(〈a〉, f) and as ∈ 〈a〉 we have

ψw1,t1 ◦ ψw2,t2(a
s) = ψw2,t2(ψw1,t1(a

s)) = ψw2,t2(a
w1s+t1)

= aw2(w1s+t1)+t2 = aw1w2s+w2t1+t2 ,
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which means that ψw1,t1 ◦ ψw2,t2 = ψw1w2,w2t1+t2 .
Thus

τ(ψw1,t1 ◦ ψw2,t2) = (w1w2)(w2t1 + t2) = τ(ψw1,t1) · τ(ψw2,t2).

Hence Aut(〈a〉, f) ∼= Z∗Z.

7. Splitting automorphisms
In some n-ary groups h(x) = x is an automorphism satisfying for every
i = 1, 2, . . . , n the identity

h((f(x1, . . . , xn)) = f(x1, . . . , xi−1, h(xi), xi+1, . . . , xn).

Such n-ary groups are called distributive (cf. [8] and [5]). Any distributive
n-ary group is a set theoretic union of disjoint cyclic n-ary subgroups of the
same order. But it is not precyclic, in general.

An endomorphism ψ of an n-ary groupoid (G, f) is called splitting (cf.
[24]) if for every i = 1, . . . , n the identity

ψ(f(x1, . . . , xn)) = f(x1, . . . , xi−1, ψ(xi), xi+1, . . . , xn) (16)

is satis�ed.
It is not di�cult to see that the set of all splitting endomorphisms of

a given n-ary groupoid (G, f) forms a commutative semigroup. Moreover,
for every splitting endomorphisms of (G, f) holds ψn = ψ.
Proposition 7.1. Any splitting endomorphism of an n-ary group is its
automorphism.
Proof. Let ψ be a splitting endomorphism of an n-ary group (G, f). If
ψ(x) = ψ(y) for some x, y ∈ G, then

f(ψ(x), x2, x3, . . . , xn) = f(ψ(y), x2, x3, . . . , xn)

for all x2, x3, . . . , xn ∈ G. This, by (16), gives

f(x, ψ(x2), x3, . . . , xn) = f(y, ψ(x2), x3, . . . , xn).

Hence x = y. So, ψ is one-to-one.
Since (G, f) is an n-ary group, for all z, ψ(x2), x3, . . . , xn ∈ G there

exists y ∈ G such that z = f(y, ψ(x2), x3, . . . , xn) = ψ(f(y, x2, x3, . . . , xn)).
Thus, for every z ∈ G there exists x = f(y, x2, x3, . . . , xn) ∈ G such that
z = ψ(x). So, ψ is onto. Consequently it is an automorphism.
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Corollary 7.2. ψn−1 = idG for any splitting automorphism ψ of an n-ary
group (G, f). 2

Proposition 7.3. A non-trivial splitting automorphism of an n-ary group
has no �xed points.

Proof. Indeed, if ψ(a) = a for some a ∈ G, then, according to (2), for every
x ∈ G we obtain
ψ(x) = ψ(f(x, a, . . . , a, a)) = f(x, ψ(a), a, . . . , a, a) = f(x, a, . . . , a, a) = x,

which means that ψ is a trivial automorphism.

Corollary 7.4. An n-ary group with only one idempotent has no non-trivial
splitting automorphisms.

Proof. Indeed, if a is an idempotent, then ψ(a) also is an idempotent.
Hence, in the case when (G, f) has only one idempotent, we obtain ψ(a) = a.
Thus ψ is the identity mapping.

Theorem 7.5. The mapping ψ : G → G is a non-trivial splitting automor-
phism of an n-ary group (G, f) (ϕ, b)-derived from a group (G, ◦) with the
identity e if and only if ψ(e) 6= e and

(i) ψ(e) belongs to the center of (G, ◦),
(ii) ψ(x) = x ◦ ψ(e) for every x ∈ G,

(iii) ψ(e) = ϕψ(e),
(iv) ψ(e) ◦ ψ(e) ◦ . . . ◦ ψ(e)︸ ︷︷ ︸

n−1

= e.

Proof. Let (G, f) be an n-ary group (ϕ, b)-derived from a group (G, ◦) with
the identity e. Then, according to Theorem 2.2, ϕ(b−1) = b−1. Moreover,
since ϕn−1(x)◦ b = b◦x holds for all x ∈ G, the equation (4) can be written
in more useful form

f(x1, . . . , xn) = x1 ◦ϕ(x2)◦ϕ2(x3)◦ϕ3(x4)◦ . . .◦ϕn−2(xn−1)◦ b◦xn. (17)

Thus

ψ(x) = ψ(x ◦ e) = ψ(f(x, b−1, e, . . . , e)) = f(x, b−1, e, . . . , e, ψ(e)) = x ◦ ψ(e)

for every splitting automorphism ψ of (G, f) and every x ∈ G. This proves
(ii).
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Similarly, using (17), we obtain

ψ(x)= ψ(e◦x)= ψ(f(e, b−1, e, . . . , e, x))= f(ψ(e), b−1, e, . . . , e, x)= ψ(e)◦x,

which together with the previous identity gives x◦ψ(e) = ψ(e)◦x. So, ψ(e)
belongs to the center of (G, ◦).

Further, from f(ψ(x), e, . . . , e) = ψ(f(x, e, . . . , e)) = f(x, ψ(e), e, . . . , e)
and (17) we conclude (iii).

Now, using (17) and (iii) we obtain

ψ(b) = ψ(f(e, . . . , e)) = f(ψ(e), . . . , ψ(e)) = ψ(e) ◦ . . . ◦ ψ(e) ◦ b ◦ ψ(e),

which together with (ii) implies (iv).
Hence, any splitting automorphism ψ of (G, f) satis�es (i), (ii), (iii)

and (iv). By (ii), it is non-trivial if and only if ψ(e) 6= e.
The converse statement is obvious.

Corollary 7.6. A splitting automorphism of an n-ary group (ϕ, b)-derived
from a group (G, ◦) commutes with ϕ.
Proof. By Theorem 7.5, for every x ∈ G we have

ψϕ(x) = ϕ(x)◦ψ(e) = ϕ(x)◦ϕψ(e) = ϕ(x◦ψ(e)) = ϕψ(x). 2

Corollary 7.7. An in�nite precyclic an n-ary group has no non-trivial
splitting endomorphisms.
Proof. It follows from Theorem 7.5 (iv) and (ii) or Corollary 6.11.

Corollary 7.8. An n-ary group (ϕ, b)-derived from the centerless group has
no non-trivial splitting endomorphisms.
Proof. Indeed, in such n-ary group ψ(e) = e for every splitting endomor-
phism ψ. This, by Proposition 7.3, means that ψ is trivial.

As a simple consequence of the above theorem we obtain the following
characterization of skew splitting automorphisms �rstly proved in [8].
Theorem 7.9. The mapping h(x) = x is a splitting automorphism of an
n-ary group (G, f) if and only if on G we can de�ne a group (G, ◦) with the
identity e and an automorphism ϕ such that

f(x1, . . . , xn) = x1 ◦ ϕ(x2) ◦ ϕ2(x3) ◦ . . . ◦ ϕn−2(xn−1) ◦ xn ◦ b,

ϕ(b) = b, bn−1 = e, x ◦ ϕ(x) ◦ ϕ2(x) ◦ . . . ◦ ϕn−2(x) = e and ϕn−1(x) = x
for all x, x1, . . . , xn ∈ G and some b from the center of (G, ◦).
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Proof. Directly from the de�nition of the skew element it follows that in an
n-ary group (ϕ, b)-derived from a group (G, ◦) we have h(e) = e = b−1. In
this case also ϕ(b) = b and ϕn−1(x) ◦ b = b ◦ x (see Theorem 2.2).

If h(x) = x is a splitting automorphism, then, in view of Theorem 7.5,
b−1 = h(e) belongs to the center of (G, ◦), bn−1 = (h(e))n−1 = e and h(x) =
x ◦ b−1. Hence also b belongs to this center. Consequently ϕn−1(x) = x.
From f(x, . . . , x, x) = x it follows x ◦ ϕ(x) ◦ ϕ2(x) ◦ . . . ◦ ϕn−2(x) = e.

Conversely, from (17) it follows that in an n-ary group (G, f) we have

x ◦ ϕ(x) ◦ ϕ2(x) ◦ . . . ◦ ϕn−2(x) ◦ b = e

for every x ∈ G. Hence x = b−1 ◦ (ϕ(x) ◦ ϕ2(x) ◦ . . . ◦ ϕn−2(x))−1. Thus in
an n-ary group satisfying the conditions mentioned in this theorem holds
x = b−1 ◦x = x◦b−1. Therefore e = b−1 and x = x◦e. This means that the
mapping h(x) = x satis�es the conditions (i) and (ii) from Theorem 7.5.
The last two conditions also are satis�ed. Hence, h(x) = x is a splitting
automorphism.

Corollary 7.10. An n-ary group containing at least one idempotent has no
non-trivial splitting skew endomorphisms. 2

Proof. Suppose that an n-ary group (G, f) has an idempotent a. If it has a
splitting skew endomorphism, then, by Theorem 7.9, a = f(a, . . . , a) = a◦b.
Thus b = e. Consequently, f(x, . . . , x) = e · x · e = x for every x ∈ G.
Hence (G, f) is an idempotent n-ary group. It has no non-trivial skew
endomorphisms.

Corollary 7.11. A non-trivial splitting skew endomorphisms there are only
in irreducible n-ary groups. 2

Proposition 7.12. The mapping ψ is a non-trivial splitting automorphism
of an n-ary group (m, l)-derived from a cyclic group 〈a〉 of order k if and only
if ψ(x) = xat for some 0 < t < k such that t(m−1) ≡ t(n−1) ≡ 0(mod k).

Proof. The proof is based on Theorem 7.5. From (ii) it follows that any
splitting automorphism of a precyclic n-ary group has the form ψ(x) = xat,
where at = ψ(e) and t 6= 0. Thus 0 < t < k. From (iii) we obtain
t(m− 1) ≡ 0(mod k). In the same way, (iv) implies t(n− 1) ≡ 0(mod k).

On the other hand, it is not di�cult to see that ψ(x) = xat with t
satisfying the above conditions is a non-trivial splitting automorphism.
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