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Secret-sharing schemes

and orthogonal systems of k-ary operations

Galina B. Belyavskaya

Abstract. We suggest a general method of the construction of secret-sharing schemes
based on orthogonal systems of partial (in particular, everywhere determined) k-ary ope-
rations which generalizes some known methods of the construction of such schemes by
a �nite �elds and point the orthogonal systems of k-ary operations respecting to these
known schemes. The di�erent transformations of orthogonal systems of k-ary operations
are reformulated and applied to orthogonal systems of polynomial k-ary operations over
�nite �elds, in particular, to orthogonal systems corresponding to some known schemes.

1. Introduction

It is known that for receiving the secret information the secret key is used.
The problem of construction of secret-sharing schemes is one of tasks of
modern cryptography connected with partition of the secret (more exactly,
with sharing the secret key). The method of sharing the secret key provides
safety of the procedure of acceptance of decision in some critical situation.
It consists in de�nition the group of person which have a right to accept
decision. Every member of this group has a part of the secret key, only the
full collection of these parts allows to restore the secret key giving access to
the secret.

There are many applications for such schemes including communication
networks, �nancial institutions and computing. One of the aspects of a
such scheme is a possibility to share responsibility for acceptance of an
important decision, concerning application of systems of weapon, signature
of bank checks or of access to the bank depository. One example arises in
the military where it would be necessary for several high-level o�cers to
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reconstruct the necessary key required to release very important decision.

The problem of construction of a secret-sharing scheme can be gener-
alized when a decision can be accepted not one but any of several distinct
groups of users. In this case the secret key is distributed between all mem-
bers of groups of users and every user obtains his part of the secret.

One of main aims of a such secret-sharing scheme is defence of a key
away from loss. It is better to share a key between several users such
that the possibility its restoration by a few groups with in advance de�ned
participants, acting in agreement. That eliminates a risk of loss of a key.
The possibility of restoration of a secret must appear when all or su�ciently
great part of owners of the secret key was joined. But some of keepers of
secret key can be absent with respect to di�erent reasons so it need to
restoration the secret if an incomplete collection of owners of the secret key
but if their number is greater of some threshold value.

Let 1 < k 6 n. A secret-sharing scheme between n users is called
(n, k)-threshold if any group of k from n users can restore a secret but none
group of the smaller number of users cannot obtain an information about
the secret key [1].

Secret-sharing schemes were introduced in 1979 by A. Shamir [12]. Later
his idea was generalized by other authors, which will be mentioned below.
In [13] various secret-sharing schemes known at that time were surveyed.

We suggest a general secret-sharing scheme based on orthogonal systems
of partial (in particular, everywhere determined) k-ary operations which
generalizes some of the known schemes and �nd the orthogonal systems
of k-ary operations respecting to these known schemes. Some little-known
transformations of orthogonal systems of k-ary operations are recalled and
are applied to orthogonal systems of polynomial k-ary operations over �nite
�elds GF (q), in particular, to orthogonal systems corresponding to known
secret-sharing schemes.

2. Orthogonal systems of partial k-ary operations

At �rst we recall some necessary de�nitions and results. By xj
i we will

denote the sequence xi, xi+1, . . . , xj , i 6 j. Let Q be a �nite or in�nite set,
k > 2 be a positive integer, and let Qk denote the k-th Cartesian power of
the set Q.

Let Q be a nonempty set and D ⊆ Qk, D 6= ∅. If A is a mapping of
D into Q, then A is said to be a partial k-ary operation (and (Q,A) to be
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a partial k-ary groupoid). If D = Qk, we have a usual k-ary operation (or
shortly, k-operation) given on the set Q (see, for example, [14]).

A k-groupoid (Q,A) of order n is a set Q with one k-ary operation A
de�ned on Q, where |Q| = n.

A k-ary quasigroup or a k-quasigroup is a k-groupoid (Q,A) such that
in the equality A(xk

1) = xk+1 each set of values of k elements from xk+1
1

uniquely de�nes the value of the (k+1)-th element. Sometimes a quasigroup
k-operation A is itself considered as a k-quasigroup.

The k-operation Ei, 1 6 i 6 k, on Q with Ei(xk
1) = xi is called the i-th

identity operation (or the i-th selector) of arity k.

For k > 2, an k-dimensional hypercube (brie�y, a k-hypercube) of order
n is an n× n× · · · × n︸ ︷︷ ︸

k

array with nk points based upon n distinct symbols.

A k-dimensional permutation cube of order n [6]) is a k-dimentional
n× n× · · · × n matrix of n elements with the property that every column
(that is, every sequence of n elements parallel to an edge of the cube)
contains a permutation of the elements. In particular, a two-dimentional
permutation cube is simply a latin square of order n which is an n×n array
in which n distinct symbols are arranged so that each symbol occurs once
in each row and column [6].

A k-operation (a k-quasigroup) de�ned on a set Q corresponds to every
k-hypercube (to every permutation k-hypercube) with the elements of Q
and vice versa (see, for example, [4]).

De�nition 1. [14] Let (Q,A1), (Q,A2), . . . , (Q,Ak) be partial k-groupoids
with the same domain D = D(A1) = D(A2) = . . . = D(Ak) ⊆ Qk. The k-
tuple of k-operations (Ak

1) = (A1, A2, ..., Ak) is called orthogonal if for every
(a1, a2, ..., ak) ∈ Qk for which the system {Ai(xk

1) = ai}k
i=1 has a unique

solution.

The k-tuple (Ak
1) of partial k-operations with the same domain D is

orthogonal if and only if the mapping (xk
1) → (A1(xk

1), A2(xk
1), . . . , Ak(xk

1))
is a bijection when (xk

1) ∈ D.

The set of di�erent partial k-operations of the same domain D is said to
be an orthogonal system of partial k-operations (a k-OSPO) if each k-tuple
of the k-operations of this set is orthogonal [14].

For coding of information it is useful the following

Theorem 1. [14] To every orthogonal system of k-ary partial operations∑
= {A1, A2, . . . , At}, t > k, in which all partial operations are de�ned
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on a set of q elements, the set D has p elements and q < p 6 qk, there

corresponds a code of p t-sequences of code distance t − (k − 1) over an

alphabet of q letters, q < p 6 qk, and vise versa.

An orthogonal system of k-ary operations (k-OSO) is a partial case of
k-OSPOs. Such systems were studied in many works (see, for example,
[6, 7]).

A k-OSPO, in particular, a k-OSO can be used for construction of secret-
sharing systems in the following way.

Let
∑

= {A1, A2, . . . , At} be a k-OSPO of partial k-operations given on
a set Q of order q with | D |= p. Choose n, k < n 6 t, of partial k-operations
Ai1 = B1, Ai2 = B2, . . . , Ain = Bn of

∑
, some k-tuple a = (a0, a1, . . . , ak−1)

of D ⊆ Qk and suppose that the element a0 (or some elements of this k-
tuple) is the secret. The k-tuple a we express in coded form as the n-tuple
b = (b1, b2, ..., bn), where bj = Bj(a0, a1, ..., ak−1). As

∑
is a k-OSPO

and a = (a0, a1, ..., ak−1) ∈ D ⊆ Qk, any k elements bj1 , bj2 , ..., bjk
of b

de�ne uniquely a k-tuple a, as by the de�nition of a k-OSPO the system
{Bj1(x

k
1) = bj1 , Bj2(x

k
1) = bj2 , . . . , Bjk

(xk
1) = bjk

} has a unique solution
(x1, x2, . . . , xk) = (a0, a1, . . . , ak−1).

Taking that into account, one can suggest the following construction of

an (n, k)-threshold secret-sharing scheme between n users, any k of which

can unlock the secret.

1. Choose a k-OSPO
∑

= {A1, A2, . . . , At} with a great domain D the
partial operations of which is given on a set Q of su�ciently great
order q.

2. Choose a k-tuple a = (a0, a1, . . . , ak−1) of D in which the element a0

(or some elements) is (are) the secret.

3. Choose an n-tuple (i1, i2, . . . , in) of {1, 2, . . . , t}, k 6 n 6 t.

4. Calculate the n-tuple b = (b1, b2, . . . , bn) =

(Ai1(a
k−1
0 ), Ai2(a

k−1
0 ), . . . , Ain(ak−1

0 ))=(B1(ak−1
0 ), B2(ak−1

0 ), . . . , Bn(ak−1
0 )).

5. The pairs (i1, b1), (i2, b2), . . . , (in, bn), which form the secret key, can
be separated between n users which are the keepers of the secret.

Using this system any group of k from n users having k pairs (ij1 , bj1), . . . ,
(ijk

, bjk
) unlocks the secret deciding the system {Bj1(x

k
1) = bj1 , Bj2(x

k
1) =

bj2 , . . . , Bjk
(xk

1) = bjk
} and none another group of smaller numbers of users

cannot to receive an information about the secret.
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This system allows to increase a number of keepers of the secret adding
l elements in+1, in+2, . . . , in+l, where n + l 6 t, in point 3.

If there is only one group of the keepers of the secret, then in item 3 we
choose n = k.

The pointed algorithm is the same when we use an orthogonal system
of k-ary operations (a k-OSO) given on a set Q. In this case D = Qk.

As one variation on theme of secret-sharing schemes, we might want a
scheme where some participants' share carry more weight than others. In
this case we require that a share from participant i can be replaced by a
collection of shares from participant of lower weights. Such a system is
often called a multilevel scheme. For example, assume that in a bank, one
wants to have a valid signature for transfer of a great sum of money only
if the shares of two tellers and one vice-president or two vice-presidents are
entered.
In such case we can in the suggested scheme to share secret (i1, b1), (i2, b2),

. . . , (in, bn) between l < n keepers giving more parts of the secret key to the
participants with more weight and less parts to the participants with lower
weight.

3. Some known secret-sharing schemes

The following connection between k-OSOs and codes is well known.

Theorem 2. [15] A code of qk words of length t with the code distance

t − (k − 1) in an alphabet from q letters corresponds to every orthogonal

system of k-ary operations
∑

= {A1, A2, . . . , At}, t > k, de�ned on a set

Q of order q and vice versa.

It is a partial case of Theorem 1 when p = qk. In this case we have an
MDS-code (that is a code with the maximal Hamming distance n− (k− 1)
between codewords).

In his book [16] W.W.Wu stated that all the secret-sharing schemes
known at the time his book was written are connected with latin squares
and provided some constructions of such schemes using orthogonal latin
squares. All his examples construct secret-sharing schemes in which only
two parts of the secret key are need to unlock the secret. J.Dénes and
A.D.Keedwell [7, Chapter 9] made a more general observation that all
these schemes can be constructed with the aid of Reed-Solomon codes.

A code of Reed-Solomon over GF (q) is a code with codewords of length
q − 1. The codes of Reed-Solomon over GF (q) are MDS-codes [7, Ch. 9].
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The scheme with the secret (s0, s1, . . . , sk−1) due to A. Shamir [12] based
on a polynomial q(x) = s0+s1x+. . .+sk−1x

k−1 modulo p, where p is a prime
greater than n and where the polynomial is so chosen that it has distinct
values modulo p for n di�erent values x1, x2, . . . , xn of x. The secret key is
the n di�erent ordered pairs of integers (xi, q(xi)) for i = 1, 2, . . . , n. The
polynomial q(x) is calculated by the Lagrange's interpolation formula

q(x) =
k∑

i−1

q(xi)(x− x1)(x− x2) . . . (x− xi−1)(x− xi+1) . . . (x− xk)
(xi − x1)(xi − x2) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xk)

for polynomials where x1, x2, . . . , xk are any k of n parts of the secret key.

The second scheme of such kind is due to R. J.McEliece and D.V. Sar-
warte [11]. In this scheme a Reed-Solomon code over a �nite �eld GF (q)
with words of length q − 1 is de�ned by the following matrix G:

G =


1 1 · · · 1
a1 a2 · · · aq−1

a2
1 a2

2 · · · a2
q−1

. . .

ak−1
1 ak−1

2 · · · ak−1
q−1


where a0 = 0, a1 = 1, a2, . . . , aq−1 are the di�erent elements of GF (q) with
q = pm (p is prime) elements. Every k-tuple s = (s0, s1, . . . , sk−1) in coded
form is the (q − 1)-tuple b = (b1, b2, . . . , bq−1), where b = sG. In this case
bi = q(ai), where q(x) = s0 + s1x + . . . + sk−1x

k−1, so this method is a
generalization of that Shamir. The subset of n 6 (q − 1) pairs of the set
{(i, bi) | i = 1, 2, . . . , q − 1}, any k of which unlock the secret, can be the
secret key.

J.W.Greene, M.E.Hellman and E.D.Karnin used the matrix G over a
�nite �eld to construct an extended Reed-Solomon code [8]:

G =


1 0 1 1 · · · 1
0 0 a1 a2 · · · aq−1

0 0 a2
1 a2

2 · · · a2
q−1

. . .

0 1 ak−1
1 ak−1

2 · · · ak−1
q−1

 .

Thus, the matrix G of an extended Reed-Solomon code is the matrix G
with two �rst added columns. The �rst (the second) column contains the
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element 1 on the �rst (on the last) place and the element 0 on the rest
places.

According to Theorem 5.1 [7] every extended Reed-Solomon code (and
that means the corresponding secret-sharing scheme) with a generating ma-
trix of two rows (

1 0 1 1 · · · 1
0 1 a1 a2 · · · aq−1

)
which is de�ned over a �eld GF (q) can be constructed from a complete set
of orthogonal latin squares (binary quasigroups) of order q.

This result can be generalized to the k-ary case. At �rst we remind
that an i-invertible k-operation A de�ned on Q is a k-operation for which
the equation A(ai−1

1 , x, ak
i+1) = ak+1 has a unique solution for each �xed

k-tuple (a1, a2, . . . , ai−1, ai+1, . . . , ak+1) of Qk.

A k-ary quasigroup can be de�ned as a k-groupoid (Q,A) such that the
k-operation A is i-invertible for each i = 1, 2, . . . , k.

A k-ary operation A(xk
1) = a1x1+a2x2+ . . .+akxk over a �eld GF (q) is

i-invertible, if ai 6= 0 and it is a k-quasigroup if and only if all its coe�cients
are di�erent from 0.

Theorem 3. Every secret-sharing system corresponding to the extended

Reed-Solomon code over a �eld GF (q) with the matrix G is equivalent to

the orthogonal system
∑

= {E1, Ek, A1, A2, . . . , Aq−1} of k-operations of

order q, where E1(xk−1
0 ) = x0, Ek(xk−1

0 ) = xk−1,

Ai(xk−1
0 ) = x0 + aix1 + a2

i x2 + . . . + ak−1
i xk−1.

All k-operations Ai, i = 1, 2, . . . , q − 1, are k-quasigroups.

Proof. Let us consider a secret-sharing scheme corresponding to the ex-
tended Reed-Solomon code over a �eld GF (q) with the matrix G. The
determinant formed by any k of the columns of this matrix is nonsingu-
lar, so the system of k-operations

∑
= {E1, Ek, A1, A2, . . . , Aq−1} de�n-

ing by the columns of the matrix G: E1(xk−1
0 ) = x0, Ek(xk−1

0 ) = xk−1,
Ai(xk−1

0 ) = x0+aix1+a2
i x2+. . .+ak−1

i xk−1, i = 1, 2, . . . , q−1, is orthogonal.
All k-operations Ai are k-quasigroups as ai 6= 0 for any i = 1, 2, . . . , q−1, so
a system of permutation k-hypercubes corresponds to these k-quasigroups.

The k-tuple (s0, s1, . . . , sk−1), including the secret, is coded as

(s0, sk−1, A1(sk−1
0 ), A2(sk−1

0 ), . . . , Aq−1(sk−1
0 )).
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Converse is evident since the system
∑

= {E1, Ek, A1, A2, . . . , Aq−1} of
k-operations de�nes the columns of the matrix G. So this system de�nes
the secret-sharing scheme, corresponding to the extended Reed-Solomon
code.

Note that Ai(sk−1
0 ) = q(ai), i = 1, 2, . . . , q − 1, where q(x) is the poly-

nomial of Shamir over the �eld GF (q).
It is easy to see that the system

∑
= {E1, E2, A1, A2, . . . , Aq−1} of

orthogonal binary operations, where E1(x, y) = x, E2(x, y) = y, Ai(x, y) =
x + aiy, i = 1, 2, . . . , q− 1, corresponds to the secret-sharing scheme, which
respect to the matrix of two rows of Theorem 5.1 [7]. In this case all
operations Ai(x, y), i = 1, 2, . . . , q − 1, are binary quasigroups.

In the case of the matrix G we have the following

Corollary 1. Every secret-sharing system corresponding to the Reed-Solomon

code over a �eld GF (q) with the matrix G is equivalent to the orthog-

onal system
∑

= {A1, A2, . . . , Aq−1} of k-quasigroups of order q, where

Ai(xk−1
0 ) = x0 + aix1 + a2

i x2 + . . . + ak−1
i xk−1, i = 1, 2, . . . , q − 1.

Note that instead of the matrix G one can take the matrix over a �eld
GF (q) with a primitive element (that is a generating element of the mul-
tiplicative group) a and with the following k-operations (corresponding to
the columns of this matrix): E1(xk−1

0 ) = x0, Ek(xk−1
0 ) = xk−1, A1(xk−1

0 ) =
x0 + x1 + . . . + xk−1, Ai+1(xk−1

0 ) = x0 + aix1 + a2ix2 + . . . + a(k−1)ixk−1,
i = 1, 2, . . . , q − 2, where k-operations A1, A2, . . . , Aq−1 are k-quasigroups.
We may take the matrix with the q + 1 rows de�ned by these k-operations.

4. Transformations of orthogonal systems

With the point of view of ciphering of an information it is important to
obtain many orthogonal systems from one system. In the connect with
that we recall some transformations of orthogonal systems of k-operations
known in the algebraic theory of orthogonal systems of k-operations with
some additions.

At �rst we reremind some necessary information from [2] with respect
to k-OSOs (for the case k = 2 see [3]).

Let (A1, A2, . . . , Ak) = (Ak
1) be a k-tuple of k-operations de�ned on

a set Q. This k-tuple de�nes the unique mapping θ̄ : Qk → Qk in the
following way: θ̄ : (xk

1) → (A1(xk
1), A2(xk

1), . . . , Ak(xk
1)), (or brie�y, θ̄ :

(xk
1) → (Ak

1)(x
k
1)).
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Conversely, any mapping Qk into Qk uniquely de�nes a k-tuple (Ak
1) of

k-operations on Q: if θ̄(xk
1) = (yk

1 ), then we de�ne Ai(xk
1) = yi for all i =

1, 2, . . . , k (or shortly, i ∈ 1, k). Thus, we obtain θ̄ = (Ak
1), where θ̄(xk

1) =
(Ak

1)(x
k
1) = (Ak

1(x
k
1)). If C is a k-operation on Q and θ̄ is a mapping Qk

into Qk, then the operation Cθ̄ de�ned by the equality Cθ̄(xk
1) = C(θ̄(xk

1))
is also a k-operation. Let Cθ̄ = D and θ̄ = (Ak

1), then D(xk
1) = C(Ak

1(x
k
1))

or brie�y, D = C(Ak
1). If θ̄ = (Bk

1 ) and ϕ̄ = (Ak
1) are mappings Qk into Qk,

then ϕ̄θ̄ = (Ak
1)θ̄ = (A1θ̄, A2θ̄, . . . , Akθ̄) = ((Aiθ̄)k

i=1 = (Ai(Bk
1 ))k

i=1.

If θ̄ = (Bk
1 ) is a permutation of Qk, then Bi = Eiθ̄ and Biθ̄

−1 =
Bi(Bk

1 )−1 = Ei, i ∈ 1, k.

De�nition 2. [2] A k-tuple (Ak
1) of di�erent k-operations on Q is called

orthogonal if the system {Ai(xk
1) = ai}k

i=1 has a unique solution for all
(ak

1) ∈ Qk.

The k-tuple (Ek
1 ) of the selectors of arity k is the identity permutation

of Qk and is orthogonal.

There is a close connection between orthogonal k-tuples of k-operations
on Q and permutations of Qk (such permutations will be called k-permutati-

ons).

Proposition 1. [2] A k-tuple (Ak
1) of k-operations is orthogonal if and only

if the mapping θ̄ = (Ak
1) is a permutation of Qk.

In [2] it was introduced the notion of a strongly orthogonal system of
k-operations.

De�nition 3. [2] A system Σ = {A1, A2, . . . , At} = {At
1}, t > 1, of k-

operations, given on a set Q, is called strongly orthogonal if the system
Σ = {Ek

1 , At
1} is orthogonal.

In this case all k-operations of Σ are k-quasigroups since an i-invertible
k-operation A de�ned on Q is i-invertible if and only if the mapping
(E1, E2, . . . , Ei−1, A, Ei+1, . . . , Ek) is a permutation of Qk.

The system Σ is called the orthogonal system of k-quasigroups (k-OSQs).

A k-operation A is a k-quasigroup if and only if the set Σ = {A} is
strongly orthogonal. A set Σ = {At

1} of k-quasigroups when k > 2, t > k,
can be orthogonal but not strongly orthogonal in contrast to the binary
case [2].

Note that in the case of a strongly orthogonal set Σ = {A1, A2, . . . , At} =
{At

1} of k-operations the number t of k-operations in Σ can be less than
arity k.
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According to [2] if
∑

is a k-OSO given on a set Q, then
∑′ =

∑
θ =

{A1θ, A2θ, . . . , Atθ}, where θ is a permutation of Qk, is also a k-OSO.
Two k-OSO

∑
and

∑′ given on a set Q are conjugate if there exists a
permutation θ of Qk such that

∑′ =
∑

θ. They are called parastrophic if∑′ =
∑

θ
−1

where θ = (Ai1 , Ai2 , . . . , Aik), Aij ∈
∑

for any j ∈ 1, k. In

this case
∑′ =

∑
θ
−1 = {E1, E2, . . . , Ek, Aiθ

−1|i ∈ 1, t, i 6= ij , j ∈ 1, k}.
By Theorem 1 of [2] every k-OSO is conjugate to a k-OSQ and by Lemma

3 of [2] two k-OSQs are conjugate if and only if they are parastrophic.
In [2] the transformation of isostrophy of k-OSOs described below (for

k = 2 see [3]) which is more general than conjugation was also considered.
Let

∑
= {At

1} be a k-OSO given on a set Q, T = (α1, α2, . . . , αt)
be a system of permutations of Q. The transformation

∑
→

∑′ where∑′ = {α1A1, α2A2, . . . , αtAt}, Ai ∈
∑

is called isotopy of k-OSOs and
denoted by

∑′ =
∑T .

Remark 1. Note that if a k-OSO
∑

= {At
1} is strongly orthogonal and

T = (α1, α2, . . . , αt+k), then
∑T

= {α1E1, α2E2, . . . , αkEk, B1, B2, . . . , Bt}
where Bj = αk+jAj , j ∈ 1, t, are k-quasigroups.

It is true [2] that (
∑

θ)T = (
∑T )θ, i.e., if Bi ∈

∑′ = (
∑

θ)T , i ∈ 1, t,
then

Bi(xk
1) = (αi(Aiθ))(xk

1) = (αiAi)θ(xk
1). (1)

The transformation
∑

→ (
∑

θ)T =
∑′ is called in [2] isostrophy.

The system
∑′ is also orthogonal. Indeed, any k-tuple with di�erent

k-operations of
∑′ de�nes a permutation of Qk: (Bi1 , Bi2 , . . . , Bik) =

((αi1Ai1)θ, (αi2Ai2)θ, . . . , (αikAik)θ) = (αi1E1, αi2E2, . . . , αikEk)(Ai1 , Ai2 ,
. . . , Aik)θ. Thus, this k-tuple is the product of three permutations of Qk,
so it is orthogonal.

In addition, we consider the following case of the transformation of
isostrophy of a k-OSO, namely,

∑′ = (
∑

θ1)T , where θ1 = θ θ0, θ0 =
(β1E1, β2E2, . . . , βkEk), β1, β2, . . . , βk are permutations of Q, that is θ0(xk

1) =
(β1E1, β2E2, . . . , βkEk)(xk

1) = (β1x1, β2x2, . . . , βkxk).
In this case, if Bi ∈

∑′, then

Bi(xk
1) = (αiAi)θ1(xk

1) = (αiAi)θ θ0(xk
1) = ((αiAi)θ)θ0(xk

1). (2)

Let θ = (C1, C2, . . . , Ck), then (2) can be written as

Bi(xk
1) = αiAi(C1(βjxj)k

j=1, C2(βjxj)k
j=1, . . . , Ck(βjxj)k

j=1), (3)

where (βjxj)k
j=1 = (β1x1, β2x2, . . . , βkxk).
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Transformation (3) of a known k-OSO
∑

= {At
1} is realized with the

help of a tuple of permutations αi, i ∈ 1, t, some known orthogonal k-tuple
of k-operations (C1, C2, . . . , Ck) = θ and k permutations βj , j ∈ 1, k, of Q.

Remark 2. The transformation (3) can be represented by conjugations
and isotopy of k-operations. Remind that two k-operations (Q,A) and
(Q,B) are isotopic if there exists a (k + 1)-tuple T = (β1, β2, . . . , βk, α)
of permutations of Q such that αB(xk

1) = A(β1x1, β2x2, . . . , βkxk) for any
xk

1 ∈ Qk or, shortly, B = AT . Any k-operation isotopic to a k-quasigroup
is a k-quasigroup. Using isotopic k-operations transformation (2) can be
written as

∑′ = {B1, B2, . . . , Bt} = {(A1θ)T1 , (A2θ)T2 , . . . , (Atθ)Tt} =
{α1(A1θ)T0 , α2(A2θ)T0 , . . . , αt(Atθ)T0}, where Ti = (β1, β2, . . . , βk, α

−1
i ), αi,

i ∈ 1, t, βj , j ∈ 1, k, are permutations of Q, T0 = (β1, β2, . . . , βk, 1) (1 is the
identity permutation of Q).

If Q(A) is a k-quasigroup, then the system
∑

= {E1, E2, . . . , Ek, A} is
orthogonal and θ̄ = (E2, . . . , Ek, A) is a k-permutation of Qk.

By Proposition 3 of [9] the systems∑
θ̄ = {E2, E3, . . . , Ek, A, Aθ̄},

∑
θ̄2 = {E3, E4, . . . , Ek, A, Aθ̄, Aθ̄2},. . . ,∑

θ̄k = {A,Aθ̄, Aθ̄2, . . . , Aθ̄k} and
∑

θ̄s = {Aθ̄s−k, Aθ̄s−k−1, . . . , Aθ̄s}
are orthogonal for every s > k + 1. Each of these systems contains k + 1
operations, any k of which de�ne a k-permutation of Qk.

The transformation of isotopy, conjugation or isostrophy of a k-OSO
∑
,

described above, corresponds to the transformation of the secret-sharing
scheme, based on the k-OSO

∑
, which it is possible to call the transfor-

mation of isotopy, conjugation or isostrophy of the secret-sharing scheme
respectively.

5. Transformations of orthogonal systems

Consider transformations of k-OSOs which consist polynomial k-operations,
i.e., k-operations of the form

A(xk
1) = a1x1 + a2x2 + . . . + akxk

over a �eld GF (q). Any selector Ei of arity k can be considered as a
polynomial k-operation: Ei(xk

1) = a1x1 + a2x2 + . . . + aixi + . . . + akxk

where ai = 1, aj = 0, i, j ∈ 1, k, j 6= i.
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Let Σ = {A1, A2, . . . , At}, k > 2, t > k, be a set of k-operations each of
which is a polynomial k-operation over a �eld GF (q), that is

A1(xk
1) = a11x1 + a12x2 + . . . + a1kxk,

A2(xk
1) = a21x1 + a22x2 + . . . + a2kxk,

. . .
At(xk

1) = at1x1 + at2x2 + . . . + atkxk.

(4)

Let A be the matrix t×k de�ned by (4). The system
∑

= {At
1}, k > 2,

t > k, of polynomial k-operations from (4) is orthogonal if and only if all
k-minors of the matrix A, de�ned by these k-operations, are di�erent from
0 (Proposition 1 of [5]).

Consider the transformations of isotopy, conjugation and isostrophy of
k-OSOs which consist of polynomial k-operations over a �nite �eld GF (q),
in particular, when the k-OSOs are de�ned by the columns of the matrix
G or G.

Denote by
∑

A,
∑

G and
∑

G the k-OSOs of polynomial k-operations
de�ned by (4), by the columns of the matrix G and by the columns of
the matrix G respectively. In the following statements the de�nitions of
corresponding transformations of these k-OSOs described in the previous
item (which give new k-OSOs) are applied for the polynomial k-operations.

We will consider only these k-OSOs over a �eld GF (q) which contain t
k-operations A1, A2, . . . , At.

Proposition 2. Let Bi ∈
∑T

A, where T = (α1, α2, . . . , αt), αi is a permu-

tation of a set Q for i ∈ 1, t, then
Bi(xk

1) = αi(ai1x1 + ai2x2 + . . . + aikxk), i ∈ 1, t.

Indeed, Bi(xk
1) = αiAi(xk

1) = αi(ai1x1 + ai2x2 + . . . + aikxk), i ∈ 1, t.

For the polynomial k-operations de�ned by the matrix G or G we have

Corollary 2. If Bi ∈
∑T

G, T = (α1, α2, . . . , αq−1), then
Bi(xk−1

0 ) = αi(x0 + aix1 + a2
i x2 + . . . + ak−1

i xk−1), i ∈ 1, q − 1, and

B1 = α1E1, B2 = α2Ek, Bi(xk−1
0 ) = αi(x0 +aix1 +a2

i x2 + . . .+ak−1
i xk−1),

i ∈ 3, q + 1, if Bi ∈
∑T

G.

Proposition 3. Let Bi ∈
∑

A θ, where θ = (C1, C2, . . . , Ck), then
Bi(xk

1) = ai1C1(xk
1) + ai2C2(xk

1) + . . . + aikCk(xk
1), i ∈ 1, t.

Indeed, Bi(xk
1) = Aiθ(xk

1) = ai1C1(xk
1)+ai2C2(xk

1)+ . . .+aikCk(xk
1) for

all i ∈ 1, t.
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Corollary 3. If Bi ∈
∑

G θ, where θ = (C1, C2, . . . , Ck) , then

Bi(xk−1
0 ) = C1(xk−1

0 ) + aiC2(xk−1
0 ) + a2

i C3(xk−1
0 ) + . . . + ak−1

i Ck(xk−1
0 ),

i ∈ 1, q − 1. The k-operations of
∑

G θ have the form: B1 = C1, B2 = Ck,

Bi(xk−1
0 ) = C1(xk−1

0 ) + aiC2(xk−1
0 ) + a2

i C3(xk−1
0 ) . . . + ak−1

i Ck(xk−1
0 ),

i ∈ 3, q + 1.

Indeed, B1 = E1θ = C1, B2 = Ekθ = Ck by the de�nition.

Corollary 4. Let Ai0 be a k-operation from
∑

G (from
∑

G, Ai0 6= E1, Ek),
θ = (E1, E2, . . . , Ek−1, Ai0). If Bi ∈

∑
G θ, i ∈ 1, q − 1, i 6= i0, then

Bi(xk−1
0 ) = (1+ak−1

i )x0 +(ai +ak−1
i ai0)x1 + . . .+(ak−2

i +ak−1
i ak−2

i0
)xk−2+

ak−1
i ak−1

i0
xk−1 and Bi0(x

k−1
0 ) = (1 + ak−1

i0
)x0 + ai0(1 + ak−1

i0
)x1 + . . . +

ak−2
i0

(1 + ak−1
i0

)xk−2 + a2k−2
i0

xk−1. If Bi ∈
∑

G θ, then B1 = E1, B2 = Ai0

and Bi, i ∈ 3, q + 1, have the same form as above.

Proof. θ = (E1, E2, . . . , Ek−1, Ai0) is a k-permutation, Ai0 is a k-quasigroup,
so by Corollary 3 Bi(xk−1

0 ) = E1(xk−1
0 ) + aiE2(xk−1

0 ) + a2
i E3(xk−1

0 ) + . . . +
ak−2

i Ek−1(xk−1
0 ) + ak−1

i Ai0(x
k−1
0 ) = x0 + aix1 + a2

i x2 + . . . + ak−2
i xk−2 +

ak−1
i (x0 + ai0x1 + . . .+ ak−1

i0
xk−1) = (1+ ak−1

i )x0 +(ai + ak−1
i ai0)x1 + . . .+

(ak−2
i + ak−1

i ak−2
i0

)xk−2 + ak−1
i ak−1

i0
xk−1, i ∈ 1, q − 1, if Bi ∈

∑
G θ. For

i = i0 we obtain Bi0 .
When Bi ∈

∑
G θ, then B1 = E1(E1, E2, . . . , Ek−1, Ai0) = E1, B2 =

Ek(E1, E2, . . . , Ek−1, Ai0) = Ai0 . The rest k-operations has the form as in
the �rst part of the corollary.

Note that the transformation of Corollary 4 corresponds to the following
transformation of the matrix G (or G): the last row (that is the k-th row)
multiplied by aj−1

i0
is added to the j-th row, j = 1, 2, . . . , k− 1, the last row

is multiplied by ak−1
i0

(assume a0
i0

= 1). The k-operation Bi is de�ned by
the i-th column of the obtained matrix.

Let θ = (E1, E2, . . . , Ek−1, A), where the k-operation A is k-invertible.

In this case θ is a k-permutation and θ
−1 = (E1, E2, . . . , Ek−1,

(k) A), where
(k)A is the k-operation such that A(x1, x2, . . . , xk−1,

(k) A(xk
1)) = Ek(xk

1) =
xk. If A is a polynomial k-operation, that is A(xk

1) = a1x1+a2x2+. . .+akxk,
where ak 6= 0 , then (k)A(xk

1) = a−1
k (−a1x1 − a2x2 − . . .− ak−1xk−1 + xk).

Corollary 5. Let Ai0 ∈
∑

G, Bi ∈
∑

G θ
−1

, θ = (E1, E2, . . . , Ek−1, Ai0).
Then Bi(xk−1

0 ) = (1 − ak−1
i (ak−1

i0
)−1)x0 + ai(1 − ak−2

i (ak−2
i0

)−1)x1 + . . . +
ak−2

i (1 − ai(ai0)
−1)xk−2 + ak−1

i (ak−1
i0

)−1xk−1, if i ∈ 1, q − 1, i 6= ii0 and

Bi0 = Ek. All Bi for i 6= i0 are polynomial k-quasigroups.
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Proof. If Ai0 ∈
∑

G, then Ai0 is a k-quasigroup and (k)Ai0(x
k−1
0 ) = (ak−1

i0
)−1

(−x0 − ai0x1 − . . . − ak−2
i0

xk−2 + xk−1), so Bi(xk−1
0 ) = Aiθ

−1(xk−1
0 ) =

E1(xk−1
0 )+aiE2(xk−1

0 )+a2
i E3(xk−1

0 )+...+ak−2
i Ek−1(xk−1

0 )+ak−1
i

(k)Ai0(x
k−1
0 )

= x0 + aix1 + a2
i x2 + . . . + ak−2

i xk−2 + ak−1
i (ak−1

i0
)−1(−x0 − ai0x1 − . . . −

ak−2
i0

xk−2+xk−1) = (1−ak−1
i (ak−1

i0
)−1)x0+ (ai−ak−1

i (ak−1
i0

)−1ai0)x1+ . . .+
(ak−2

i −ak−1
i (ak−1

i0
)−1ak−2

i0
)xk−2+ak−1

i (ak−1
i0

)−1xk−1 = (1−ak−1
i (ak−1

i0
)−1)x0+

(ai−ak−1
i (ak−2

i0
)−1)x1+. . .+(ak−2

i −ak−1
i (ai0)

−1)xk−2+ak−1
i (ak−1

i0
)−1xk−1 =

(1−ak−1
i (ak−1

i0
)−1)x0+ai(1−ak−2

i (ak−2
i0

)−1)x1+. . .+ak−2
i (1−ai(ai0)

−1)xk−2+

ak−1
i (ak−1

i0
)−1xk−1, i ∈ 1, q − 1, if Bi ∈

∑
G θ

−1
. From this expression it

follows that Bi0 = Ek and all k-operations Bi, i 6= i0, are polynomial k-
quasigroups since all coe�cients are di�erent from 0.

Proposition 4. If in Proposition 3 θ = (Ai1 , Ai2 , . . . , Aik), Ail ∈
∑

A,

l ∈ 1, k, θ
−1 = (D1, D2, . . . , Dk), then

∑
A θ

−1
is a k-OSQ and Bil = El,

l ∈ 1, k, Bi(xk
1) = ai1D1(xk

1) + ai2D2(xk
1) + . . . + aikDk(xk

1), i ∈ 1, t, i 6= il,

l ∈ 1, k, if Bi ∈
∑

A θ
−1

.

Proof. If i ∈ 1, t, i 6= i1, i2, . . . , ik, then Bi = Ai(D1, D2, . . . , Dk). But

Ail = Elθ and Ailθ
−1 = El, so Bil = Ailθ

−1 = El and the system
∑

A θ
−1 =

{E1, E2, . . . , Ek, Bi|i ∈ 1, t, i 6= i1, i2, . . . , ik} is an orthogonal system of k-
quasigroups (k-OSQ).

Let
∑

→ (
∑

θ θ0)T = (
∑

θ)T θ0. Then, using (3), we obtain

Proposition 5. Assume that Bi ∈ (
∑

A θ)T θ0, where θ = (C1, C2, . . . , Ck),
θ0 = (β1E1, β2E2, . . . , βkEk) and T = (α1, α2, . . . , αt), then Bi(xk

1) =
αi(ai1C1(βjxj)k

j=1 + ai2C2(βjxj)k
j=1 + . . . + aikCk(βjxj)k

j=1), i ∈ 1, t.

Indeed, according to (3) Bi(xk
1) = αiAi(C1(βjxj)k

j=1, C2(βjxj)k
j=1, . . . ,

Ck(βjxj)k
j=1) = αi(ai1C1(βjxj)k

j=1+ai2C2(βjxj)k
j=1+. . .+aikCk(βjxj)k

j=1),
i ∈ 1, t.
Corollary 6. If Bi ∈ (

∑
G θ)T θ0, θ = (C1, C2, . . . , Ck), θ0 = (β0E1, β1E2,

. . . , βk−1Ek), then Bi(xk−1
0 ) = αi(C1(βjxj)k−1

j=0 + aiC2(βjxj)k−1
j=0 + . . . +

ak−1
i Ck(βjxj)k−1

j=0), i ∈ 1, q − 1. If Bi ∈ (
∑

G θ)T θ0, then B1(xk−1
0 ) =

α1C1(βjxj)k−1
j=0 , B2(xk−1

0 ) = α2Ck(βjxj)k−1
j=0 , Bi(xk−1

0 ) = αi(C1(βjxj)k−1
j=0 +

aiC2(βjxj)k−1
j=0 + . . . + ak−1

i Ck(βjxj)k−1
j=0), i ∈ 3, q + 1.

Indeed, if Bi ∈ (
∑

G θ)T θ0, then

B1(xk−1
0 ) = α1E1(C1, C2, . . . , Ck)(βjxj)k−1

j=0 = α1C1(βjxj)k−1
j=0 ,
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B2(xk−1
0 ) = α2Ek(C1, C2, . . . , Ck)(βjxj)k−1

j=0 = α2Ck(βjxj)k−1
j=0 .

Now let
∑

→ (
∑

θ
−1

θ0)T = (
∑

θ
−1)T θ0 (see (1)).

Proposition 6. If Bi ∈ (
∑

A θ
−1)T θ0, where θ = (Ai1 , Ai2 , . . . , Aik),Ail ∈∑

A, l ∈ 1, k, θ
−1 = (D1, D2, . . . , Dk), θ0 = (β1E1, β2E2, . . . , βkEk), then

Bil = αilβlEl, l ∈ 1, k, Bi(xk
1) = αi(ai1D1(βjxj)k

j=1 + ai2D2(βjxj)k
j=1 +

. . . + aikDk(βjxj)k
j=1), i ∈ 1, t, i 6= i1, i2, . . . , ik, where Bi, i 6= i1, i2, . . . , ik,

are k-quasigroups.

This proposition is a consequence of Proposition 4, Proposition 5 and
Remark 1 since
Bil(x

k
1)=(αilAilθ

−1)θ0(xk
1)=(αilEl)θ0(xk

1)=αilEl(βjxj)k
j=1 = αilβlEl(xk

1),
l ∈ 1, k.

Corollary 7. If
∑

G = {E1, Ek, A1, A2, . . . , Aq−1} = {P1, P2, . . . , Pq+1},
θ = (Pi1 , Pi2 , . . . , Pik), i1, i2, . . . , ik ∈ 1, q + 1, θ

−1 = (D1, D2, . . . , Dk),
θ0 = (β0E1, β1E2, . . . , βk−1Ek), Bi ∈ (

∑
G θ

−1)T θ0, then Bil = αilβl−1El,

l ∈ 1, k, Bi(xk−1
0 )= αi(D1(βjxj)k−1

j=0+aiD2(βjxj)k−1
j=0+...+ak−1

i Dk(βjxj)k−1
j=0),

i ∈ 1, q + 1, i 6= i1, i2, . . . , ik. All Bi, i 6= i1, i2, . . . , ik, are k-quasigroups.

Indeed, in this case Bil(x
k−1
0 ) = (αilPilθ

−1)θ0(xk−1
0 ) = (αilEl)θ0(xk−1

0 )
= αilEl(βjxj)k−1

j=0 = αilβl−1El(xk−1
0 ), l ∈ 1, k. The rest k-operations are

k-quasigroups by Remark 1.

If θ
−1 = (D1, D2, . . . , Dk), then the k-operations Bi of (

∑
G θ

−1)T θ0,
i ∈ 1, q − 1, where

∑
G = {A1, A2, . . . , At}, θ = (Ai1 , Ai2 , . . . , Aik), Ail ∈∑

G, l ∈ 1, k, have the same form as in Corollary 7.

The transformations of k-OSOs, given above, allow to construct new
secret-sharing schemes or to renew (to renovate secret keys) the known
secret-sharing schemes, in particular, based on a Reed-Solomon or an ex-
tended Reed-Solomon code in the pointed numerous ways.
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