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Pure ideals in ternary semigroups

Shahida Bashir and Muhammad Shabir

Abstract. In this paper we introduce the notions of pure ideals, weakly pure ideals in
ternary semigroups. We also de�ne purely prime ideals of a ternary semigroup and study
some properties of these ideals. The space of purely prime two-sided ideal is topologized.

1. Introduction

Cayley and Sylvester along with several other mathematicians, in the 19th
century considered ternary algebraic structures and cubic relations. The
n-ary structures, which are the generalizations of ternary structures create
hopes because of their possible applications in Physics. A few important
physical applications have been recorded in [2, 3, 12, 19]. Ternary semi-
groups exhibit natural examples of ternary algebras.

Banach �nd some applications in ternary semigroup. He gave an ex-
ample to show that a ternary semigroup is not necessarily reduce to an
ordinary semigroup. Los [13] studied some properties of ternary semigroup
and proved that every ternary semigroup can be embedded in a semigroup.
Sioson at [18] introduced the ideal theory in ternary semigroups. He also in-
troduced the notion of regular ternary semigroups and characterized them
by using the properties of quasi-ideals. In [16], Santiago developed the
theory of ternary semigroups and semiheaps. He studied regular and com-
pletely regular ternary semigroups. Dixit and Dewan studied quasi-ideals
and bi-ideals in ternary semigroups at [5, 6]. Ternary regular semigroups
are studied in [8] and [17]. The nice characterization of regularity by ideals
is given in [8].

M. Shabir and A. Khan at [14] studied prime ideals and prime one sided
ideals in semigroups. Ahsan and Takahashi at [1] have brought forwarded
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the concept of pure and purely prime ideals in semigroups.

M. Shabir and S. Bashir at [15] launched prime ideals in ternary semi-
groups. At cite8 and [17] ternary and n-ary semigroups are given along with
an immaculate characterization of regularity by their ideals. At [7] appli-
cations of ideals to the divisibility theory in ternary and n-ary semigroups
is presented.

In this paper we start the study of pure ideals, weakly pure ideals and
purely prime ideals in ternary semigroups. We characterize ternary semi-
groups by the properties of pure and weakly pure ideals.

2. Preliminaries

A non-empty set T with a ternary operation ( ) is called a ternary semigroup

if it satis�es the following associative law:

((x1x2x3)x4x5) = (x1(x2x3x4)x5) = (x1x2(x3x4x5))

for all xi ∈ T , 1 6 i 6 5.
To avoid complexity we denote (x1x2x3) as x1x2x3 and take the opera-

tion ( ) as multiplication. It is evident that each ordinary semigroup (T, ∗)
induces a ternary semigroup (T, ( )) by de�ning (abc) = (a∗ b)∗ c. Whereas
in [13] it has been demonstrated that every ternary semigroup does not
enjoy the status of an ordinary semigroup. A ternary semigroup T is said
to be a ternary semigroup with zero if there exists an element 0 ∈ T such
that 0ab = a0b = ab0 = 0 for all a, b ∈ T . Then 0 is called the zero element

of T . If A,B, C are non-empty subsets of a ternary semigroup T then their
product ABC is de�ned as

ABC = {abc : a ∈ A, b ∈ B and c ∈ C}.

A non-empty subset S of a ternary semigroup T is called a ternary

subsemigroup of T if SSS = S3 ⊆ S. A non-empty subset A of a ternary
semigroup T is called a left (right, lateral) ideal of T if TTA ⊆ A (ATT ⊆ A,
TAT ⊆ A). If A is a left, right and lateral ideal of T , then it is called an
ideal of T and if A is a left and right ideal of T , then it is called two-sided

ideal of T . Lateral ideals are also known as middle ideals. It is clear that
every left, right and lateral ideal is a ternary subsemigroup of T . An ideal
A of a ternary semigroup T is called idempotent if A3 = AAA = A. A
ternary semigroup T is called semisimple if each ideal of T is idempotent.



Pure ideals in ternary semigroups 151

An element x ∈ T is regular if there exists an element a ∈ T such that
x = xax, that is x ∈ xTx. A ternary semigroup T is regular if each element
of T is regular.

The intersection of all the left ideals of T containing X ⊆ T is the
smallest left ideal of T containing X. It is denoted by 〈X〉l and called the
left ideal generated by X. Clearly 〈X〉l = X ∪XTT .

Similarly,

〈X〉r = X ∪ TTX

〈X〉m = X ∪ TXT ∪ TTXTT

〈X〉t = X ∪ TTX ∪XTT ∪ TTXTT

〈X〉 = X ∪ TTX ∪XTT ∪ TXT ∪ TTXTT

are the right, lateral, two-sided, and ideal of T generated by X, respectively.
It is well known that if A, B and C are two-sided ideals of T , then

(ABC) = {abc : a ∈ A, b ∈ B, c ∈ C} is a two-sided ideal of T . The
intersection of any family of (two-sided) ideals of a ternary semigroup T is
either empty or a (two-sided) ideal of T . Union of any family of (two-sided)
ideals of a ternary semigroup T is a (two-sided) ideal of T .

3. Pure ideals

In [1], Ahsan and Takahashi studied pure ideals in semigroups. In this
section we de�ne pure ideals in ternary semigroups.

De�nition 3.1. A two-sided ideal I of a ternary semigroup T is called right

(left) pure if for each x ∈ I there exist y, z ∈ I such that xyz = x (yzx = x).
An ideal I of a ternary semigroup T is called right (left) pure if for each

x ∈ I there exist y, z ∈ I such that xyz = x (yzx = x).

Similarly we de�ne one-sided right (left) pure ideals.
The following example shows that right pure ideals need not be left pure.

Example 3.2. Let T = {0, a, b, c, 1}. De�ne the ternary operation ( ) on
T as (abc) = a ∗ (b ∗ c) where the binary operation ∗ is de�ned as

∗ 0 a b c 1

0 0 0 0 0 0
a 0 0 0 a a
b 0 0 b b b
c 0 0 b c c
1 0 a b c 1
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Then (T, ( )) is a ternary semigroup and the ideal I1 = {0, a} is neither
right pure nor left pure; the ideal I2 = {0, b} is both right and left pure; the
ideal I3 = {0, a, b, c} is right pure but not left pure.

Proposition 3.3. Each right pure right ideal of a ternary semigroup T is

contained in a right pure two-sided ideal of T .

Proof. Let A be a right pure right ideal of T . Then A ∪ TTA is a two-
sided ideal of T generated by A. Let x ∈ A ∪ TTA. Suppose x ∈ A, since
A is right pure right ideal of T , therefore there exist y, z ∈ A such that
x = xyz. If x ∈ TTA, then x = t1t2a for some t1, t2 ∈ T and a ∈ A.
Again, since A is right pure so there exist b, c ∈ A such that a = abc. Hence
x = t1t2a = t1t2(abc) = (t1t2a)bc = xbc. This shows that A ∪ TTA is a
right pure two-sided ideal containing the right pure right ideal A.

Proposition 3.4. A two-sided ideal I of a ternary semigroup T is right

pure if and only if J ∩ I = JII for all right ideals J of T .

Proof. Suppose I is a right pure two-side ideal of T . For every right ideal J
of T , JII ⊆ J ∩ I always. Let x ∈ J ∩ I. Since I is a right pure two-sided
ideal, so there exist y, z ∈ I such that xyz = x. Thus x = xyz ∈ JII.
Hence J ∩ I ⊆ JII. Thus J ∩ I = JII.

Conversely, assume that J ∩ I = JII for every right ideal J of T . We
show that I is a right pure two-sided ideal. Let x be any element of I and
J = x ∪ xTT be the right ideal of T generated by x. Then by hypothesis

(x ∪ xTT ) ∩ I = (x ∪ xTT )II = xII ∪ (xTT )II ⊆ xII ∪ xII = xII.

Since x ∈ (x ∪ xTT ) ∩ I, so x ∈ xII. Hence there exist y, z ∈ I such that
x = xyz. Thus I is right pure.

Similarly we can show that, an ideal I of a ternary semigroup T is right

pure if and only if J ∩ I = JII for all right ideals J of T .

De�nition 3.5. A ternary semigroup T is said to be right weakly regular

if for each x ∈ T , x ∈ (xTT )3.

Every regular ternary semigroup is right weakly regular but the converse
is not true.

Theorem 3.6. For a ternary semigroup T, the following assertions are

equivalent:
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(a) T is right weakly regular.

(b) Every right ideal of T is idempotent, that is J3 = J for every right

ideal J of T .

(c) J ∩ I = JII for every right ideal J and two-sided ideal I of T .

(d) J ∩ I = JII for every right ideal J and for every ideal I of T .

Proof. (a) ⇒ (b) Let J be a right ideal of T , then J3 ⊆ JTT ⊆ J . Let
x ∈ J . Then x ∈ (xTT )3 ⊆ J3. Thus J ⊆ J3. Hence J = J3.

(b) ⇒ (a) Suppose that every right ideal of T is idempotent. Let x ∈ T .
Then J = x ∪ xTT is the right ideal of T , so idempotent, that is

x ∪ xTT = (x ∪ xTT )(x ∪ xTT )(x ∪ xTT )
= xxx ∪ xxxTT ∪ xxTTx ∪ xxTTxTT ∪ xTTxx ∪ xTTxxTT∪

∪xTTxTTx ∪ xTTxTTxTT.

Simple calculations shows that x ∈ (xTT )3. Hence T is right weakly regular.
(a) ⇒ (c) Suppose T is right weakly regular ternary semigroup and

J a right ideal and I a two-side ideal of T . Then JII ⊆ J ∩ I always.
Let x ∈ J ∩ I. Since T is right weakly regular, so x ∈ (xTT )3. Thus
x = (xs1t1)(xs2t2)(xs3t3) for some s1, t1, s2, t2, s3, t3 ∈ T . Hence x ∈ JII,
which shows that J ∩ I ⊆ JII. Hence J ∩ I = JII.

(c) ⇒ (d) Obvious.
(d) ⇒ (a) Let x ∈ T and J = x∪xTT be the right ideal of T generated

by x, I = x∪ xTT ∪ TTx∪ TxT ∪ TTxTT be the ideal of T generated by
x. Then, by hypothesis, (x ∪ xTT ) ∩ (x ∪ xTT ∪ TTx ∪ TxT ∪ TTxTT ) =
(x∪xTT )(x∪xTT ∪TTx∪TxT ∪TTxTT )(x∪xTT ∪TTx∪TxT ∪TTxTT )
= (xxx ∪ xxxTT ∪ xxTTx ∪ xxTxT ∪ xxTTxTT ∪ xTTxx ∪ xTTxxTT ∪
xTTxTTx∪ xTTxTxT ∪xTTxTTxTT ∪xTxTx∪xTxTxTT ∪xTxTTxT ).

Simple calculations shows that x ∈ (xTT )3. Hence T is right weakly
regular ternary semigroup.

Theorem 3.7. For a ternary semigroup T, the following assertions are

equivalent:

(1) T is right weakly regular.

(2) Every two-sided ideal I of T is right pure.

(3) Every ideal I of T is right pure.

Proof. The proof follows from Theorem 3.6 and Proposition 3.4.

Proposition 3.8. Let T be a ternary semigroup with 0. Then

(1) {0} is a right pure ideal of T .

(2) Set theoretic union of any number of right pure two-sided ideals
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(ideals) of T is a right pure two-sided ideal (ideal) of T .

(3) Any �nite intersection of right pure two-sided ideals (ideals) of T is

a right pure two-sided ideal (ideal) of T.

Proof. (1) Obvious.
(2) Let {Ik}k∈K be a family of right pure two-sided ideals of T . Then
∪

k∈K
Ik is a two-sided ideal of T . Suppose x ∈ U

k∈K
Ik. Then there exists

some k ∈ K such that x ∈ Ik. Since Ik is a right pure two-sided ideal of T ,
so there exist y, z ∈ Ik such that x = xyz. It follows that y, z ∈ U

k∈K
Ik such

that x = xyz. Hence U
k∈K

Ik is a right pure two-sided ideal of T .

(3) Let I1, I2 be right pure two-sided ideals of T and x ∈ I1 ∩ I2.
Then x ∈ I1and x ∈ I2. Since I1and I2 are right pure two-sided ideals
of T , so there exist y1, z1 ∈ I1 and y2, z2 ∈ I2 such that x = xy1z1 and
x = xy2z2. Thus we have x = xy1z1 = (xy2z2)y1z1 = ((xy1z1)y2z2)y1z1 =
x(y1z1y2)(z2y1z1), where y1z1y2 and z2y1z1 ∈ I1∩I2. Thus I1∩I2 is a right
pure ideal of T .

Similarly we can prove the case of ideals.

Proposition 3.9. Let I be any two-sided ideal of a ternary semigroup T
with zero 0. Then I contains a largest right pure two-sided ideal. (We call

it the pure part of I and denote by S(I)).

Proof. Let S(I) be the union of all right pure two-sided ideals contained
in I. Such ideals exist because {0} is a right pure ideal contained in each
two-side ideal. By the above Proposition S(I) is a right pure two-sided
ideal. It is indeed the largest right pure two-sided ideal contained in I.

Similarly we can show that if I is an ideal of T then I contains a largest
right pure ideal.

Proposition 3.10. Let I, K be two-sided ideals of T and {Ik}k∈K be the

family of two-sided ideals of a ternary semigroup T with zero 0. Then

(1) S(I ∩K) = S(I) ∩ S(K).
(2) ∪

k∈K
S(Ik) ⊆ S( ∪

k∈K
Ik).

Proof. (1) Since S(I) ⊆ I, S(K) ⊆ K, thus S(I) ∩ S(K) ⊆ I ∩ K. But
S(I) ∩ S(K) is right pure by Proposition 3.8, so S(I) ∩ S(K) ⊆ S(I ∩K).
On the other hand S(I ∩ K) ⊆ I ∩ K ⊆ I and S(I ∩ K) is pure, so
S(I∩K) ⊆ S(I). Similarly, S(I∩K) ⊆ S(K). Thus S(I∩K) ⊆ S(I)∩S(K).
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Hence, S(I ∩K) = S(I) ∩ S(K).
(2) Since S(Ik) ⊆ Ik so ∪

k∈K
S(Ik) ⊆ ∪

k∈K
Ik. As S(Ik) is right pure, so

∪
k∈K

S(Ik) is right pure. Thus we have ∪
k∈K

S(Ik) ⊆ S( ∪
k∈K

Ik).

De�nition 3.11. Let I be a right pure two-sided ideal of T , then I is called
purely maximal if I is maximal in the lattice of proper right pure two-sided
ideals of T .

A proper right pure two-sided ideal I of T is called purely prime if
I1TI2 ⊆ I implies I1 ⊆ I or I2 ⊆ I for any right pure two-sided ideals I1

and I2 of T . Equivalently I1 ∩ I2 ⊆ I implies I1 ⊆ I or I2 ⊆ I (Because
I1TI2 ⊆ I1 ∩ I2 and I1 ∩ I2 = I1I2I2 ⊆ I1TI2. Thus I1TI2 = I1 ∩ I2).

Proposition 3.12. Any purely maximal two-sided ideal is purely prime.

Proof. Suppose I is purely maximal two-sided ideal of T and I1, I2 are right
pure two-sided ideals of T such that I1 ∩ I2 ⊆ I. Suppose I1 * I. Then
I1 ∪ I is a right pure ideal such that I ( I1 ∪ I. Since I is purely maximal,
so I1 ∪ I = T . Thus

I2 = I2 ∩ T = I2 ∩ (I1 ∪ I) = (I2 ∩ I1) ∪ (I2 ∩ I) ⊆ I ∪ I = I.

Hence I is purely prime.

Proposition 3.13. The pure part of any maximal two-sided ideal of a

ternary semigroup with zero is purely prime.

Proof. Let M be a maximal two-sided ideal of T and S(M) be its pure part.
Suppose I1 ∩ I2 ⊆ S(M) where I1, I2 are right pure two-sided ideals of T .
If I1 ⊆ M then I1 ⊆ S(M). If I1 * S(M) then I1 * M . Thus I1 ∪M = T
because M is maximal. Hence we have

I2 = I2∩T = I2∩(I1∪M) = (I2∩I1)∪(I2∩M) ⊆ S(M)∪M ⊆ M∪M = M .

But S(M) is the largest right pure two-sided ideal contained in M . Thus
I2 ⊆ S(M). Hence S(M) is purely prime.

Proposition 3.14. Let I be a right pure two-sided ideal of T and a ∈ T
such that a /∈ I, then there exists a purely prime two-sided ideal J of T such

that I ⊆ J and a /∈ J .
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Proof. Let

X = {J : J is a right pure two-sided ideal of T , I ⊆ J and a /∈ J},
then X 6= ∅ since I ∈ X. X is partially ordered by inclusion. Let {Jk}k∈K

be any totally ordered subset of X. By Proposition 3.8, ∪
k∈K

Jk is a right

pure two-sided ideal. Since I ⊆ ∪
k∈K

Jk and a /∈ ∪
k∈K

Jk, so ∪
k∈K

Jk ∈ X. Thus

by Zorn's Lemma, X has a maximal element, say, J such that J is pure,
I ⊆ J and a /∈ J . We claim that J is purely prime. Suppose I1 and I2

are right pure two-sided ideals of T such that I1 * J and I2 * J . Since
Ik(k = 1, 2) and J are right pure so Ik ∪ J is a right pure two-sided ideal
such that J ( Ik ∪ J . Thus a ∈ Ik ∪ J (k = 1, 2). As a /∈ J , so a ∈ Ik

(k = 1, 2). Thus a ∈ I1∩ I2. Hence I1∩ I2 * J . This shows that J is purely
prime.

Proposition 3.15. Any proper right pure two sided ideal I of T is the

intersection of all the purely prime two-sided ideals of T containing I.

Proof. By Proposition 3.14, there exists purely prime two-sided ideals con-
taining I . Let {Jk}k∈K be the family of all purely prime two-sided ideals of
T which contain I. Since I ⊆ Jk for all k ∈ K, so I ⊆ ∩

k∈K
Jk. To show that

∩
k∈K

Jk ⊆ I. Let a /∈ I, then by Proposition 3.14, there exists a purely prime

two-sided ideal J such that I ⊆ J and a /∈ J . It follows that a /∈ ∩
k∈K

Jk.

Thus ∩
k∈K

Jk ⊆ I. Hence I = ∩
k∈K

Jk.

4. Weakly pure ideals

In this section we generalize the concept of pure two sided ideal and de�ne
weakly pure two-sided ideal.

De�nition 4.1. A two-sided ideal A of a ternary semigroup T is called left

(resp. right) weakly pure if A ∩ B = AAB (resp. A ∩ B = BAA) for all
two-sided ideals B of T.

Every left (right) pure two-sided ideal is left (right) weakly pure.

Proposition 4.2. If A,B are two-sided ideals of a ternary semigroup T
with zero 0, then

BA−1 = {t ∈ T : xyt ∈ B for all x, y ∈ A}
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and

A−1B = {t ∈ T : txy ∈ B for all x, y ∈ A}

are two-sided ideals of T .

Proof. BA−1 6= ∅ because 0 ∈ BA−1. Let s, r ∈ T and t ∈ BA−1. Then for
all x, y ∈ A, (xy(srt)) = (x(ysr)t) = xzt ∈ B because z = ysr ∈ A. Hence
srt ∈ BA−1. Also, (xy(tsr)) = (xyt)sr ∈ BTT ⊆ B, because xyt ∈ B.
Thus tsr ∈ BA−1. Hence BA−1 is a two-sided ideal of T .

Now, let s, r ∈ T and t ∈ A−1B. Then ((srt)xy) = sr(txy) = srb ∈
TTB ⊆ B for all x, y ∈ A, because b = txy ∈ B. Hence srt ∈ A−1B.

Also, (tsr)xy = t(srx)y = tx1y ∈ B because x1 = srx ∈ A. Thus
tsr ∈ A−1B. Hence A−1B is a two-sided ideal of T .

Proposition 4.3. For a two-sided ideal A of a ternary semigroup T , the

following assertions are equivalent.

(1) A is left (right) weakly pure.

(2) (BA−1) ∩A = B ∩A (A−1B ∩A = A ∩B) for all ideals B of T .

Proof. (1) ⇒ (2) Suppose A is left weakly pure. Since BA−1 is a two sided
ideal, we have (BA−1) ∩A = AA(BA−1).

Now we show that AA(BA−1) ⊆ B. Let atx ∈ AA(BA−1), where
a, t ∈ A, x ∈ BA−1. Then atx ∈ B (by the de�nition of BA−1). Hence
AA(BA−1) ⊆ B. Also AA(BA−1) ⊆ ATT ⊆ A and (BA−1) ∩ A =
AA(BA−1) ⊆ A ∩B. Thus (BA−1) ∩A ⊆ B ∩A.

Let b ∈ B ∩ A, then xyb ∈ B for all x, y ∈ A. Hence b ∈ BA−1. Thus
B ∩A ⊆ (BA−1) ∩A. Therefore (BA−1) ∩A = B ∩A.

(2) ⇒ (1) Assume that A,B are two-sided ideals of a ternary semigroup
T and (BA−1) ∩ A = B ∩ A. We show that A is left weakly pure. First
we show that B ⊆ (AAB)A−1. Let b ∈ B, then for each x, y ∈ A, we have
xyb ∈ AAB. Thus b ∈ (AAB)A−1. Hence B ∈ (AAB)A−1. This shows
B ⊆ (AAB)A−1. Thus A ∩ B ⊆ (AAB)A−1 ∩ A = AAB ∩ A ⊆ AAB by
hypothesis. But AAB ⊆ A ∩ B always. Hence A ∩ B = AAB. Thus A is
left weakly pure.

Proposition 4.4. For a ternary semigroup T the following assertions are

equivalent.

(1) Each two-sided ideal of T is left weakly pure.

(2) Each two-sided ideal of T is idempotent.

(3) Each two-sided ideal of T is right weakly pure.
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Proof. (1) ⇒ (2) Suppose each two-sided ideal of T is left weakly pure. Let
X be a two-sided ideal of T , then for each two-sided ideal Y of T we have
X ∩ Y = XXY . In particular X = X ∩X = XXX. Hence each two-sided
ideal of T is idempotent.

(2) ⇒ (1) Suppose each two-sided ideal of T is idempotent. Let X be a
two-sided ideal of T , then for any two-sided ideal Y of T we always have
XXY ⊆ X ∩ Y . On the other hand,

X ∩ Y = (X ∩ Y )(X ∩ Y )(X ∩ Y ) ⊆ XXY .

Hence we have X ∩ Y = XXY . Thus X is left weakly pure.

(2) ⇒ (3) Similarly as (2) ⇒ (1).

(3) ⇒ (2) Suppose each two-sided ideal of T is right weakly pure. Let X be
any two-sided ideal of T . Then X is right weakly pure. Hence for each two-
sided ideal Y of T , we have X ∩ Y = Y XX. In particular X ∩X = XXX.
Hence each two-sided ideal of T is idempotent.

Example 4.5. Any set T with the ternary operation (xyz) = x if x = y =
z, and (xyz) = 0 otherwise, where 0 is a �xed element of T , is a ternary
semigroup in which every subset containing 0 is its two-sided ideal. Every
two-sided ideal of this semigroup is its right (left) pure ideal.

If |T | = 1 or 2, then every two-sided ideal of T is purely prime. But if
|T | ≥ 3, then the ideal {0} is not purely prime. Because if a, b ∈ T − {0},
then I = {0, a} and J = {0, b} are right pure ideals of T such that I ∩ J =
{0} but neither I * {0} nor J * {0}.

5. Pure spectrum of a ternary semigroup

In this section T is a ternary semigroup with zero such that T 3 = T .

Let P(T ) be the set of all right pure ideals of T and P(T ) be the set of
all proper purely prime ideals of T . De�ne for each I ∈ P(T ),

BI = {J ∈ P(T ) : I * J}, =(T ) = {BI : I ∈ P(T )}.

Theorem 5.1. =(T ) forms a topology on P(T ).

Proof. As {0} is a right pure ideal of T , so B{0} = {J ∈ P(T ) : {0} * J} =
∅, because 0 belongs to every right pure ideal. Since T is a right pure ideal
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of T , BT = {J ∈ P(T ) : T * J} = P(T ) because P(T ) is the set of all
proper purely prime ideals of T .

Let {BIα : α ∈ Λ} ⊆ =(T ), then⋃
α∈Λ

BIα ={J ∈ P(T ) : Iα * J for some α∈ Λ}={J ∈ P(T ) : ∪Iα * J}=B∪Iα .

To prove that BI1 ∩ BI2 ∈ = (T ) for any BI1 ,BI2 ∈ = (T ) we consider
J ∈ BI1 ∩ BI2 . Then J ∈ P(T ), I1 * J and I2 * J .

Suppose that I1 ∩ I2 ⊆ J . Since J is a purely prime ideal, therefore
either I1 ⊆ J or I2 ⊆ J , which is a contradiction, hence I1 ∩ I2 * J , which
implies J ∈ BI1∩I2 . Thus BI1 ∩ BI2 ⊆ BI1∩I2 .

On the other hand, if J ∈ BI1∩I2 , then

I1 ∩ I2 * J ⇒ I1 * J and I2 * J ⇒ J ∈ BI1 and J ∈ BI2 ⇒ J ∈ BI1 ∩ BI2 .

Hence BI1∩I2 ⊆ BI1 ∩ BI2 . Consequently, BI1∩I2 = BI1 ∩ BI2 , which implies
BI1 ∩ BI2 ∈ = (T ).

Thus = (T ) is a topology on P(T ).

Acknowledgement: The authors would like to thank the referees and
Chief Editor for the valuable suggestions and corrections for improvement
of this paper.

References

[1] J. Ahsan and M. Takahashi, Pure spectrum of a monoid with zero, Kobe
J. Math. 6 (1989), 163− 182.

[2] M. Amyari and M. S. Moslehian, Approximate homomorphisms of

ternary semigroups, Letters Math. Physics 77 (2006), 1− 9.

[3] N. Bazunova, A. Borowiec and R. Kerner, Universal di�erential calcu-
lus on ternary algebra, Letters Math. Physics 67 (2004), 195− 206.

[4] A. H. Cli�ord and G. B. Preston, Thew algebraic theory of semigroups,
Amer. Math. Soc. 1961/1967.

[5] V. N. Dixit and S. Dewan, A note on quasi and bi-ideals in ternary

semigroups, Int. J. Math. Math. Sci. 18 (1995), 501− 508.

[6] V. N. Dixit and S. Dewan, Minimal quasi-ideals in ternary semigroups,
Indian J. Pure Appl. Math. 28 (1997), 255− 632.



160 S. Bashir and M. Shabir

[7] W. A. Dudek, On divisibility in n-semigroups, Demonstratio Math. 13
(1980), 355− 367.

[8] W. A. Dudek, I. Gro¹dzi«ska, On ideals in regular n-semigroups, Mat.
Bilten (Skopje) 3/4 (29/30) (1979-1980), 35− 44.

[9] E. Hewitt and H. S. Zuckerman, Ternary operations and semigroups,
Semigroups, Proc. Sympos. Wayne State Univ., Detroit, 1968, 55− 83.

[10] J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford
1995.

[11] R. Kerner, The cubic Chess board, Quantum Grav. 14 (1997), A203−A225.

[12] R. Kerner, Ternary algebraic structures and their applications in Physics,
Univ, P&M, Curie Preprint, Paris (2000), Arxiv math-ph/0011023.

[13] J. Los, On the extending of models I, Fundamenta Math. 42 (1955), 38− 54.

[14] M. Shabir and A. Khan, Fully prime semigroups, Internat. J. Math. and
Analysis, 1 (2006), 261− 268.

[15] M. Shabir and S. Bashir, Prime ideals in ternary semigroups, Asian-
European J. Math. 2 (2009), 139− 152.

[16] M. L. Santiago, Some contributions to the study of ternary semigroups and

semiheaps, Ph.D. Thesis, 1983, University of Madras.

[17] F. M. Sioson, On regular algebraic systems, Proc. Japan. Acad. 39 (1963),
283− 286.

[18] F. M. Sioson, Ideal theory in ternary semigroups, Math. Japon. 10 (1965),
63− 84.

[19] L. Vainerman and R. Kerner, On special classes of n-algebras, J. Math.
Phys. 37 (1996), 2553− 2565.

Received November 22, 2008
Revised May 15, 2009

S.Bashir:
Department of Mathematics, University of Gujrat, Gujrat, Pakistan
E-mail: shahidawaraich@yahoo.com

M.Shabir:
Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
E-mail: mshabirbhatti@yahoo.co.uk


