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Vague Lie subalgebras over a vague �eld

Muhammad Akram and Kar-Ping Shum

Abstract. The concept of a vague sub�eld and some of its fundamental properties are
introduced. We then introduce the vague Lie subalgebra over a vague �eld and present
some of its properties. In particular, di�erent methods of constructions of such vague
sets are given.

1. Introduction
The concept of fuzzy set was �rst initiated by Zadeh [14] in 1965 and since
then, fuzzy set has become an important tool in studying scienti�c subjects,
in particular, it can be applied in a wide variety of disciplines such as
Computer Science, Medical Science, Management Science, Social Science,
Engineering and so on. In fact, if we let U be a universe of discourse, then
a fuzzy set A is a class of objects of U along with a membership function
A. The grade of membership of x(x ∈ U) in the universe U is 1, but the
grade of membership of x in a fuzzy subset A (of U) is a real number in
[0, 1] denoted by µA(x) which signi�es that x is a member of the fuzzy set
A up to certain extent. The degree of membership could be zero or more
and at most one. The greater µA(x) means the greater is the truth of the
statement that the element x belongs to the set A.

Di�erent authors from time to time have made a number of generaliza-
tions of Zadeh fuzzy set theory [14]. Recently, the notion of Vague Set (VS)
was introduced by Gau and Buehrer in [10]. This is because in most cases
of judgments, the evaluation is done by human beings and so the certainty
is a limitation of knowledge or intellectual functionaries. Naturally, every
decision-maker hesitates more or less on every evaluation activity. For ex-
ample, in order to judge whether a patient has cancer or not, a medical
doctor (the decision-maker) will hesitate because of the fact that a fraction
of evaluation he thinks in favor of the truthness, another fraction in favor

2000 Mathematics Subject Classi�cation: 04A72, 17B99
Keywords: Vague �eld, vague Lie subalgebras, normal vague Lie subalgebra.



120 M. Akram and K. P. Shum

of the falseness and the rest part remains undecided to him. This is the
breaking philosophy in the notion of vague set theory introduced by Gau
and Buehrer in [10]. The notions of fuzzy ideals and fuzzy subalgebras of
Lie algebras over a �eld were considered in [13] by Yehia. In this paper, we
�rst introduce the concept of a vague sub�eld and study some fundamental
properties. Then we introduce the notion of a vague Lie subalgebra over a
vague �eld and present some properties. Finally, we give some important
properties of a vague Lie subalgebra over a vague �eld of di�erent types
and describe some methods of constructions for such vague sets. The def-
initions and terminologies that we used in this paper are standard. For
other notations, terminologies and applications, the readers are refereed to
[1, 3, 4, 6, 7, 10, 11].

2. Preliminaries
Throughout this paper, L is a Lie algebra and X is a �eld. It is clear
that the multiplication of a Lie algebra is not necessary associative, that is,
[[x, y], z] = [x, [y, z]] does not hold in general, however it is anti- commuta-
tive, that is, [x, y] = −[y, x].

Let µ be a fuzzy set on L, that is, a map µ : L → [0, 1].

De�nition 2.1. [12] A fuzzy set F of X is called a fuzzy �eld if

(1) (∀ m,n ∈ X)(F (m− n) > min{F (m), F (n)}),
(2) (∀ m,n ∈ X,n 6= 0)(F (mn−1) > min{F (m), F (n)}).

De�nition 2.2. [10] A vague set (in short, VS) A in the universe L is a
pair (tA, fA), where tA : L → [0, 1], fA : L → [0, 1] are true and false
memberships, respectively such that tA(x) + fA(x) 6 1 for all x ∈ L. The
interval [tA(x), 1−fA(x)] is called the vague value of x in A, and is denoted
by VA(x).

De�nition 2.3. [10] Let A = (tA, fA) and B = (tB, fB) be two vague sets.
Then we de�ne:

(3) A = (fA, 1− tA),

(4) A⊂B⇔VA(x) 6 VB(x), i.e., tA(x)6 tB(x) and 1−fA(x) 6 1−fB(x),

(5) A = B ⇔ VA(x) = VB(x),
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(6) C = A ∩B ⇔ VC(x) = min(VA(x), VB(x)),

(7) C = A ∪B ⇔ VC(x) = max(VA(x), VB(x))

for all x ∈ L.
De�nition 2.4. [10] A vague set A = (tA, fA) of a set L is called
(8) the zero vague set if tA(x) = 0 and fA(x) = 1 for all x ∈ L,

(9) the unit vague set if tA(x) = 1 and fA(x) = 0 for all x ∈ L,

(10) the α-vague set if tA(x) = α and fA(x) = 1 − α for all x ∈ L,
α ∈ (0, 1).

We also denote the zero vague and the unit vague value by intervals 0 = [0, 0]
and 1 = [1, 1], respectively.

For α, β ∈ [0, 1], we de�ne the (α, β)−cut and the α-cut of a vague set.

De�nition 2.5. [6] Let A = (tA, fA) be vague set of a universe L. Then
the (α, β)− cut of a vague set A is a crisp set A(α,β) of L given by

A(α,β) = {x ∈ L : VA(x) > [α, β]}.
Obviously, A(0,0) = L. The (α, β)-cuts are also the vague-cuts of the vague
set A. The α-cut of the vague set A = (tA, fA) is a crisp set Aα of L given
by Aα = A(α,α). Note that A0 = L. Clearly, Aα = {x ∈ L : tA(x) > α}.

By an interval number D, we mean an interval [a−, a+] with 0 6 a− 6
a+ 6 1. The set of all interval numbers is denoted by D[0, 1]. The interval
[a, a] is identi�ed with the fuzzy number a ∈ [0, 1].

For any two interval numbers D1 = [a−1 , b+
1 ] and D2 = [a−2 , b+

2 ], we de�ne

min(D1, D2) = min([a−1 , b+
1 ], [a−2 , b+

2 ]) = [min{a−1 , a−2 }, min{b+
1 , b+

2 }],
max(D1, D2) = max([a−1 , b+

1 ], [a−2 , b+
2 ]) = [max{a−1 , a−2 }, max{b+

1 , b+
2 }],

and put
• D1 6 D2 ⇐⇒ a−1 6 a−2 and b+

1 6 b+
2 ,

• D1 = D2 ⇐⇒ a−1 = a−2 and b+
1 = b+

2 ,

• D1 < D2 ⇐⇒ D1 6 D2 and D1 6= D2,

• mD = m[a−1 , b+
1 ] = [ma−1 ,mb+

1 ], where 0 6 m 6 1.
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It can be easily veri�ed that (D[0, 1], 6,∨,∧) forms a complete lattice
under the set inclusion with [0, 0] as its least element and [1, 1] as its greatest
element.

3. Vague �elds
De�nition 3.1. A vague set F = (tF , fF ) of X is said to be a vague sub�eld
of the �eld X if the following conditions are satis�ed:
(11) (∀ m,n ∈ X)(VF (m− n) > min{VF (m), VF (n)}),
(12) (∀ m,n ∈ X,n 6= 0)(VF (mn−1) > min{VF (m), VF (n)}),
that is,

(13)
{

tA(m− n) > min{tA(m), tA(n)},
1− fA(m− n) > min{1− fA(m), 1− fA(n)},

(14)
{

tA(mn−1) > min{tF (m), tA(n)},
1− fA(mn−1) > min{1− fF (m), 1− fA(n)},

Example 3.2. Consider a �eld X = {0, 1, w, w2}, where w = −1+
√−3
2 ,

with the following Cayley tables:
+ 0 1 w w2

0 0 1 w w2

1 1 0 w2 w
w w w2 0 1
w2 w2 w 1 0

. 0 1 w w2

0 0 0 0 0
1 0 1 w w2

w 0 w w2 1
w2 0 w2 1 w

It can be easily seen that the vague set
{(0, [0.3, 0.2]), (1, [0.4, 0.5]), (w, [0.3, 0.6]), (w2, [0.5, 0.4])}

forms a vague sub�eld of the �eld X. ¤
The following Lemmas can be easily proved and hence we omit their

proofs.
Lemma 3.3. If F = (tF , fF ) is a vague sub�eld of X, then

VF (0) > VF (1) > VF (m) = VF (−m) for m ∈ X, and

VF (−m) = VF (m−1) for m ∈ X − {0}.
Lemma 3.4. A vague set A = (tA, fA) of X is a vague sub�eld of X if and
only if tA and 1− fA are fuzzy sub�elds.
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Proposition 3.5. If A and B are vague sub�elds of X, then A ∩ B is a
vague sub�eld of X.

Proof. Let m, n ∈ X. Then we have

tA∩B(m− n) = min{tA(m− n), tB(m− n)}
> min{min{tA(m), tA(n)}, min{tB(m), tB(n)}}
= min{min{tA(m), tB(m)},min{tA(n), tB(n)}}
= min{tA∩B(m), tA∩B(n)},

and hence, we derive that

tA∩B(mn−1) = min{tA(mn−1), tB(mn−1)}
> min{min{tA(m), tA(n)}, min{tB(m), tB(n)}}
= min{min{tA(m), tB(m)}, min{tA(n), tB(n)}}
= min{tA∩B(m), tA∩B(n)},

1−fA∩B(m−n) = min{1− fA(m−n), 1− fB(m−n)}
> min{min{1−fA(m), 1−fA(n)},min{1−fB(m), 1−fB(n)}}
= min{min{1−fA(m), 1−fB(m)}, min{1−fA(n), 1−fB(n)}}
= min{1− fA∩B(m), 1− fA∩B(n)},

1−fA∩B(mn−1) = min{1− fA(mn−1), 1− fB(mn−1)}
> min{min{1−fA(m), 1−fA(n)}, min{1−fB(m), 1−fB(n)}}
= min{min{1−fA(m), 1−fB(m)},min{1−fA(n), 1−fB(n)}}
= min{1− fA∩B(m), 1− fA∩B(n)}.

Therefore, we have proved that A ∩B is indeed a vague sub�eld of X.

Proposition 3.6. The zero vague set, unit vague set and α- vague set are
all vague sub�elds of X.

Proof. Let A = (tA, fA) be a vague sub�eld of X. For m,n ∈ X, we have

tA(m− n) > min{tA(m), tA(n)} = min{α, α} = α,

1− fA(m− n) > min{1− fA(m), 1− fA(n)} = min{α, α} = α,
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tA(mn−1) > min{tA(m), tA(n)} = min{α, α} = α,

1− fA(mn−1) > min{1− tA(m), 1− tA(n)} = min{α, α} = α.

This shows that α-vague set of X is a vague sub�eld of X. The proofs for
the other cases are similar.

Proposition 3.7. Let A be a vague sub�eld of X. Then for α ∈ [0, 1], the
vague-cut Aα is a crisp sub�eld of X.

Proof. Suppose that A = (tA, fA) is a vague sub�eld of X. For m, n ∈ Aα

we can deduce that

tA(m) > α, 1− fA(m) > α, tA(n) > α, 1− fA(n) > α,

so that
tA(m− n) > min{tA(m), tA(n)} > min{α, α} = α,

1− fA(m− n) > min{1− fA(m), 1− fA(n)} > min{α, α} = α,

tA(mn−1) > min{tA(m), tA(n)} > min{α, α} = α,

1− fA(mn−1) > min{1− tA(m), 1− tA(n)} > min{α, α} = α.

This implies that m−n, mn−1 ∈ Aα. Hence Aα is a crisp sub�eld of X.

Proposition 3.8. Any sub�eld K of X is a vague-cut sub�eld of some
vague sub�eld of X.

Proof. Consider the vague set A of X given by

VA(m) =
{

[t, t] if m ∈ K,
[0, 0] if m 6∈ K,

where t ∈ (0, 1). Clearly, A(α,α) = K. Let m,n, p ∈ X. We now consider
the following cases:

Case (i): If m,n, p ∈ K, p 6= 0, then m− n,mp−1 ∈ K and
VF (m− n) > min{VF (m), VF (n)} = [t, t],

VF (mp−1) > min{VF (m), VF (p)} = [t, t].

Case (ii): If m, n, p 6∈ K, p 6= 0, then VA(m) = [0, 0] = VA(n) = V (p), and
VF (m− n) > min{VF (m), VF (n)} = [0, 0],

VF (mp−1) > min{VF (m), VF (p)} = [0, 0].
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Case (iii): If m ∈ K and n, p 6∈ K, p 6= 0, then VF (m) = [t, t], VF (n) =
[0, 0] = VF (p), so

VF (m− n) > min{VF (m), VF (n)} = [0, 0],

VF (mp−1) > min{VF (m), VF (p)} = [0, 0].

Case (iv): If m 6∈ K and n, p ∈ K, p 6= 0, then by using the same argument
as in Case 3, we conclude the results. Hence, we have proved that K is a
vague �eld of X.

Proposition 3.9. Let K be a vague set of X which is de�ned by

VK(m) =
{

[s, s] if m ∈ K
[t, t] otherwise

for all s, t ∈ [0, 1] with s > t. Then K is a vague sub�eld of X if and only
if K is a (crisp) sub�eld of X.

Proof. Let K be a vague sub�eld of X. If m,n, p ∈ K, p 6= 0, then

VK(m− n) > min{VK(m), VK(n)} = min{[s, s], [s, s]} = [s, s],

VK(mp−1) > min{VK(m), VK(p)} = min{[s, s], [s, s]} = [s, s],

and so m− n, mp−1 ∈ K.
Conversely, suppose that K is a (crisp) sub�eld of X. We consider the

following situations:
(i) If m,n, p ∈ K, p 6= 0, then m− n,mp−1 ∈ K. Thus

VK(m− n) > [s, s] = min{VK(m), VK(n)},

VK(mp−1) > [s, s] = min{VK(m), VK(p)}.
(ii) If m 6∈ K or n, p 6∈ K, p 6= 0, then

VK(m− n) > [t, t] = min{VK(m), VK(n)},

VK(mp−1) > [t, t] = min{VK(m), VK(p)}.
This shows that K is a vague sub�eld of X.
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4. Vague Lie subalgebras over a vague �eld
De�nition 4.1. A vague set A = (tA, fA) of L is called a vague Lie subal-
gebra over a vague �eld F = (tF , fF ) (brie�y, vague Lie F-subalgebra) of L
if the following conditions are satis�ed

(a) VA(x + y) > min{VA(x), VA(y)},
(b) VA(mx) > min{VF (m), VA(x)},
(c) VA([x, y]) > min{VA(x), VA(y)}

for all x, y ∈ L and m ∈ X.

In other words,

(d)
{

tA(x + y) > min{tA(x), tA(y)},
1− fA(x + y) > min{1− fA(x), 1− fA(y)},

(e)
{

tA(mx) > min{tF (m), tA(x)},
1− fA(mx) > min{1− fF (m), 1− fA(x)},

(f)
{

tA([x, y]) > min{tA(x), tA(y)},
1− fA([x, y]) > min{1− fA(x), 1− fA(y)}.

From (b), it follows that VA(0) > VF (0).

Example 4.2. Let <2 = {(x, y) : x, y ∈ R} be the set of all 2-dimensional
real vectors. Then <2 with [x, y] = x× y form a real Lie algebra. De�ne a
vague set A = (tA, fA) : <2 → [0, 1] by

tA(x, y) =

{
0.4 if x = y = 0,
0.3 otherwise, fA(x, y) =

{
0.3 if x = y = 0,
0.4 otherwise,

and de�ne F = (tF , fF ) : R→ [0, 1] for all m ∈ R by

tF (m) =

{
0.3 if m ∈ Q,
0.2 if 0 m ∈ R−Q(

√
3),

fF (m) =

{
0.2 if m ∈ Q,
0.4 if 0 m ∈ R−Q(

√
3).

By routine veri�cation, we can easily check that A is a vague Lie F-subalgebra.
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The proofs of the following propositions are obvious.

Proposition 4.3. A vague set A = (tA, fA) of L is a vague Lie F-subalgebra
of L if and only if tA and 1 − fA are fuzzy Lie F-subalgebras over a fuzzy
�eld.

Proposition 4.4. Let {Ai : i ∈ Λ} be a family of vague Lie F-subalgebras
of L. Then ∩i∈ΛAi is a vague Lie F-subalgebra of L.

Proposition 4.5. The zero vague set, unit vague set and α-vague set are
vague Lie F-subalgebras of L.

Theorem 4.6. Let A be a vague Lie F-subalgebra of L. Then for any α, β
∈ [0, 1], the vague-cut A(α,β) is a crisp Lie subalgebra of L.

Proof. Suppose that A = (tA, fA) is a vague Lie subalgebra of L over a
vague �eld F = (tF , fF ). Let x, y,m ∈ A(α,β), x, y ∈ L, m ∈ X. Then

tA(x) > α, 1− fA(x) > β, tA(y) > α, 1− fA(y) > β, tF (m) > α

and 1− fF (m) > β.
From De�nition 4.1, it follows that

tA(x + y) > min{tA(x), tA(y)} > min{α, α} = α,

1− fA(x + y) > min{1− fA(x), 1− fA(y)} > min{β, β} = β,

tA(mx) > min{tF (m), tA(x)} > min{α, α} = α,

1− fA(mx) > min{1− tF (m), 1− tA(x)} > min{β, β} = β,

tA([x, y]) > min{tA(x), tA(y)} > min{α, α} = α,

1− fA([x, y]) > min{1− fA(x), 1− fA(y)} > min{β, β} = β.

This implies that x + y, mx, [x, y] ∈ A(α,β). Hence A(α,β) is a crisp Lie
subalgebra of L.

Corollary 4.7. Let A be a vague Lie F-subalgebra of L. Then for α ∈ [0, 1],
the vague-cut Aα is a crisp Lie subalgebra of L.

The proofs of the following propositions are obvious.

Proposition 4.8.
(i) Let f : L1 → L2 be an onto homomorphism of Lie algebras. If B =

(tB, fB) is a vague Lie F-subalgebra of L2, then the preimage f−1(B)
of B under f is a vague Lie F-subalgebra L1.
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(ii) Let f : L1 → L2 be an epimorphism of Lie algebras. If A = (tA, fA)
is a vague Lie F-subalgebra of L2, then f−1(Ac) = (f−1(A))c.

(iii) Let f : L1 → L2 be an epimorphism of Lie algebras. If A = (tA, fA)
is a vague Lie F-subalgebra of L2 and B = (tB, fB) is the preimage of
A = (µA, λA) under f . Then B = (tB, fB) is a vague Lie F-subalgebra
of L1.

De�nition 4.9. Let g : L1 → L2 be a homomorphism of Lie algebras. For
any vague fuzzy set A = (tA, fA) in a Lie algebra L2, we de�ne a vague
fuzzy set Ag = (tgA, fg

A) in L by

tgA(x) = tA(g(x)), fg
A(x) = fA(g(x))

for all x ∈ L1. Clearly, Ag(x1) = Ag(x2) = A(x) for all x1, x2 ∈ g−1(x).
Lemma 4.10. Let g : L1 → L2 be a homomorphism of Lie algebras. If
A = (tA, fA) is a vague Lie F-subalgebra of L2, then Ag is a vague Lie
F-subalgebra of L1.
Proof. Let x, y ∈ L1 and m ∈ X. Then

tgA(x + y) = tA(g(x + y)) = tA(g(x) + g(y))
> min{tA(g(x)), tA(g(y))} = min{tgA(x), tgA(y)},

1− fg
A(x + y) = 1− fA((g(x + y)) = 1− fA(g(x) + g(y))

> min{1− fA(g(x)), 1− fA(g(y))}
= min{1− fg

A(x), 1− fg
A(y)}.

The veri�cation of the other conditions is similar. Hence, Ag is a vague Lie
F-subalgebra of L1.

Theorem 4.11. Let g : L1 → L2 be an epimorphism of Lie algebras. Then
Ag is a vague Lie F-subalgebra of L1 if and only if A is a vague Lie F-
subalgebra of L2.
Proof. The su�ciency follows from Lemma 4.10. In proving the necessity,
we �rst recall that g is a surjective mapping. Hence for any x, y ∈ L2, there
exist x1, y1 ∈ L1 such that x = g(x1), y = g(y1). Thus tA(x) = tgA(x1),
tA(y) = tgA(y1), 1− fA(x) = 1− fg

A(x1), 1− fA(y) = 1− fg
A(y1), whence

tA(x + y) = tA(g(x1) + g(y1)) = tA(g(x1 + y1))
= tgA(x1 + y1) > min{tgA(x1), t

g
A(y1)} = min{tA(x), tA(y)},
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1− fA(x + y) = 1− fA(g(x1) + g(y1)) = 1− fA(g(x1 + y1))
= 1− fg

A(x1 + y1) > min{1− fg
A(x1), 1− fg

A(y1)}
= min{1− fA(x), 1− fA(y)}.

The veri�cation of the other conditions is similar. This proves that A =
(tA, fA) is a vague Lie F-subalgebra of L2.

5. Special types of vague Lie subalgebras
De�nition 5.1. Let A = (tA, fA) be a vague Lie F-subalgebra in L. De�ne
inductively a sequence of vague Lie F-subalgebras in L by Lie brackets

A0 = A, A1 = [A0, A0], A2 = [A1, A1], . . . , An = [An−1, An−1].

Then, An is said to be the nth derived vague Lie F-subalgebra of L. More-
over, a series

A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · ·
is said to be a derived series of a vague Lie F-subalgebra A in L. A vague
Lie F-subalgebra A in L is called a solvable vague Lie F-subalgebra if there
exists a positive integer n such that An = 0.

De�nition 5.2. Let A = (tA, fA) be a vague Lie F-subalgebra in L. We
de�ne inductively a sequence of vague Lie F-subalgebras in L by Lie brackets

A0 = A, A1 = [A,A0], A2 = [A,A1], . . . , An = [A,An−1].

Then we call the series

A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ · · ·

the descending central series of a vague Lie F-subalgebra A in L. An vague
vague Lie F-subalgebra A in L is called a nilpotent vague Lie F-subalgebra
if there exists a positive integer n such that An = 0.

By using similar arguments as in the proof of Theorem 4.7 in [2], we
obtain the following theorem.

Theorem 5.3.

(I) The homomorphic image of a solvable vague Lie F-subalgebra is a
solvable vague Lie F-subalgebra.
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(II) The homomorphic image of a nilpotent vague Lie F-subalgebra is a
nilpotent vague Lie F-subalgebra.

(III) If A is a nilpotent vague Lie F-subalgebra, then it is solvable.
De�nition 5.4. A vague Lie F-subalgebra A = (tA, fA) of a Lie algebra L
is said to be normal if there exists an element x0 ∈ L such that VA(x0) = 1,
i.e., tA(x0) = 1 and fA(x0) = 0.

The following Lemma is easy to prove and we hence omit the proof.
Lemma 5.5. Let A = (tA, fA) be a vague Lie F-subalgebra of L such that
tA(x) + fA(x) 6 tA(0) + fA(0) for all x ∈ L. De�ne A+ = (t+A, f+

A ), where
t+A(x) = tA(x) + 1− tA(0), f+

A (x) = fA(x)− fA(0) for all x ∈ L. Then A+

is normal vague set.
By using the above lemma, we deduce the following theorem.

Theorem 5.6. Let A = (tA, fA) be a vague Lie F-subalgebra of a Lie al-
gebra L. Then the vague set A+ is a normal vague Lie F-subalgebra of L
containing A.
Proof. Let x, y ∈ L and m ∈ X. Then

min{V +
A (x), V +

A (y)} = min{VA(x) + 1− VA(0), VA(y) + 1− VA(0)}
= min{VA(x), VA(y)}+ 1− VA(0)}
6 VA(x + y) + 1− VA(0) = VA+(x + y),

min{V +
F (m), V +

A (x)} = min{VF (m) + 1− VF (0), VA(x) + 1− VA(0)}
= min{VF (m), VA(x)}+ 1− (VF (0) + VA(0))}
6 VA(mx) + 1− (VF (0) + VA(0)) = VA+(mx),

min{V +
A (x), V +

A (y)} = min{VA(x) + 1− VA(0), VA(y) + 1− VA(0)}
= min{VA(x), VA(y)}+ 1− VA(0)}
6 VA([x, y]) + 1− VA(0) = VA+([x, y]).

Thus, A+ is a normal vague Lie F-subalgebra of L. Clearly A ⊆ A+.

The following theorems are obvious.
Theorem 5.7. A vague Lie F-subalgebra A of a Lie algebra L is normal if
and only if A+ = A.
Theorem 5.8. If A = (tA, fA) is a vague Lie F-subalgebra of a Lie algebra
L, then (A+)+ = A+.
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Corollary 5.9. If A is normal vague Lie F-subalgebra of a Lie algebra L,
then (A+)+ = A.

Theorem 5.10. Let A and B be vague Lie F-subalgebras of a Lie algebra
L. Then (A ∪B)+ = A+ ∪B+.

Proof. Let A = (tA, fA) and B = (tB, fB) be two vague Lie F-subalgebras
of a Lie algebra L. Then A ∪B = (tA∪B, fA∪B), where

tA∪B(x) = max{tA(x), tB(x)}, fA∪B(x) = min{fA(x), fB(x)}, ∀x ∈ L.

Thus (A ∪B)+ = (t(A∪B)+(x), f(A∪B)+(x)), where

t(A∪B)+(x) = t(A∪B)(x) + 1− t(A∪B)(0)
= max{tA(x), tB(x)}+ 1−max{tA(0), tB(0)}
= max{tA(x) + 1− tA(0), tB(x) + 1− tB(0)}
= max{tA+(x), tB+(x)} = tA+∪B+(x).

Similarly, we can prove that f(A∪B)+(x) = fA+∪B+(x) for x ∈ L. Hence,
(A ∪B)+ = A+ ∪B+.

The proof of the following theorem is obvious.

Theorem 5.11. Let A be a vague Lie F-subalgebra of a Lie algebra L. If
there exist a vague Lie F-subalgebra B of L satisfying B ⊂ A+, then A is
normal.

Corollary 5.12. Let A be a vague Lie F-subalgebra of a Lie algebra L.
If there exists a vague Lie F-subalgebra B of L satisfying B+ ⊂ A, then
A+ = A.

Denote the family of all vague Lie F-subalgebras of a Lie algebra L by
V LS(L), and the set of all normal vague Lie F-subalgebra of L by N (L).
It is clear that N (L) is a poset under set inclusion.

Theorem 5.13. A non-constant maximal element of (N (L),⊆) takes only
the values 0 and 1.

Proof. Let A ∈ N (L) be a non-constant maximal element of (N (L),⊆).
Then tA(x0) = 1 and fA(x0) = 0 for some x0 ∈ L. Let x ∈ L be such that
VA(x) 6= 1. We claim that VA(x) = 0. If not, then there exists a ∈ L such
that 0 < VA(a) < 1. Let B be a vague set in L over vague �eld K de�ned
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by VB(x) := 1
2{VA(x) + VA(a)}, VK(x) := 1

2{VF (x) + VF (a)} for all x ∈ L.
For x, y ∈ L and m ∈ X, we have

VB(x + y) =
1
2
{VA(x + y) + VA(a)} > 1

2
{min{VA(x), VA(y)}+ VA(a)}

= {min{1
2
(VA(x) + VA(a)),

1
2
(VA(y) + VA(a))}

= min{VB(x), VB(y)},

VB(mx) =
1
2
{VA(mx) + VA(a)} > 1

2
{min{VF (m), VA(x)}+ VA(a)}

= min{1
2
(VF (m) + VF (a)),

1
2
(VA(x) + VA(a))}

= min{VK(m), VB(x)},
VB([x, y]) =

1
2
{VA([x, y]) + VA(a)} > 1

2
{min{VA(x), VA(y)}+ VA(a)}

= min{1
2
(VA(x) + VA(a)),

1
2
(VA(y) + VA(a))}

= min{VB(x), VB(y)}.

This proves that B is a vague Lie F-subalgebra of L. Now we have

VB+(x) = VB(x) + 1− VB(0)

=
1
2
{min{VA(x), VA(a)}+ 1− 1

2
{min{VA(0), VA(a)}

= VA(x) + 1,

which implies that VB+(0) = 1
2{VA(0) + 1} = 1. Thus B+ forms a normal

vague Lie F-subalgebra of L. But VB+(0) = 1 > VB+(a) = 1
2{VA(a) + 1} >

VA(a), so B+ is a non-constant normal vague Lie F-subalgebra of L and
VB+(a) > VA(a), which is a contradiction. Hence, a non-constant maximal
element of (N (L),⊆) takes only two values: 0 and 1.

De�nition 5.14. A non-constant vague Lie F-subalgebra A ∈ V LS(L) is
called maximal if A+ is a maximal element of the poset (N (L),⊆).

Theorem 5.15. A maximal vague Lie F-subalgebra A ∈ V LS(L) is normal
and takes only two values: 0 and 1.

Proof. Let A ∈ V LS(L) be maximal. Then A+ is a non-constant maximal
element of the poset (N (L),⊆) and, by Theorem 5.13, the possible values
of V +

A (x) are 0 and 1, that is, t+A takes only two values 0 and 1. Clearly,
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t+A(x) = 1 if and only if tA(x) = tA(0) = 0; t+A(x) = 0 if and only if
tA(x) = tA(0) = 1. But A ⊆ A+ implies tA(x) 6 t+A(x) for all x ∈ L.
Hence, t+A(x) = 0 implies tA(x) = 0. Consequently, VA(0) = 1.

Theorem 5.16. A level subset of a maximal A ∈ V LS(L) is a maximal
Lie subalgebra of L.

Proof. Let S be a level subset of a maximal A ∈ V LS(L), i.e., S = L =
{x ∈ L |VA(x) = 1}. It is not di�cult to verify that S is a Lie subalgebra
of L. Obviously S 6= L because VA takes only two values. Let M be a
Lie subalgebra of L containing S. Then VS ⊆ VM . Since VA = VS and VA

takes only two values, VM also takes only these two values. But, by our
assumption, A ∈ V LS(L) is maximal so that VS = VA = VM or VM (x) = 1,
for all x ∈ L. In the last case, we have S = L which is impossible. So, we
must have VA = VS = VM which implies that S = M . This means that S
is a maximal Lie subalgebra of L.

De�nition 5.17. A normal vague Lie F-subalgebra A ∈ V LS(L) is called
completely normal if there exists x ∈ L such that A(x) = 0. The set of all
completely normal A ∈ V LS(L) is denoted by C(L). Clearly, C(L) ⊆ N (L).

Theorem 5.18. A non-constant maximal element of (N (L),⊆) is also a
maximal element of (C(L),⊆).

Proof. Let A be a non-constant maximal element of (N (L),⊆). Then, by
Theorem 5.13, A takes only the values 0 and 1 and so VA(x0) = 1 and
VA(x1) = 0, for some x0, x1 ∈ L. Hence A ∈ C(L). Assume that there
exists B ∈ C(R) such that A ⊆ B. Then, it follows that A ⊆ B in N (L).
Since A is maximal in (N (L),⊆) and B is non-constant, we have A = B.
Thus A is maximal element of (C(L),⊆). This completes the proof.

Theorem 5.19. Every maximal A ∈ V LS(L) is completely normal.

Proof. Let A ∈ V LS(L) be maximal. Then by Theorem 5.15, A is normal
and A = A+ takes only two values 0 and 1. Since A is non-constant, it
follows that VA(x0) = 1 and VA(x1) = 0 for some x0, x1 ∈ L. Hence A is
completely normal, ending the proof.

In closing this paper, we state a method of construction for a new normal
vague Lie F-subalgebra from an old one.
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Theorem 5.20. Let f : [0, 1] → [0, 1] be an increasing function and A =
(tA, fA) a vague set on a Lie algebra L. Then Af = (tAf

, fAf
) de�ned

by tAf
(x) = f(tA(x)) and fAf

(x) = f(fA(x)) is an vague Lie F-subalgebra
if and only if A = (tA, fA) is an vague Lie F-subalgebra. Moreover, if
f(tA(0)) = 1 and f(fA(0)) = 0, then Af is normal.
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