Secondary representation of semimodules over a commutative semiring

Reza Ebrahimi Atani and Shahabaddin Ebrahimi Atani

Abstract

In this paper, we analyze some results on the theory secondary representation of semimodules over a commutative semiring with non-zero identity analogues to the theory secondary representation of modules over a commutative ring with non-zero identity.

1. Introduction

Semimodules constitute a fairly natural generalization of modules, with broad applications in the mathematical foundations of computer science [4]. The main part of this paper is devoted to stating and proving analogues to several well-known results in the theory of modules.

For the sake of completeness, we state some definitions and notations used throughout. By a commutative semiring we mean an algebraic system $R = (R, +, \cdot)$ such that (R, +) and (R, \cdot) are commutative semigroups, connected by a(b + c) = ab + ac for all $a, b, c \in R$, and there exists $0 \in R$ such that r + 0 = r and r0 = 0r = 0 for all $r \in R$. Throughout this paper let R be a commutative semiring. A (*left*) semimodule M over a semiring R is a commutative additive semigroup which has a zero element, together a mapping from $R \times M$ into M (sending (r, m) to rm) such that (r+s)m =rm + sm, r(m + p) = rm + rp, r(sm) = (rs)m and $0m = r0_M = 0_M$ for all $m, p \in M$ and $r, s \in R$.

Let M be a semimodule over the semiring R, and let N be a subset of M. We say that N is a *subsemimodule* of M, or an R-subsemimodule of M, percisely when N is itself an R-semimodule with respect to the operations

²⁰⁰⁰ Mathematics Subject Classification: 16Y60

Keywords: Semiring, k-subsemimodule, Q_M -subsemimodule, commutative semiring.

for M (so $0_M \in N$). It is easy to see that if $r \in R$, then

$$rM = \{rm : m \in M\}$$

is a subsemimodule of M. The semiring R is considered to be also a semimodule over itself. In this case, the subsemimodules of R are called *ideals* of R. A subtractive subsemimodule (= k-subsemimodule) N is a subsemimodule of M such that if $x, x + y \in N$, then $y \in N$ (so $\{0_M\}$ is a ksubsemimodule of M). If M is a semimodule over a semiring R, then Mis Artinian if any non-empty set of k-subsemimodules of M has minimal member with respect to the set inclusion. This definition is equivalent to the descending chain condition on k-subsemimodules of M. A prime ideal of R is a proper ideal P of R in which $x \in P$ or $y \in P$ whenever $xy \in P$.

A subsemimodule N of a semimodule M over a semiring R is called a *partitioning subsemimodule* (= Q_M -subsemimodule) if there exists a nonempty subset Q_M of M such that

- (1) $RQ_M \subseteq Q_M;$
- (2) $M = \bigcup \{q + N : q \in Q_M\};$
- (3) If $q_1, q_2 \in Q_M$ then $(q_1 + N) \cap (q_2 + N) \neq \emptyset$ if and only if $q_1 = q_2$.

It is easy to see (cf. [5]) that if $M = Q_M$, then $\{0\}$ is a Q_M -subsemimodule of M.

Remark 1.1. Let M be a semimodule over a semiring R, and let N be a Q_M -subsemimodule of M. We put $M/N = \{q + N : q \in Q_M\}$. Then M/N forms a commutative additive semigroup which has zero element under the binary operation \oplus defined as follows: $(q_1 + N) \oplus (q_2 + N) = q_3 + N$ where $q_3 \in Q_M$ is the unique element such that $q_1 + q_2 + N \subseteq q_3 + N$. Note that by the definition of Q_M -subsemimodule, there exists a unique $q_0 \in Q_M$ such that $0_M + N \subseteq q_0 + N$. Then $q_0 + N$ is a zero element of M/N.

Now let $r \in R$ and suppose that $q_1 + N, q_2 + N \in M/N$ are such that $q_1 + N = q_2 + N$ in M/N. Then $q_1 = q_2$, we must have $rq_1 + N = rq_2 + N$. Hence we can unambiguously define a mapping from $R \times M/N$ into M/N (sending $(r, q_1 + N)$ to $rq_1 + N$) and it is routine to check that this turns the commutative semigroup M/N into an *R*-semimodule. We call this *R*-semimodule the residue class semimodule or factor semimodule of M modulo N [4].

We need the following theorem proved in [5, Lemma 2.4, Proposition 2.5, Theorem 2.6, Theorem 2.7 and Theorem 2.10].

Theorem 1.2. Assume that N is a Q_M -subsemimodule of a seminodule M over a semiring R and let T, L be k-subsemimodules of M containing N. Then the following hold:

- (i) If $q_0 + N$ is a zero in M/N, then $q_0 + N = N$.
- (ii) N is a k-subsemimodule of M.
- (iii) $L/N = \{q + N : q \in Q_M \cap L\}$ is a k-subsemimodule of M/N.
- (iv) If H is a k-subsemimodule of M/N, then H = K/N for some k-subsemimodule K of M.
- (v) T/N = L/N if and only if T = L.

2. Secondary semimodules

We begin with the key lemma of this paper.

Lemma 2.1. Let M be a semimodule over a semiring R, N an Q_M -subsemimodule of M and q_0 the unique element Q_M such that $q_0 + N$ is the zero in M/N. Then the following hold:

- (i) $q_0 \in N$ and if $q \in N \cap Q_M$, then $q \in N$.
- (*ii*) If $q_1, q_2 \in Q_M$ and $a, b \in N$ with $q_1 + a = q_2 + b$, then $q_1 = q_2$.
- (iii) If for each $n \in N$, there exists $n' \in N$ such that n + n' = 0, then $N = a + N = \{a + n : n \in N\}$ for every $a \in N$.

Proof. (i) Since by Theorem 1.2, $q_0 + N = N$ is a k-subsemimodule of M, we must have $q_0 \in N$. Moreover, since $q + q_0 \in (q + N) \cap (q_0 + N)$, we get $q = q_0 \in N$.

(*ii*) Since $q_1 + a \in (q_1 + N) \cap (q_2 + N)$, we must have $q_1 = q_2$.

(*iii*) It is suffices to show that $N \subseteq a + N$. Let $n \in N$. Since N is a Q_M subsemimodule, there is an element $q \in Q_M$ and $n' \in N$ such that n = q + n', so $q \in N$ since every Q_M -submodule is a k-subsemimodule. By assumption, a + a' = 0 for some $a' \in N$. Hence $n = a + a' + q + n' \in a + N$, and the proof is complete.

Assume that R is a semiring and let N be an R-subsemimodule of a semimodule M. Then N is a relatively divisible subsemimodule (or an RDsubsemimodule) if $rN = N \cap rM$ for all $r \in R$. Since $rN \subseteq N \cap rM$, we see that N is an RD-subsemimodule of M if and only if for all $x \in M$ and $r \in R$, $rx \in N$ implies rx = ry for some $y \in N$. Hence, N is an

RD-subsemimodule of M if and only if $a \in N$ and the equation rx = a has a solution in M, then it is solvable in N too.

Lemma 2.2. Let R be a semiring, and let P, N be subsemimodules of the R-semimodule M such that $P \subseteq N \subseteq M$. Then:

- (i) If P is an RD-subsemimodule of N and N is an RD-subsemimodule of M, then P is an RD-subsemimodule of M.
- (ii) If P is an RD-subsemimodule of M, then P is an RD-subsemimodule of N.

Proof. The proof is straightforward.

Proposition 2.3. Let R be a semiring, M an R-semimodule, P a Q_M -subsemimodule of M and N a k-subsemimodule of M such that $P \subseteq N \subseteq M$. Then:

- (i) If N is an RD-subsemimodule of M, then N/P is an RD-subsemimodule of M/P.
- (ii) If P is an RD-subsemimodule of M and N/P is an RD-subsemimodule of M/P, then N is an RD-subsemimodule of M.

Proof. (i) Let $rx = q_1 + P$ be an equation over N/P that admits a solution in M/P, say, $r(q_2 + P) = q_1 + P$ where $q_2 \in Q_M$ and $q_1 \in Q_M \cap N$, so $rq_2 = q_1$. By the purity of N in M the equation $rx = q_1$ has a solution x = a in N. Then $a = q_3 + b$ for some $q_3 \in Q_M \cap N$ and $b \in P$ (since N is a k-subsemimodul), so $rq_3 + rb = q_1$. Hence $rq_3 = q_1$ by Lemma 2.1. Thus $r(q_3 + P) = q_1 + P$. Hence $x = q_3 + P$ is a solution of our original equation.

(ii) Let rx = a be an equation over N which has a solution x = c in M. There are elements $q_1 \in N \cap Q_M$, $q_2 \in Q_M$ and $e, f \in P$ such that $a = q_1 + e$ and $c = q_2 + f$, so $rq_2 + rf = q_1 + e$. Hence $rq_2 = q_1$. Therefore, we must have $r(q_2 + P) = q_1 + P$. By purity of N/P in M/P there exist $q_3 + P \in N/P$ such that $r(q_3 + P) = q_1 + P$, where $q_3 \in N \cap Q_M$, so $rq_3 = q_1$. Since $r(q_3 + f) = rq_2 + rf = q_1 + e$, we get $x = q_3 + f$ is a solution of our original equation.

Proposition 2.4. Let M be a semimodule over a semiring R, N an Q_M -subsemimodule of M and $r \in R$. Let q_0 be the unique element of Q_M such that $q_0 + N$ is the zero in M/N. Then:

(i) rM + N is an $(rQ)_M$ -subsemimodule of M. In particular,

$$(rM+N)/N = \{rq+N : rq \in rQ_M \cap (rM+N)\}$$

is a k-subsemimodule of
$$M/N$$
.
(ii) $r(M/N) = (rM + N)/N$. In particular, $N/N = \{q_0 + N\}$.

Proof. (i) Clearly, $R(rQ) \subseteq rQ$ and $\bigcup \{rq + N : q \in Q_M\} \subseteq rM + N$. For the reverse inclusion, assume that $rm + n \in rM + N$ where $m \in M$ and $n \in N$. There are elements $q \in Q$ and $n_1 \in N$ such that $m = q + n_1$ since N is a Q_M -subsimimodule of M, so $rm + n = rq + rn_1 + n \in rq + N$. Hence $rM + N = \bigcup \{rq + N : q \in Q\}$. It is easy to see that if $rq_1, rq_2 \in rQ$, then $(rq_1 + N) \cap (rq_2 + N) \neq \emptyset$ if and only if $rq_1 = rq_2$. It follows from Theorem 1.2 that rM + N is a k-subsemimodule of M containing N. Then (rM + N)/N is a k-subsemimodule of M/N by Theorem 1.2.

(ii) Since the inclusion $(rM + N)/N \subseteq r(M/N)$ is trivial, we will prove the reverse inclusion. Let $r(q + N) = rq + N \in r(M/N)$. Since $rq \in (rM + N) \cap rQ$, we must have $r(q + N) \in (rM + N)/N$ by (i), and we have equality. Finally, $N/N = \{q + N : q \in N \cap Q_M\} = \{q_0 + N\}$ by Lemma 2.1.

Let R be a semiring with identity. An R-semimodule M is said to be secondary if $M \neq 0$ and if, for each $r \in R$, the endomorphism $\varphi_{r,M}$ (i.e., multiplication by r in M) is either surjective or nilpotent. Equivalently, Mis secondary if and only if either rM = M or $r^nM = 0$ for some n for every $r \in R$. It is easy to see that the nilradical of M is a prime ideal P, and Mis said to be P-secondary [7].

Proposition 2.5. Let N be a proper Q_M -subsemimodule of a P-secondary semimodule M over a semiring R. Then M/N is a P-secondary R-semi-module.

Proof. Assume that q_0 is the unique element Q_M such that $q_0 + N$ is the zero in M/N and let $r \in R$. If $r \in P$, then r(M/N) = (rM + N)/N = (M + N)/N = M/N by Proposition 2.4. If $r \notin P$, then there is a positive integer s such that $r^s(M/N) = (r^sM + N)/N = N/N = \{q_0 + N\}$, as required.

Theorem 2.6. Assume that R is a semiring and let N be a non-zero proper RD-subsemimodule (resp. pure subsemimodule) of an R-semimodule M. If N is a Q_M -subsemimodule of M, then M is P-secondary if and only if N and M/N are secondary.

Proof. If M is secondary, then M/N is secondary by Proposition 2.7. To see that N is secondary, assume that $a \in R$. If $a \in P$, then $a^n N \subseteq a^n M = 0$ for

some n. So suppose that $a \notin P$. Then $aN = N \cap aM = N \cap M = N$ since N is an RD-submodule. Conversely, assume that both N and M/N are secondary and let q_0 be the unique element Q_M such that $q_0 + N$ is the zero in M/N. Let $r \in R$. If $r \in P$, then $r^m(M/N) = (r^mM + N)/N = N/N = \{q_0 + N\}$ by Proposition 2.6 and $r^mN = 0$ for some m. Hence $r^mM \subseteq N$ by Proposition 2.4 and Theorem 1.2, and $0 = r^mN = r^mM \cap N = r^mM$. If $r \notin P$, then rM + N = M, rN = N and $N = rN = N \cap rM$, so we must have rM = M. Thus M is secondary.

Let R be a semiring. An element $a \in R$ is said to be *regular* if there exists $b \in R$ such that $a = a^2b$, and R is said to be regular if each of its elements is regular.

Theorem 2.7. Assume that R is a regular semiring and let N be a non-zero proper Q_M -subsemimodule of an R-semimodule M. Then M is secondary if and only if N and M/N are secondary.

Proof. By Theorem 2.6, it suffices to show that every subsemimodule of M is a RD-subsemimodule of M. Let N be a subsemimodule of M. It is enough to show that if $n \in N$ and the equation rx = n (where $r \in R$) has a solution in M, say m, then it is solvable in N. By assumption, there is an element $s \in R$ such that $r = r^2s$. Hence $r(sn) = r^2sm = rm = n$. Therefore, the equation rx = n has a solution x = sn in N.

Lemma 2.8. Let R be a semiring. Then finite sum of P-secondary semimodules is P-secondary.

Proof. Let $M = M_1 + \ldots + M_k$, where for each i, M_i is *P*-secondary. Let $a \in R$. If $a \in P$, then there is a positive integer n such that $a^n M_i = 0$ for every i. Hence $a^n M = 0$. Similarly, if $a \notin P$, then aM = M. Thus M is *P*-secondary.

Let M be a semimodule over a semiring R. A secondary representation of M is an expression of M as a sum of secondary submodules, say $M = N_1 + \ldots + N_k$. The representation is said to be minimal if (1) the prime ideals nilrad $(N_i) = P_i$ are distinct and (2) none of the summand N_i is redundant. By Lemma 2.8, any secondary representation of M can be refined to a minimal one. If M has a secondary representation, we shall say that M is representable [7]. **Definition 2.9.** Let R be a semiring. An R-semimodule M is sum-irreducible if $M \neq 0$ and the sum of any two proper subsemimodules of Mis always a proper subsemimodule. An R-semimodule M is strongly subtractive if every subsemimodule of M is a k-subsemimodule and for each $m \in M$ there exists $m' \in M$ such that m + m' = 0 [2].

Theorem 2.10 Every strongly subtractive Artinian semimodule M over a semiring R has a secondary representation.

Proof. First, we show that if M is sum-irreducible, then M is secondary. Suppose M is not secondary. Then there is an element $r \in R$ such that $rM \neq M$ and $r^nM \neq 0$ for all positive integers n. By assumption, there exists a positive integer k such that $r^kM = r^{k+1}M = \ldots$ Set $M_1 = \text{Ker}\varphi_{r^k,M}$ and $M_2 = r^kM$. Then M_1 and M_2 are proper subsemimodules of M. Let $x \in M$. Then $r^kx = r^{2k}y$ for some $y \in M$. We can write y + y' = 0 for some $y' \in M$. Hence $r^ky + r^ky' = 0$, $r^{2k}y + r^{2k}y' = 0$ and $x = (x + r^ky') + r^ky$, where $x + r^ky' \in M_1$ and $r^ky \in M_2$. Hence $M = M_1 + M_2$, and therefore M is not sum-irreducible.

Next, suppose that M is not representable. Then the set of non-zero subsemimodules of M which are not representable has a minimal element N. Certainly N is not secondary and $N \neq 0$. Hence N is the sum of two strictly smaller subsemimodules N_1 and N_2 . By the minimality of N, each N_1, N_2 is representable, and therefore so also is N, which is a contradiction.

References

- P. J. Allen: A fundamental theorem of homomorphisms for simirings, Proc. Amer. Math. Soc. 21 (1969), 412 - 416.
- [2] H. M. Al-Thani: The Jacobson radical of type (3, 1), Inter. J. Modern Math.
 2 (2007), 27 33.
- [3] S. Ebrahimi Atani: The ideal theory in quotients of commutative semirings, Glasnik Matematički 42 (2007), 301 – 308.
- [4] R. Ebrahimi Atani, S. Ebrahimi Atani and S. Mirzakuchaki: Public key cryptography using semigroup actions and semirings, J. Discrete Math. Sci. Cryptography, to appear.
- [5] R. Ebrahimi Atani and S. Ebrahimi Atani: Prime subsemimodules of semimodules, submitted.

- [6] R. Ebrahimi Atani and S. Ebrahimi Atani: Ideal theory in commutative semirings, Buletinul Acad. Sci. Republ. Moldova, ser. Math. 2(57) (2008), 14-23.
- [7] I. G. Macdonald: Secondary representation of modules over a commutative ring, Sympos. Math., XI (1973), 23 - 43.

Received May 28, 2008

Department of Mathematics University of Guilan P.O.Box 1914, Rasht, Iran E-mail: ebrahimi@guilan.ac.ir