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Secondary representation of semimodules
over a commutative semiring

Reza Ebrahimi Atani and Shahabaddin Ebrahimi Atani

Abstract

In this paper, we analyze some results on the theory secondary represen-
tation of semimodules over a commutative semiring with non-zero identity
analogues to the theory secondary representation of modules over a com-
mutative ring with non-zero identity.

1. Introduction
Semimodules constitute a fairly natural generalization of modules, with
broad applications in the mathematical foundations of computer science [4].
The main part of this paper is devoted to stating and proving analogues to
several well-known results in the theory of modules.

For the sake of completeness, we state some de�nitions and notations
used throughout. By a commutative semiring we mean an algebraic system
R = (R, +, ·) such that (R, +) and (R, ·) are commutative semigroups,
connected by a(b + c) = ab + ac for all a, b, c ∈ R, and there exists 0 ∈ R
such that r + 0 = r and r0 = 0r = 0 for all r ∈ R. Throughout this paper
let R be a commutative semiring. A (left) semimodule M over a semiring
R is a commutative additive semigroup which has a zero element, together
a mapping from R×M into M (sending (r,m) to rm) such that (r+s)m =
rm + sm, r(m + p) = rm + rp, r(sm) = (rs)m and 0m = r0M = 0M for
all m, p ∈ M and r, s ∈ R.

Let M be a semimodule over the semiring R, and let N be a subset of
M . We say that N is a subsemimodule of M , or an R-subsemimodule of M ,
percisely when N is itself an R-semimodule with respect to the operations
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for M (so 0M ∈ N). It is easy to see that if r ∈ R, then

rM = {rm : m ∈ M}

is a subsemimodule of M . The semiring R is considered to be also a semi-
module over itself. In this case, the subsemimodules of R are called ideals
of R. A subtractive subsemimodule (= k-subsemimodule) N is a subsemi-
module of M such that if x, x + y ∈ N , then y ∈ N (so {0M} is a k-
subsemimodule of M). If M is a semimodule over a semiring R, then M
is Artinian if any non-empty set of k-subsemimodules of M has minimal
member with respect to the set inclusion. This de�nition is equivalent to
the descending chain condition on k-subsemimodules of M . A prime ideal
of R is a proper ideal P of R in which x ∈ P or y ∈ P whenever xy ∈ P .

A subsemimodule N of a semimodule M over a semiring R is called
a partitioning subsemimodule (=QM -subsemimodule) if there exists a non-
empty subset QM of M such that

(1) RQM ⊆ QM ;
(2) M = ∪{q + N : q ∈ QM};
(3) If q1, q2 ∈ QM then (q1 + N) ∩ (q2 + N) 6= ∅ if and only if q1 = q2.
It is easy to see (cf. [5]) that if M = QM , then {0} is a QM -subsemimo-

dule of M .
Remark 1.1. Let M be a semimodule over a semiring R, and let N be a
QM -subsemimodule of M . We put M/N = {q + N : q ∈ QM}. Then M/N
forms a commutative additive semigroup which has zero element under the
binary operation ⊕ de�ned as follows: (q1 + N)⊕ (q2 + N) = q3 + N where
q3 ∈ QM is the unique element such that q1+q2+N ⊆ q3+N . Note that by
the de�nition of QM -subsemimodule, there exists a unique q0 ∈ QM such
that 0M + N ⊆ q0 + N . Then q0 + N is a zero element of M/N .

Now let r ∈ R and suppose that q1 + N, q2 + N ∈ M/N are such that
q1 + N = q2 + N in M/N . Then q1 = q2, we must have rq1 + N = rq2 + N .
Hence we can unambiguously de�ne a mapping from R ×M/N into M/N
(sending (r, q1 + N) to rq1 + N) and it is routine to check that this turns
the commutative semigroup M/N into an R-semimodule. We call this R-
semimodule the residue class semimodule or factor semimodule of M modulo
N [4].

We need the following theorem proved in [5, Lemma 2.4, Proposition
2.5, Theorem 2.6, Theorem 2.7 and Theorem 2.10].
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Theorem 1.2. Assume that N is a QM -subsemimodule of a seminodule M
over a semiring R and let T , L be k-subsemimodules of M containing N.
Then the following hold:

(i) If q0 + N is a zero in M/N, then q0 + N = N .
(ii) N is a k-subsemimodule of M .

(iii) L/N = {q + N : q ∈ QM ∩ L} is a k-subsemimodule of M/N .
(iv) If H is a k-subsemimodule of M/N, then H = K/N for some

k-subsemimodule K of M .
(v) T/N = L/N if and only if T = L. ¤

2. Secondary semimodules
We begin with the key lemma of this paper.

Lemma 2.1. Let M be a semimodule over a semiring R, N an QM -
subsemimodule of M and q0 the unique element QM such that q0 + N is
the zero in M/N . Then the following hold:

(i) q0 ∈ N and if q ∈ N ∩QM , then q ∈ N .
(ii) If q1, q2 ∈ QM and a, b ∈ N with q1 + a = q2 + b, then q1 = q2.

(iii) If for each n ∈ N , there exists n′ ∈ N such that n + n′ = 0, then
N = a + N = {a + n : n ∈ N} for every a ∈ N .

Proof. (i) Since by Theorem 1.2, q0 + N = N is a k-subsemimodule of M ,
we must have q0 ∈ N . Moreover, since q + q0 ∈ (q + N) ∩ (q0 + N), we get
q = q0 ∈ N .

(ii) Since q1 + a ∈ (q1 + N) ∩ (q2 + N), we must have q1 = q2.
(iii) It is su�ces to show that N ⊆ a + N . Let n ∈ N . Since N is

a QM subsemimodule, there is an element q ∈ QM and n′ ∈ N such that
n = q + n′, so q ∈ N since every QM -submodule is a k-subsemimodule. By
assumption, a+ a′ = 0 for some a′ ∈ N . Hence n = a+ a′+ q +n′ ∈ a+N,
and the proof is complete.

Assume that R is a semiring and let N be an R-subsemimodule of a
semimodule M . Then N is a relatively divisible subsemimodule (or an RD-
subsemimodule) if rN = N ∩ rM for all r ∈ R. Since rN ⊆ N ∩ rM , we
see that N is an RD-subsemimodule of M if and only if for all x ∈ M
and r ∈ R, rx ∈ N implies rx = ry for some y ∈ N . Hence, N is an
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RD-subsemimodule of M if and only if a ∈ N and the equation rx = a has
a solution in M , then it is solvable in N too.
Lemma 2.2. Let R be a semiring, and let P , N be subsemimodules of the
R-semimodule M such that P ⊆ N ⊆ M . Then:

(i) If P is an RD-subsemimodule of N and N is an RD-subsemimodule
of M, then P is an RD-subsemimodule of M .

(ii) If P is an RD-subsemimodule of M, then P is an RD-subsemimodule
of N .

Proof. The proof is straightforward.

Proposition 2.3. Let R be a semiring, M an R-semimodule, P a QM -sub-
semimodule of M and N a k-subsemimodule of M such that P ⊆ N ⊆ M.
Then:

(i) If N is an RD-subsemimodule of M, then N/P is an RD-subsemi-
module of M/P .

(ii) If P is an RD-subsemimodule of M and N/P is an RD-subsemimo-
dule of M/P , then N is an RD-subsemimodule of M .

Proof. (i) Let rx = q1 +P be an equation over N/P that admits a solution
in M/P , say, r(q2 + P ) = q1 + P where q2 ∈ QM and q1 ∈ QM ∩ N , so
rq2 = q1. By the purity of N in M the equation rx = q1 has a solution
x = a in N . Then a = q3 + b for some q3 ∈ QM ∩N and b ∈ P (since N is
a k-subsemimodul), so rq3 + rb = q1. Hence rq3 = q1 by Lemma 2.1. Thus
r(q3 +P ) = q1 +P . Hence x = q3 +P is a solution of our original equation.

(ii) Let rx = a be an equation over N which has a solution x = c in
M . There are elements q1 ∈ N ∩ QM , q2 ∈ QM and e, f ∈ P such that
a = q1 + e and c = q2 + f , so rq2 + rf = q1 + e. Hence rq2 = q1. Therefore,
we must have r(q2 + P ) = q1 + P . By purity of N/P in M/P there exist
q3+P ∈ N/P such that r(q3+P ) = q1+P, where q3 ∈ N∩QM , so rq3 = q1.
Since r(q3 + f) = rq2 + rf = q1 + e, we get x = q3 + f is a solution of our
original equation.

Proposition 2.4. Let M be a semimodule over a semiring R, N an QM -
subsemimodule of M and r ∈ R. Let q0 be the unique element of QM such
that q0 + N is the zero in M/N . Then:

(i) rM + N is an (rQ)M -subsemimodule of M. In particular,

(rM + N)/N = {rq + N : rq ∈ rQM ∩ (rM + N)}
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is a k-subsemimodule of M/N .
(ii) r(M/N) = (rM + N)/N . In particular, N/N = {q0 + N}.

Proof. (i) Clearly, R(rQ) ⊆ rQ and
⋃{rq + N : q ∈ QM} ⊆ rM + N .

For the reverse inclusion, assume that rm + n ∈ rM + N where m ∈ M
and n ∈ N . There are elements q ∈ Q and n1 ∈ N such that m = q + n1

since N is a QM -subsimimodule of M , so rm + n = rq + rn1 + n ∈ rq + N.
Hence rM + N = ∪{rq + N : q ∈ Q}. It is easy to see that if rq1, rq2 ∈ rQ,
then (rq1 + N) ∩ (rq2 + N) 6= ∅ if and only if rq1 = rq2. It follows from
Theorem 1.2 that rM +N is a k-subsemimodule of M containing N . Then
(rM + N)/N is a k-subsemimodule of M/N by Theorem 1.2.

(ii) Since the inclusion (rM + N)/N ⊆ r(M/N) is trivial, we will
prove the reverse inclusion. Let r(q + N) = rq + N ∈ r(M/N). Since
rq ∈ (rM + N) ∩ rQ, we must have r(q + N) ∈ (rM + N)/N by (i), and
we have equality. Finally, N/N = {q + N : q ∈ N ∩ QM} = {q0 + N} by
Lemma 2.1.

Let R be a semiring with identity. An R-semimodule M is said to be
secondary if M 6= 0 and if, for each r ∈ R, the endomorphism ϕr,M (i.e.,
multiplication by r in M) is either surjective or nilpotent. Equivalently, M
is secondary if and only if either rM = M or rnM = 0 for some n for every
r ∈ R. It is easy to see that the nilradical of M is a prime ideal P , and M
is said to be P -secondary [7].
Proposition 2.5. Let N be a proper QM -subsemimodule of a P -secondary
semimodule M over a semiring R. Then M/N is a P -secondary R-semi-
module.

Proof. Assume that q0 is the unique element QM such that q0 + N is the
zero in M/N and let r ∈ R. If r ∈ P , then r(M/N) = (rM + N)/N =
(M + N)/N = M/N by Proposition 2.4. If r /∈ P , then there is a positive
integer s such that rs(M/N) = (rsM + N)/N = N/N = {q0 + N}, as
required.

Theorem 2.6. Assume that R is a semiring and let N be a non-zero proper
RD-subsemimodule (resp. pure subsemimodule) of an R-semimodule M . If
N is a QM -subsemimodule of M , then M is P -secondary if and only if N
and M/N are secondary.

Proof. If M is secondary, then M/N is secondary by Proposition 2.7. To see
that N is secondary, assume that a ∈ R. If a ∈ P , then anN ⊆ anM = 0 for
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some n. So suppose that a /∈ P . Then aN = N ∩ aM = N ∩M = N since
N is an RD-submodule. Conversely, assume that both N and M/N are
secondary and let q0 be the unique element QM such that q0 +N is the zero
in M/N . Let r ∈ R. If r ∈ P , then rm(M/N) = (rmM + N)/N = N/N =
{q0 + N} by Proposition 2.6 and rmN = 0 for some m. Hence rmM ⊆ N
by Proposition 2.4 and Theorem 1.2, and 0 = rmN = rmM ∩ N = rmM .
If r /∈ P , then rM +N = M , rN = N and N = rN = N ∩ rM , so we must
have rM = M . Thus M is secondary.

Let R be a semiring. An element a ∈ R is said to be regular if there
exists b ∈ R such that a = a2b, and R is said to be regular if each of its
elements is regular.

Theorem 2.7. Assume that R is a regular semiring and let N be a non-zero
proper QM -subsemimodule of an R-semimodule M . Then M is secondary
if and only if N and M/N are secondary.

Proof. By Theorem 2.6, it su�ces to show that every subsemimodule of
M is a RD-subsemimodule of M . Let N be a subsemimodule of M . It
is enough to show that if n ∈ N and the equation rx = n (where r ∈ R)
has a solution in M , say m, then it is solvable in N . By assumption, there
is an element s ∈ R such that r = r2s. Hence r(sn) = r2sm = rm = n.
Therefore, the equation rx = n has a solution x = sn in N .

Lemma 2.8. Let R be a semiring. Then �nite sum of P -secondary semi-
modules is P -secondary.

Proof. Let M = M1 + . . . + Mk, where for each i, Mi is P -secondary. Let
a ∈ R. If a ∈ P , then there is a positive integer n such that anMi = 0 for
every i. Hence anM = 0. Similarly, if a /∈ P , then aM = M . Thus M is
P -secondary.

Let M be a semimodule over a semiring R. A secondary representation
of M is an expression of M as a sum of secondary submodules, say M =
N1+. . .+Nk. The representation is said to beminimal if (1) the prime ideals
nilrad(Ni) = Pi are distinct and (2) none of the summand Ni is redundant.
By Lemma 2.8, any secondary representation of M can be re�ned to a
minimal one. If M has a secondary representation, we shall say that M is
representable [7].
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De�nition 2.9. Let R be a semiring. An R-semimodule M is sum-irre-
ducible if M 6= 0 and the sum of any two proper subsemimodules of M
is always a proper subsemimodule. An R-semimodule M is strongly sub-
tractive if every subsemimodule of M is a k-subsemimodule and for each
m ∈ M there exists m′ ∈ M such that m + m′ = 0 [2].

Theorem 2.10 Every strongly subtractive Artinian semimodule M over a
semiring R has a secondary representation.

Proof. First, we show that if M is sum-irreducible, then M is secondary.
Suppose M is not secondary. Then there is an element r ∈ R such that
rM 6= M and rnM 6= 0 for all positive integers n. By assumption, there
exists a positive integer k such that rkM = rk+1M = . . . Set M1 =
Kerϕrk,M and M2 = rkM . Then M1 and M2 are proper subsemimodules
of M . Let x ∈ M . Then rkx = r2ky for some y ∈ M . We can write
y + y′ = 0 for some y′ ∈ M. Hence rky + rky′ = 0, r2ky + r2ky′ = 0
and x = (x + rky′) + rky, where x + rky′ ∈ M1 and rky ∈ M2. Hence
M = M1 + M2, and therefore M is not sum-irreducible.

Next, suppose that M is not representable. Then the set of non-zero
subsemimodules of M which are not representable has a minimal element N .
Certainly N is not secondary and N 6= 0. Hence N is the sum of two strictly
smaller subsemimodules N1 and N2. By the minimality of N , each N1, N2

is representable, and therefore so also is N , which is a contradiction.
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