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Rede�ned fuzzy Lie subalgebras

Muhammad Akram

Abstract

This paper introduces a new concept of a Lie subalgebra of a Lie algebra
using the notion of an anti fuzzy point and its besideness to and non-quasi-
coincidence with a fuzzy set, and presents some of its useful properties.

1. Introduction
The theory of Lie algebras is an area of mathematics in which we can see a
harmonious between the methods of classical analysis and modern algebra.
This theory, a direct outgrowth of a central problem in the calculus, has
today become a synthesis of many separate disciplines, each of which has
left its own mark. Theory of Lie groups were developed by the Norwegian
mathematician Sophus Lie in the late nineteenth century in connection with
his work on systems of di�erential equations. Lie algebras were also dis-
covered by Sophus Lie when he �rst attempted to classify certain smooth
subgroups of general linear groups. The groups he considered are called
Lie groups. The importance of Lie algebras for applied mathematics and
for applied physics has also become increasingly evident in recent years.
In applied mathematics, Lie theory remains a powerful tool for studying
di�erential equations, special functions and perturbation theory. Lie the-
ory �nds applications not only in elementary particle physics and nuclear
physics, but also in such diverse �elds as continuum mechanics, solid-state
physics, cosmology and control theory. Lie algebra is also used by electrical
engineers, mainly in the mobile robot control. For the basic information of
Lie algebras, the readers are refereed to [7, 12, 17].
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In 1965, Zadeh [26] introduced the notion of a fuzzy subset of a set as a
method for representing uncertainty. Since then it has become a vigorous
area of research in di�erent domains such as engineering, medical science,
social science, physics, statistics, graph theory, arti�cial intelligence, sig-
nal processing, multiagent systems, pattern recognition, robotics, computer
networks, expert systems, decision making, automata theory. Yehia intro-
duced the notions of fuzzy ideals and fuzzy subalgebras of Lie algebras in
[24] and studied some results. Since then, the concepts and results of Lie
algebras have been broadened to the fuzzy setting frames (see, [1, 2, 3, 4,
6, 13, 14, 18, 20, 21, 24]).

This paper introduces a new concept of a subalgebra of a Lie algebra
using the notion of an anti fuzzy point and its besideness to and non-quasi-
coincidence with a fuzzy set, and presents some of its useful properties.

2. Preliminaries
A Lie algebra is a vector space L over a �eld F (equal to R or C) on which is
de�ned the multiplication L×L → L, denoted by (x, y) → [x, y], satisfying
the following axioms:

(L1) [x, y] is bilinear,

(L2) [x, x] = 0 for all x ∈ L ,

(L3) [[x, y], z]+[[y, z], x]+[[z, x], y] = 0 for all x, y, z ∈ L (Jacobi identity).

In this paper by L will be denoted a Lie algebra. We note that the
multiplication in a Lie algebra is not associative, but it is anti commutative,
i.e., [x, y] = −[y, x] for all x, y ∈ L. A subspace H of L closed under [·, ·]
will be called a Lie subalgebra.

De�nition 2.1. A fuzzy set ν on L, i.e., a real mapping ν : L → R such
that 0 6 ν(x) 6 1 for all x ∈ L, is called an anti fuzzy Lie subalgebra of L if

(I) ν(x + y) 6 max{ν(x), ν(y)},

(II) ν(αx) 6 ν(x),

(III) ν([x, y]) 6 min{ν(x), ν(y)}

hold for all x, y ∈ L and α ∈ F .
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As a consequence of the Transfer Principle proved in [22] we obtain

Theorem 2.2. Let ν be a fuzzy set on L. Then ν is a fuzzy Lie subalgebra
of L if and only if

L(ν; t) = {x ∈ L : ν(x) 6 t}
is a Lie subalgebra of L for all t ∈ (0, 1]. ¤

The membership degree expresses the degree of belongingness of ele-
ments to a fuzzy set. The membership degree 1 denote that an element
completely belongs to its corresponding fuzzy set, and the membership
degree 0 denote that an element does not belong to the fuzzy set. The
membership degrees on the interval (0, 1) denote the partial membership to
the fuzzy set. Sometimes, the membership degree means the satisfaction
degree of elements to some property or constraint corresponding to a fuzzy
set. The membership degrees on the interval (0, 1] denote that elements
somewhat satisfy the property.

A fuzzy set ν on L of the form

ν(y) =

{
t ∈ [0, 1) if y = x,
1, if y 6= x

is called an anti fuzzy point with support x and value t and is denoted by
xt. A fuzzy set ν in L is said to be non-unit if there exists x ∈ L such
that ν(x) < 1. An anti fuzzy point xt is said to �besides to" a fuzzy set
ν, written as xt ≺ ν if ν(x) 6 t. An anti fuzzy point xt is said to be
�non-quasicoincident with" a fuzzy set ν, denoted by xt ` ν if ν(x) + t 6 1.

3. Rede�ned fuzzy Lie subalgebras
Let α and β denote one of the symbols ≺, `, ≺∨` or ≺∧` unless otherwise
speci�ed.

De�nition 3.1. A fuzzy set ν in L is called an (α, β)∗-fuzzy Lie subalgebra
of L if it satis�es the following conditions:

(1) xsαν, ytαν ⇒ (x + y)max(s,t)βν,
(2) xsαν ⇒ (mx)sβν,
(3) xsαν, ytαν ⇒ ([x, y])min(s,t)βν

for all x, y ∈ L, m ∈ F , s, t ∈ [0, 1).
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Notations: The following notations will be used:
• �xt ≺ ν" and �xt ` ν" will be denoted by xt ≺∧` ν.
• �xt ≺ ν" or �xt ` ν" will be denoted by xt ≺∨` ν.
• The symbol ≺∧` means neither ≺ nor ` hold.

Remark. If ν is a fuzzy set in L such that ν(x) > 0.5 for all x ∈ L. Then
{xt|xt ≺∧` µ} = ∅.

The proof of the following proposition is trivial.

Proposition 3.2. For any fuzzy set ν in L, De�nition 2.1 is equivalent to
the following conditions:

(4) xs, yt ≺ ν ⇒ (x + y)max(s,t) ≺ ν,

(5) xs ≺ ν ⇒ (mx)s ≺ ν,

(6) xs, yt ≺ ν ⇒ ([x, y])min(s,t) ≺ ν,

for all x, y ∈ L, m ∈ F , s, t ∈ [0, 1). ¤

For a fuzzy set ν in a Lie algebra L, we denote L∗ = {x ∈ L : ν(x) < 1}.
Proposition 3.3. If ν is a non-unit (≺,≺)∗-fuzzy Lie subalgebra of L, then
L∗ is a Lie subalgebra of L.

Proof. Let x, y ∈ L∗. Then ν(x) < 1 and ν(y) < 1.
(1) Assume ν(x+y) = 1. Then we can see that xν(x) ≺ ν and yν(y) ≺ ν,

but (x + y)max(ν(x),ν(y))≺ν since ν(x + y) = 1 > max(ν(x), ν(y)). This is
clearly a contradiction, and hence ν(x+y) < 1, which shows that x+y ∈ L∗.

(2) Assume ν(mx) = 1. Then we can see that xν(x) ≺ ν, but (mx)ν(x)≺ν
since ν(mx) = 1 > ν(x). This is clearly a contradiction, and hence
ν(mx) < 1, which shows that mx ∈ L∗.

(3) Assume ν([x, y]) = 1. Then we can see that xν(x) ≺ ν and yν(y) ≺ ν,
but ([x, y])min(ν(x),ν(y))≺ν since ν([x, y]) = 1 > min(ν(x), ν(y)). This is
clearly a contradiction, and hence ν([x, y]) < 1, which shows that [x, y] ∈
L∗. Hence L∗ is a Lie subalgebra of L.

Proposition 3.4. If ν is a non-unit (≺,`)∗-fuzzy Lie subalgebra of L, then
the set L∗ is a Lie subalgebra of L.

Proof. Let x, y ∈ L∗. Then ν(x) < 1 and ν(y) < 1.
(1) Suppose that ν(x + y) = 1, then

ν(x + y) + max(ν(x), ν(y)) > 1.
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Hence (x + y)max(ν(x),ν(y))`ν, which is a contradiction since xν(x) ≺ ν and
yν(y) ≺ ν. Thus ν(x + y) < 1, so x + y ∈ L∗.

(2) Suppose that ν(mx) = 1, then

ν(mx) + ν(x) > 1.

Hence mxν(x)`ν, a contradiction since xν(x) ≺ ν. Thus ν(mx) < 1, so
mx ∈ L∗.

(3) Suppose that ν([x, y]) = 1, then

ν([x, y]) + min(ν(x), ν(y)) > 1.

Hence [x, y]min(ν(x),ν(y))`ν, which is a contradiction since xν(x) ≺ ν and
yν(y) ≺ ν. Thus ν([x, y]) < 1, so [x, y] ∈ L∗. Hence L∗ is a Lie subalgebra
of L.

Proposition 3.5. If ν is a non-unit (`,≺)∗-fuzzy Lie subalgebra of L, then
L∗ is a Lie subalgebra of L.

Proof. Let x, y ∈ L∗. Then ν(x) < 1 and ν(y) < 1. Thus x0 ` ν and y0 ` ν.
(1) If ν(x + y) = 1, then ν(x + y) = 1 > 0 = max(0, 0). Therefore,

(x + y)max(0,0)≺ν, which is a contradiction. It follows that ν(x + y) < 1 so
that x + y ∈ L∗.

(2) If ν(mx) = 1, then ν(mx) = 1 > 0. Therefore, mx0≺ν, a contra-
diction. It follows that ν(mx) < 1 so that mx ∈ L∗.

(3) If ν([x, y]) = 1, then ν([x, y]) = 1 > 0 = min(0, 0). Therefore,
[x, y]min(0,0)≺ν, which is a contradiction. It follows that ν([x, y]) < 1 so
that [x, y] ∈ L∗. Hence L∗ is a Lie subalgebra of L.

Proposition 3.6. If ν is a non-unit (`,`)∗-fuzzy Lie subalgebra of L, then
L∗ is a Lie subalgebra of L.

Proof. Let x, y ∈ L∗. Then ν(x) < 1 and ν(y) < 1.
(1) If ν(x+y) = 1, then ν(x+y)+max(0, 0) = 1, and so (x+y)max(0,0)`ν.

This is impossible, and hence ν(x + y) < 1, i.e., x + y ∈ L∗.
(2) If ν(mx) = 1, then ν(mx) + 0 = 1, and so (mx)0`ν. This is

impossible, and hence ν(mx) < 1, i.e., mx ∈ L∗.
(3) If ν([x, y]) = 1, then ν([x, y])+min(0, 0) = 1, and so [x, y]min(0,0)`ν.

This is impossible, and hence ν([x, y]) < 1, i.e., [x, y] ∈ L∗. Hence L∗ is a
Lie subalgebra of L.
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Proposition 3.7. If ν is a non-unit (≺,≺∨`)∗-fuzzy Lie subalgebra of L,
then L∗ is a Lie subalgebra of L.
Proof. Let x, y∈ L∗. Then ν(x) < 1 and ν(y) < 1. Thus ν(x) = s1 and
ν(y) = s1 for some s1, s2∈ [0, 1). It follow that xs1 ≺ ν and ys2 ≺ ν so that
(x+y)max(s1,s2) ≺∨` ν, i.e., (x+y)max(s1,s2) ≺ ν or (x+y)max(s1,s2) ` ν. If
(x+y)max(s1,s2) ≺ ν, then ν(x+y) 6 max(s1, s2) < 1 and hence x+y ∈ L∗.
On the other hand, If (x + y)max(s1,s2) ` ν, then ν(x + y) 6 ν(x + y) +
max(s1, s2) < 1, and hence x + y ∈ L∗. Veri�cation of conditions (2) and
(3) in De�nition 3.1 is similar, we omit the details.

By using similar argumentations we can also prove the following two
propositions.
Proposition 3.8. If ν is a non-unit (`,≺ ∨ `)∗-fuzzy Lie subalgebra of L,
then L∗ is a Lie subalgebra of L. ¤
Proposition 3.9. If ν is a non-unit (≺,≺∧`)∗-,(≺∨`,`)∗-, (≺∨`,≺)∗-,
(≺∨`,≺∧`)∗-, (`,≺∧`)∗-, or (≺∨`,≺ ∨ `)∗-fuzzy Lie subalgebra of L,
then L∗ is a Lie subalgebra of L. ¤
De�nition 3.10. A fuzzy set ν in L is called an (≺,≺ ∨ `)∗−fuzzy Lie
subalgebra of L if the following conditions are satis�ed:

(a) xs, yt ≺ ν ⇒ (x + y)max(s,t) ≺∨` ν,

(b) xs ≺ ν ⇒ (mx)s ≺∨` ν,

(c) xs, yt ≺ ν ⇒ ([x, y])min(s,t) ≺∨` ν

for all x, y ∈ L, m ∈ F , s, t ∈ [0, 1).
Example 3.11. Let V be a vector space over a �eld F such that dim(V ) =
5. Let V = {e1, e2, . . . , e5} be a basis of a vector space over a �eld F with
Lie brackets as follows:

[e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e5, [e1, e5] = 0,

[e2, e3] = e5, [e2, e4] = 0, [e2, e5] = 0, [e3, e4] = 0,

[e3, e5] = 0, [e4, e5] = 0, [ei, ej ] = −[ej , ei]

and [ei, ej ] = 0 for all i = j. Then V is a Lie algebra over F . We de�ne a
fuzzy set ν : V → [0, 1] by

ν(x) :=





0.25 if x = 0,

0.46 if x ∈ {e3, e5},
0 if x ∈ {e1, e2, e4}.
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By routine computations, it is easy to see that ν is an (≺,≺∨`)∗-fuzzy Lie
subalgebra of L.

Theorem 3.12. Let ν be a fuzzy set in a Lie algebra L. Then ν is an
(≺,≺∨`)∗−fuzzy Lie subalgebra of L if and only if

(d) ν(x + y) 6 max(ν(x), ν(y), 0.5),

(e) ν(mx) 6 max(ν(x), 0.5),

(f) ν([x, y]) 6 min(ν(x), ν(y), 0.5)

hold for all x, y ∈ L, m ∈ F .

Proof. (a) ⇒ (d) : Let x, y ∈ L. We consider the following two cases:
(1) max(ν(x), ν(y)) > 0.5,
(2) max(ν(x, ν(y)) 6 0.5.

Case (1): Assume that ν(x + y) > max(ν(x), ν(y), 0.5) Then ν(x + y) >
max(ν(x), ν(y)). Take s such that ν(x + y) > s > max(ν(x), ν(y)). Then
xs ≺ ν, ys ≺ ν, but (x + y)s≺∨`ν, which is contradiction with (a).

Case (2): Assume that ν(x + y) > 0.5. Then x0.5, y0.5 ≺ ν but (x +
y)0.5≺∨`ν, a contradiction. Hence (d) holds.

(d) ⇒ (a) : Let xs, yt ≺ ν, then ν(x) 6 s, ν(y) 6 t. Now, we have

ν(x + y) 6 max(ν(x), ν(y), 0.5) 6 max(s, t, 0.5).

If max(s, t) < 0.5, then ν(x + y) 6 0.5 ⇒ ν(x + y) + max(s, t) < 1.
On the other hand, if max(s, t) > 0.5, then ν(x + y) 6 max(s, t). Hence
(x + y)max(s,t) ≺∨` ν.

The veri�cation of (b) ⇔ (e) and (c) ⇔ (f) is analogous and we omit
the details. This completes the proof.

Theorem 3.13. Let ν be an (≺,≺∨`)∗-fuzzy Lie subalgebra of L.

(i) If there exists x ∈ L such that ν(x) 6 0.5, then ν(0) 6 0.5.

(ii) If ν(0) > 0.5, then ν is an (≺,≺)∗-fuzzy Lie subalgebra of L.

Proof. (i) Let x ∈ L such that ν(x) 6 0.5. Then ν(−x) = max(ν(x), 0.5) =
0.5. Hence ν(0) = ν(x− x) 6 max(ν(x), ν(−x), 0.5) = 0.5.

(ii) If ν(0) > 0.5 then ν(x) > 0.5 for all x ∈ L. Thus we conclude that
ν(x + y) 6 max(ν(x), ν(y)), ν(mx) 6 ν(x), ν([x, y]) 6 min(ν(x), ν(y)) for
all x, y ∈ L, m ∈ F . Hence ν is an (≺,≺)∗-fuzzy Lie subalgebra of L.
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Theorem 3.14. Let ν be a fuzzy set of fuzzy Lie subalgebra of L. Then
ν is an (≺,≺∨ `)∗-fuzzy Li subalgebra of L if and only if each nonempty
L(ν; t), t ∈ [0.5, 1) is a Lie subalgebra of L.

Proof. Assume that ν is an (≺,≺ ∨ `)∗ fuzzy Lie subalgebra of L and let
t ∈ [0.5, 1). If x, y ∈ L(ν; t) and m ∈ F , then ν(x) ≤ t and ν(y) ≤ t. Thus,

ν(x + y) 6 max(ν(x), ν(y), 0.5) 6 max(t, 0.5) = t,

ν(mx) 6 max(ν(x), 0.5) 6 max(t, 0.5) = t,

ν([x, y]) 6 max(ν(x), ν(y), 0.5) 6 max(t, 0.5) = t,

and so x+y,mx, [x, y] ∈ L(ν; t). This shows that L(ν; t) is a Lie subalgebra
of L.

Conversely, let ν be a fuzzy set such that L(ν; t) is a Lie subalgebra of
L, for all t ∈ [0.5, 1). If there exist x, y ∈ L such that such that ν(x + y) >
max(ν(x), ν(y), 0.5), then we can take t ∈ (0, 1) such that

ν(u + v) > t > max(ν(x), ν(y), 0.5).

Thus x, y ∈ L(ν; t) and t > 0.5, and so x + y /∈ L(ν; t), which contradicts
to the assumption that all L(ν; t) are Lie ideals. Therefore,

ν(x + y) 6 max(ν(x), ν(y), 0.5).

The veri�cation is analogous for other conditions and we omit the details.
Hence ν is an (≺,≺∨`)∗ fuzzy Lie subalgebra of L.

Theorem 3.15. Let ν be a fuzzy set in a Lie algebra L. Then L(ν; t) is a
Lie subalgebra of L if and only if

(g) min(ν(x + y), 0.5) 6 max(ν(x), ν(y)),

(h) min(ν(mx), 0.5) 6 ν(x),

(i) min(ν([x, y]), 0.5)) 6 max(ν(x), ν(y))

for all x, y ∈ L, m ∈ F .

Proof. Suppose that L(ν; t) is a Lie subalgebra of L. Let min(ν(x+y), 0.5) >
max(ν(x), ν(y)) = t for some x, y ∈ L, then t ∈ [0.5, 1), ν(x + y) > t,
x ≺ L(ν; t) and y ≺ L(ν; t). Since x, y ≺ L(ν; t) and L(ν; t) is a Lie subal-
gebra of L, so x + y ≺ L(ν; t) or ν(x + y) 6 t, which is contradiction with
ν(x + y) > t. Hence (d) holds. For (e), (f) the veri�cation is analogous.
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Conversely, suppose that (d), (e) and (f) hold. Assume that t ∈ [0.5, 1),
x, y ≺ L(ν; t). Then

0.5 > t > max(ν(x), ν(y)) > min(ν(x + y), 0.5) ⇒ ν(x + y) 6 t,

0.5 > t > ν(x) > min(ν(mx), 0.5) ⇒ ν(mx) 6 t,

0.5 > t > max(ν(x), ν(y)) > min(ν([x, y], 0.5) ⇒ ν([x, y]) 6 t,

and so x+y ≺ L(ν; t), mx ≺ L(ν; t),[x, y] ≺ L(ν; t). This shows that L(ν; t)
is a Lie subalgebra of L.

De�nition 3.16. An (≺,≺ ∨ `)∗-fuzzy Lie subalgebra of L is called proper
if Im ν has at least two elements. Two (≺,≺ ∨ `)∗- fuzzy Lie subalgebras
ν1 and ν2 are said to be equivalent if they have the same family of level Lie
subalgebras.
Theorem 3.17. Any proper (≺,≺ ∨ `)∗-fuzzy Lie subalgebra of L for which
the cardinality of {ν(x) : ν(x) > 0.5} 6 2 can be expressed as the union of
two proper non-equivalent (≺,≺ ∨ `)∗-fuzzy Lie subalgebras of L.
Proof. Let ν be a proper (≺,≺ ∨ `)∗-fuzzy Lie subalgebra of L such that
{ν(x) : ν(x) > 0.5} = {t1, t2, . . . , tn} where t1 < t2 < . . . < tn and n > 2.
Then

ν0.5 ⊆ νt1 ⊆ . . . ⊆ νtn = L

is the chain of (≺,≺ ∨ `)∗-Lie subalgebras of ν. De�ne µ1 and µ2 by

µ1(x) =





t1, if x ∈ νt1 ,
t2, if x ∈ νt2 \ νt1 ,
...
tn, if x ∈ νtn \ νtn−1 ,

µ2(x) =





ν(x), if x ∈ ν0.5,
n, if x ∈ νt2 \ ν0.5,
t3, if x ∈ νt3 \ νt2 ,
...
tn, if x ∈ νtn \ νtn−1 ,

respectively, where t3 > n > t2. Then µ1 and µ2 are (≺,≺ ∨ `)∗-fuzzy Lie
subalgebras of L with

νt1 ⊆ νt2 ⊆ . . . ⊆ νtn
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and
νt0.5 ⊆ νt2 ⊆ . . . ⊆ νtn

being respectively chains of (≺,≺ ∨ `)∗-fuzzy Lie subalgebras of µ1 and µ2.
Hence ν can be expressed as the union of two proper non-equivalent

(≺,≺ ∨ `)∗-fuzzy subalgebras of L.

Theorem 3.18. Let {νi : i ∈ Λ} be a family of (≺,≺)∗-fuzzy Lie subalgebras
of L. Then ν =

⋃
i∈Λ νi is an (≺,≺)∗-fuzzy Lie subalgebra of L.

Proof. Let xs ≺ ν and yt ≺ ν, where s, t ∈ [0, 1). Then ν(x) 6 s and
ν(y) 6 t. Thus we have νi(x) 6 s and νi(y) 6 t for all i ∈ Λ. Hence
νi(x + y) 6 max(s, t). Therefore, ν(x + y) 6 max(s, t), which implies that
(x + y)max{s,t} ≺ ν. For other conditions the veri�cation is analogous.

Theorem 3.19. Let {νi : i ∈ Λ} be a family of (≺,≺ ∨ `)∗-fuzzy Lie
subalgebra of L. Then ν :=

⋂
i∈Λ νi is an (≺,≺∨`)∗-fuzzy Lie subalgebra

of L.

Proof. By Theorem 3.12, we have ν(x+y) 6 max(ν(x), ν(y), 0.5), and hence

ν(x + y) = infi∈Λ νi(x + y)
6 infi∈Λ max(νi(x), νi(y), 0.5)
= max(infi∈Λ νi(x), infi∈Λ νi(y), 0.5)
= max(

⋂
i∈Λ νi(x),

⋂
i∈Λ νi(y), 0.5)

= max(ν(x), ν(y), 0.5).

For other conditions the veri�cation is analogous. By Theorem 3.12, it
follows that ν is an (≺,≺∨`)∗-fuzzy Lie subalgebra of L.

Remark. Let {νi : i ∈ Λ} be a family of (≺,≺∨`)∗-fuzzy Lie subalgebras
of L. Is ν =

⋃
i∈Λ νi an (≺,≺∨`)∗-fuzzy Lie subalgebra of L? When? The

following example shows that it is not an (≺,≺∨`)∗-fuzzy Lie subalgebra
in general.

Example 3.20. Let V be a vector space over a �eld F such that dim(V ) =
5. Let V = {e1, e2, e3, e4, e5} be its basis and let Lie brackets will be de�ned
as in Example 3.11. If we de�ne fuzzy sets µ1, µ2 : V → [0, 1] by putting

µ1(x) :=





0.6 if x = 0,

1 if x ∈ {e3, e5},
0 if x ∈ {e1, e2, e4},
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µ2(x) :=





0.3 if x = 0,

1 if x ∈ {e3, e5},
0 if x ∈ {e1, e2, e4},

then both µ1 and µ2 will be (≺,≺ ∨ `)∗-fuzzy Lie subalgebras of L, but
µ1 ∪ µ2 is not an (≺,≺∨`)∗-fuzzy Lie subalgebra of L since

1 = max(µ1(e3), µ2(e3)) = (µ1 ∪ µ2)(e3) = (µ1 ∪ µ2)([e1, e2])

6 min((µ1 ∪ µ2)(e1), (µ1 ∪ µ2)(e2), 0.5) = min(0, 0, 0.5) = 0.

Theorem 3.21. Let {νi : i ∈ Λ} be a family of (≺,≺ ∨ `)∗-fuzzy Lie
subalgebras of L such that νi ⊆ νj or νj ⊆ νi for all i, j ∈ Λ. Then the fuzzy
set ν :=

⋃
i∈Λ νi is an (≺,≺∨`)∗-fuzzy Lie subalgebra of L.

Proof. By Theorem 3.12, we have ν(x+y) 6 max(ν(x), ν(y), 0.5), and hence

ν(x + y) = supi∈Λ νi(x + y)
6 supi∈Λ max(νi(x), νi(y), 0.5)
= max(supi∈Λ νi(x), supi∈Λ νi(y), 0.5)
= max(

⋃
i∈Λ νi(x),

⋃
i∈Λ νi(y), 0.5)

= max(ν(x), ν(y), 0.5).

It is easy to see that

sup
i∈Λ

max(νi(x), νi(y), 0.5) >
⋃

i∈Λ

max(νi(x), νi(y), 0.5).

Suppose that

sup
i∈Λ

max(νi(x), νi(y), 0.5) 6=
⋃

i∈Λ

max(νi(x), νi(y), 0.5),

then there exists s such that

sup
i∈Λ

max(νi(x), νi(y), 0.5) > s >
⋃

i∈Λ

max(νi(x), νi(y), 0.5).

Since νi ⊆ νj or νj ⊆ νi for all i, j ∈ Λ, there exists k ∈ Λ such that
s > max(νk(x), νk(y), 0.5). On the other hand, max(νi(x), νi(y), 0.5) > s
for all i ∈ Λ, a contradiction. Hence

supi∈Λ max{νi(x), νi(y), 0.5} = max(
⋃

i∈Λ νi(x),
⋃

i∈Λ νi(y), 0.5)

= max{ν(x), ν(y), 0.5}.
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The veri�cation of other conditions is analogous. By Theorem 3.12, it
follows that ν is an (≺,≺∨`)∗-fuzzy Lie subalgebra of L.

Finally we study anti fuzzy Lie subalgebras with thresholds.
De�nition 3.22. Let m1,m2 ∈ [0, 1] and m1 < m2. If ν is a fuzzy set of a
Lie algebra L, then ν is called an anti fuzzy Lie subalgebra with thresholds
(m1,m2) if

(1) min(ν(x + y),m1) 6 max(ν(x), ν(y),m2),

(2) min(ν(mx),m1) 6 max(ν(x),m2),

(3) min(ν([x, y]),m1) 6 max(ν(x), ν(y),m2)

for all x, y ∈ L, m ∈ F .
Theorem 3.23. A fuzzy set ν of Lie algebra L is an anti fuzzy Lie sub-
algebra with thresholds (m1,m2) of L if and only if L(ν; t)( 6= ∅), for any
t ∈ (m1,m2], is a Lie subalgebra of L.
Proof. Assume that ν is an anti fuzzy Lie subalgebra with thresholds (m1, m2)
of L. Let x, y ∈ L(ν; t). Then ν(x) 6 t and ν(y) 6 t, t ∈ (m1,m2]. Then it
follows that

min(ν(x + y),m1) 6 max(ν(x), ν(y), m2) = t =⇒ ν(x + y) 6 t,

min(ν(mx),m1) 6 max(ν(x),m2) = t =⇒ ν(mx) 6 t,

min(ν([x, y]),m1) 6 min(ν(x), ν(y), m2) = t =⇒ ν([x, y]) 6 t,

and hence x + y, mx, [x, y] ∈ L(ν; t). This shows that L(ν; t) is a Lie subal-
gebra of L.

Conversely, assume that ν is a fuzzy set such that L(ν; t) 6= ∅ is a Lie
subalgebra of L for m1, m2 ∈ [0, 1] and m1 < m2. Suppose that min(ν(x +
y), m1) > max(ν(x), ν(y),m2) = t, then ν(x + y) > t, x ∈ L(ν; t), y ∈
L(ν; t), t ∈ (m1,m2]. Since x, y ∈ L(ν; t) and L(ν; t) are Lie subalgebras,
x + y ∈ L(ν; t), i.e., ν(x + y) 6 t. This is a contradiction. Therefore
condition (1) holds. The veri�cation of (2) and (3) is analogous.

Remark. By De�nition 3.22, we have the following result: If ν is an anti
fuzzy subalgebra with thresholds (m1,m2), then we can conclude that: ν
is an anti fuzzy subalgebra when m1 = 0 and m2 = 1; ν is an (≺,≺∨`)∗-
fuzzy Lie subalgebra when m1 = 0.5 and m2 = 1.

By De�nition 3.22, one can de�ne other anti fuzzy subalgebra of L, such
as [0.2, 0.6)-fuzzy subalgebra of L, [0.3, 0.8)- fuzzy subalgebra of L.
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