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On decomposition of commutative
Moufang groupoids

Boris V. Novikov

Abstract
We prove that every commutative Moufang groupoid is a semilattice of
Archimedean subgroupoids.

It is well-known that the multiplicative groupoid of an alternative/Jordan
algebra satis�es Moufang identities [1, 4]. Therefore it seems interesting
to study the structure of such groupoids. In this note we apply to Mo-
ufang groupoids an approach which is widespread in semigroup theory �
decomposition into a semilattice of subsemigroups [3].

We shall call a groupoid with the identity

(xy)(zx) = (x(yz))x (1)

a Moufang groupoid. Everywhere in this article M denotes a com-
mutative Moufang groupoid.

Theorem 1. If M consists of idempotents, then it is a semilattice.

Proof. Under assumption of the theorem it follows from (1) for y = z

(xy)x = xy (2)

Applying (2) to the right part of (1), we get:

x(yz) = (xy)(xz) (3)

Now de�ne a binary relation 6 on M :

a 6 b ⇐⇒ ab = a
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and show that it is a partial order.
Indeed, the re�exivity follows from idempotentness, the antisymmetry

follows from commutativity. Let a 6 b 6 c. Then

ac = (ab)c = (ac)(bc) = (ac)b = (ab)(bc) = ab = a,

i.e., a 6 c.
Further, ab is a greatest lower bound for the pair {a, b}. Really, ab 6 a,

ab 6 b by (2). Suppose that x 6 a, x 6 b. Then (ab)x = (ax)(bx) = x · x =
x, i.e., x 6 ab.

Lemma 2. M is a groupoid with associative powers.

Proof. For a ∈ M we shall denote by a(n) an arbitrary term of the length
n ≥ 1, all letters of which are a. If all such terms coincide in M , we denote
them by an.

We use the induction on length of the term. Let a(k) = ak for any k < n
(for k = 3 this follows from commutativity). Consider some term a(n). It
can be written in the form a(n) = a(k)a(l), where k, l > 1 and k + l = n; in
view of commutativity one can assume that k 6 l.

Suppose that k > 2. Then under hypothesis of the induction

a(n) = akal = (aak−1)(aal−1) = (a(ak−1al−1))a = (aan−2)a = aan−1.

Hence all terms of the form a(n) are equal.

We denote by La the left translation corresponding to an element a:
Lab = ab. From (1) we have:

(xy)2 = L2
xy2.

We generalize this identity:

Lemma 3. (ab)2
n

= L2n

a b2n for any a, b ∈ M, n > 0 (here powers are
de�ned correctly in view of Lemma 2).

Proof. Assume that for n the statement is faithful and prove it for n + 1:

(ab)2
n+1

= [(ab)2]2
n

= [a(ab2)]2
n

= L2n

a (ab2)2
n

= L2n

a L2n

a b2n+1
= L2n+1

a b2n+1

Corollary 4. (La1 . . . Lak−1
ak)2

n
= L2n

a1
. . . L2n

ak−1
a2n

k .
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Further we shall need one more equality for translations:

Lemma 5. L2n
a Lb = LLn

abL
n
a for any a, b ∈ M, n > 1.

Proof. For n = 1 this statement coincides with (1). The general case is
obtained by induction on n.

Let Ia be denoted the principal ideal, generated by a ∈ M . It is clear
that each element from Ia can be written in the form Lx1 . . . Lxk−1

Lxk
a.

De�ne relations ρ and σ:

aρb ⇐⇒ ∃n > 1 an ∈ Ib, (4)

aσb ⇐⇒ aρb & bρa. (5)

Lemma 6. σ is a congruence.

Proof. Re�exivity and symmetry are obvious, it is enough to check transi-
tivity and stability of ρ. Note that one can assume in the de�nition of ρ
that n is the power of the two.

Let aρb, bρc, i.e.,

a2m
= Lx1 . . . Lxk

b, b2n
= Ly1 . . . Lyl

c.

By Corollary 4

a2m+n
= L2n

x1
. . . L2n

xk
b2n

= L2n

x1
. . . L2n

xk
Ly1 . . . Lyl

c ∈ Ic,

so ρ is transitive.
Now let aρb, i.e., a2n

= Lx1 . . . Lxk
b, and c ∈ M .

1) Suppose that k 6 n. Then using several times Lemma 5, we get for
some u1, . . . , uk ∈ M :

(ca)2
n

= L2n

c a2n
= L2n

c Lx1 . . . Lxk
b = Lu1 . . . Luk

L2n−k

c b ∈ Icb.

2) Let k > n. Then a2n+k+1
= LyLx1 . . . Lxk

b, where y = a2n+k+1−2n .
Since k + 1 < n + k + 1, we get the case 1). Consequently, caρcb.

Lemma 7. M/σ is a semilattice.

Proof. Obviously, aσa2 for any a ∈ M . So M/σ is an idempotent groupoid.
By Theorem 1 it is a semilattice.
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Now let us to consider the structure of σ-classes (of course, they are
subgroupoids).

Like to theory of semigroups, we call a groupoid M Archimedean if aσb
for any a, b ∈ M , where σ is de�ned by the conditions (4) and (5). It is
clear that an Archimedean groupoid is indecomposable into a semilattice of
subgroupoids.

Lemma 8. Let σ be a congruence on M , de�ned by conditions (4) and (5).
Then each σ-class is Archimedean.

Proof. Let N is a σ-class, a, b ∈ N . Then

an = Lx1 . . . Lxk
b (6)

for some n > 0, x1, . . . , xk ∈ M . We need to prove that in the equality (6)
elements x1, . . . , xk can be chosen from N .

From (6) and Lemma 5 we have:

an+2k
= L2k

a Lx1 . . . Lxk
b = L

L2k−1
a x1

L
L2k−2

a x2
. . . LLaxk

b.

Show that for any i 6 k the element yi = L2k−i

a xi is contained in N .
Indeed, since yi = a(L2k−i−1

a xi) then yiρa. On the other hand,

an+2k
= Ly1 . . . Lyk

b = Ly1 . . . Lyi−1 [(Lyi+1 . . . Lyk
b)yi],

whence aρyi. Thereby, aσyi, i.e., yi ∈ N .

The �nal result:

Theorem 9. A commutative Moufang groupoid is a semilattice of Archime-
dean groupoids.

Example. Let a �nite semigroup S satisfy the identity ab = a (a left zero
semigroup), F be a �eld, charF 6= 2, A = FS be the semigroup algebra.
A is a Jordan algebra with respect to the operation x ∗ y = 1

2(xy + yx).
Denote by A∗ its multiplicative groupoid (as is well-known it is Moufang
and commutative [4]).

The operation in A∗ can be written as follows. For x =
∑

a∈S αaa ∈ A∗,
αa ∈ F , denote |x| = ∑

a∈S αa. Then

x ∗ y =
1
2
(|x|y + |y|x)
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From here x∗n = |x|n−1x and |xy| = |x||y|. In particular, x ∈ RadA∗

i� |x| = 0.
Evidently, all elements from RadA∗ constitute one σ-class. On the other

hand, if x, y 6∈ RadA∗ then they divide one another. To make sure that, it
is enough to put

t =
1
|x|2 (2|x|y − |y|x);

then y = x ∗ t. Thus A∗ = RadA∗ ∪ (A∗ \ RadA∗) is the decomposition of
A∗ into Archimedean components.

Finally we discuss some problems which arise here.
1. For loops the identity (1) (central Moufang identity) is equal to

each of ones x(y(xz)) = ((xy)x)z and ((zx)y)x = z(x(yx)) (left and right
Moufang identities). This is valid for multiplicative groupoids of Jordan
algebras as well, but not in the general case. So we can consider left and
right Moufang (commutative) groupoids. Are there similar decompositions
for them?

2. Is there Archimedean decomposition in noncommutative situation?
This is the case for semigroups [2].

3. What can one say about the structure of an Archimedean component?
For instance, can it contain more than one idempotent (cf. [3], Ex.4.3.2)?
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