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On reconstructing reducible n-ary quasigroups

and switching subquasigroups

Denis S. Krotov, Vladimir N. Potapov, Polina V. Sokolova

Abstract

(1) We prove that, provided n > 4, a permutably reducible n-ary quasigroup
is uniquely specified by its values on the n-ples containing zero. (2) We
observe that for each n,k > 2 and r < |k/2] there exists a reducible n-
ary quasigroup of order k with an n-ary subquasigroup of order r. As
corollaries, we have the following: (3) For each k > 4 and n > 3 we can
construct a permutably irreducible n-ary quasigroup of order k. (4) The
number of n-ary quasigroups of order k£ > 3 has double-exponential growth
as n — oo; it is greater than expexp(nln|k/3]) if k > 6, and exp exp(22n—
0.44) if k = 5.

1. Introduction

An n-ary operation f : X" — 3, where X% is a nonempty set, is called
an n-ary quasigroup or n-quasigroup (of order |X|) iff in the equality zp =
f(z1,...,2,) knowledge of any n elements of zo, 21, .. ., 2, uniquely specifies
the remaining one [2].

An n-ary quasigroup f is permutably reducible iff

f(xlv s xn) =h (g(xa(l)a s 7xo(k))7xo(k+1)7 s xa(n))

where h and g are (n—k+1)-ary and k-ary quasigroups, o is a permutation,
and 1 < k < n. In what follows we omit the word “permutably” because we
consider only such type of reducibility.
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We will use the following standard notation: xz denotes z;, Tiy1,...,7;.

In Section 2 we show that a reducible n-quasigroup can be reconstructed
by its values on so-called ‘shell’. ‘Shell’ means the set of variable values with
at least one zero.

In Section 3 we counsider the questions of imbedding n-quasigroups of
order r into n-quasigroups of order k > 2r.

In Section 4 we prove that for all n > 3 and k > 4 there exists an
irreducible n-quasigroup of order k. Before, the question of existence of
irreducible n-quasigroups was considered by Belousov and Sandik [3] (n = 3,
k = 4), Frenkin [5] (n > 3, k = 4), Borisenko [4] (n > 3, composite finite k),
Akivis and Goldberg [7, 8, 1] (local differentiable n-quasigroups), Glukhov
[6] (n > 3, infinite k).

In Sections 5 and 6 we prove the double-exponential (expexp(c(k)n))
lower bound on the number |Q(n, k)| of n-quasigroups of finite order k > 4.
Before, the following asymptotic results on the number of n-quasigroups of
fixed finite order k& were known:

o [Q(n,2)| =2.

o |Q(n,3)| = 3-2", see, e.g., [13]; a simple way to realize this fact is
to show by induction that the values on the shell uniquely specify an
n-quasigroup of order 3.

e |Q(n,4)| = 3nT122"+1(1 + o(1)) [15, 11].

Note that by the “number of n-quasigroups” we mean the number of mu-
tually different n-ary quasigroup operations X" — X for a fixed X, |X| =k
(sometimes, by this phrase one means the number of isomorphism classes).
As we will see, for every k > 4 there is ¢(k) > 0 such that |Q(n, k)| > 92e("
More accurately (Theorem 3), if £ = 5 then |Q(n,5)| > 23n/37wn5t; for even
k we have |Q(n, k)| = 2(:/2": for k = 0 mod 3 we have |Q(n, k)| > 27(+/3)".
and for every k we have |Q(n, k)| > 2'°%/3]" = Observe that dividing by
the number (e.g., (n + 1)!(k!)™) of any natural equivalences (isomorphism,
isotopism, paratopism,...) does not affect these values notably; so, for the
number of equivalence classes almost the same bounds are valid. For the
known exact numbers of n-quasigroups of order k with small values of n and
k, as well as the numbers of equivalence classes for different equivalences,
see the recent paper of McKay and Wanless [14].
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2. On reconstructing reducible n-quasigroups

In what follows the constant tuples 6, § may be considered as all-zero tuples.
From this point of view, the main result of this section states that a reducible
n-quasigroup is uniquely specified by its values on the ‘shell’, where the
‘shell’ is the set of n-ples with at least one zero. Lemma 1 and its corollary
concern the case when the groups of variables in the decomposition of a
reducible n-quasigroup are fixed. In Theorem 1 the groups of variables are
not specified; we have to require n > 4 in this case.

Lemma 1 (a representation of a reducible n-quasigroup by the superposi-
tion of retracts). Let h and g be an (n —m + 1)- and m-quasigroups, let
oexml gexr ™ and let

f2.9,2) = hig(a,

y),z
ho(z,2) < f(2,0,2),  go(w,9) = f(x,9,0),  (x) = f(x,0,0) (1)

where z € X, g € L™ 2 £"™ . Then

f(:E,ﬂ,Z) EhO((S_l(gO(xvg))>2)' (2)

Proof. 1t follows from (1) that

ho(',i) = h(g('76)72)7 90(«’17,37) = h(g(x7g)aé)a 5_1(') = g_l(h_l('79_)76)'

Substituting these representations of hq, go, 0! to (2), we can readily verify
its validity. O

Corollary 1. Let Gin, Qout, fins fout Y2 5 % be some quastgroups,

0= Gout(1, Gin(72,73)), [ = four(w1, fin(r2,33)), and (01, 0,03) € ¥,
Assume that for all (x1,x9,23) € ¥ it holds

q(o1,x2,23) = f(o1,22,23), q(x1,02,23) = f(x1,092,23).

Then q(Z) = f(Z) for all T € ¥3.

Theorem 1. Let q, f : X" — ¥ be reducible n-quasigroups, where n = 4;
and let of € X", Assume that for all i € {1,...,n} and for all 27 € X" it
holds

(27t 0 2t y) = flath o, 2y y). (3)
Then q(x) = f(z}) for all 2} € X™.
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Proof. (*) We first proof the claim for n = 4. Without loss of generality (up
to coordinate permutation and/or interchanging ¢ and f), we can assume
that one of the following holds for some quasigroups ¢in, Qout, fin, fout:

Case 1) ¢(21) = qout (21, qin (22, 3, 74)), f(21) = fout(T1, fin(m2, T3, 24));
Case 2) Q(xil) = Qout (1, @in (22, 23, 74)), f(21) = fout(x1, fin(22,T3), T4);
Case 3) ¢(21) = qout (21, qin (22, 3), 24), f(2]) = fout(T1, fin(m2,23), 24);
Case 1) ¢(z1) = qout(x1, gin (2, T3, 24)), f(21) = fout (fin(21, T2, 23), 24);
Case 5) q(z1) = qout(®1, @in (2, 73, 24)), [(@1) = fout (fin(z1,24), T2, 73);
Case 6) q(21) = qout(T1, T2, in (23, 24)), F(2) = four(21, fin(22,23), T4);
Case 7) q(z1) = QOut(mla%n(x%xB)a 1), F(@1) = fout(fin(21, 34), 22, 23).

1,2,3) Take an arbitrary x4 and denote ¢'(x1, x2, z3) < q(x1, o, 3, 74)
and f’ (a:l,;vg,wg) f(xl,xg,x3,$4) Then, by Corollary 1, we have ¢/(Z) =
f!(z) for all z € X3; this proves the statement.

4) Fixing x4 := o4 and applying (3) with ¢ = 4, we have

fout(fin(Zﬂla €2, 1'3)7 04) = QOut(xla Qin($2, €3, 04))a

which leads to the representation fi,(z1, z2, 23) = hout (21, hin(x2, x3)) where

howt(21,") = fork(Gout (%1, ), 04) and Ry (9, 23) = gin(x2, 3,04). Using

this representation, we find that f satisfies the condition of Case 2) for
some fin, fout- S0, the situation is reduced to the already-considered case.

5) Fixing x4 := 04 and using (3), we obtain the decomposition fou:(-, -, ) =
hout(-s hin(+,+)) for some hjy,, hoy. We find that ¢ and f satisfy the condi-
tions of Case 2).

6) Fixing x4:= o4 and using (3), we get the decomposition goy(-,-, ") =
hout (+, Rin(+,+)). Then, we again reduce to Case 2).

7) Fixing x4 := o4 we derive the decomposition fout(-, -, ) = hout(-s Rin(+, ),
which leads to Case 3).

(**) Assume n > 4. It is straightforward to show that we always can

choose four indexes 1 < 7 < j < k < [ < n such that for all mlfl, 2]

i+1>
k-1 ,1-1

x]+17 Lht1s

x},; the 4-quasigroups

/ def n
q i 1 j—1 k-1 1-1 (l‘i,l’j,xk,xl) = q(xl)a
Ty T T T

!/ def n
; Tiy X, Ty xy) = f(x
f$1 1$Z+11I§+11w2+11$l+1( g ks l) f( 1)
are reducible. Since these 4-quasigroups satisfy the hypothesis of the lemma,
they are identical, according to (*). Since they coincide for every values of
the parameters, we see that ¢ and f are also identical. O
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Remark 1. If n = 3 then the claim of Lemma 1 can fail. For example, the
reducible 3-quasigroups q(z3) & (1 * x2) * 23 and f(23) = x1 * (zg * 3)
where * is a binary quasigroup with an identity element O (i.e., a loop)
coincide if x1 = 0, xz2 = 0, or x3 = 0; but they are not identical if * is

nonassociative.

3. Subquasigroup

Let ¢ : ¥" — ¥ be an n-quasirgoup and Q C X. If ¢ = ¢g|g» is an n-
quasirgoup then we will say that g is a subquasigroup of ¢ and q is Q-closed.

Lemma 2. For each finite ¥ with |X| = k and Q C ¥ with |Q] < [k/2]
there exists a reducible n-quasigroup q : X" — X with o subquasigroup
g: Q" — Q.
Proof. By Ryser theorem on completion of a Latin s X r rectangular up to a
Latin k X k square (2-quasigroup) [16], there exists a {2-closed 2-quasigroup
g: %2 -3

To be constructive, we suggest a direct formula for the case ¥ = {0, ...,
k—1}, Q={0,...,r — 1} where k > 2r and k — r is odd:

Qkr(2,7) = (i+j) mod r, i<rg<r;
Geo(r+i,5) = (i+j)mod (k —r) +r,  j<m
(6, r+j)=(2i+j)mod (k—7r)+r, i<r;
. (z—])mod(k—r) if (1 —j)mod (k—r)<r,
G (r 3,7+ j) = { (2 — j) mod (k —r)+r otherwise.
In the following four examples the second and the fourth value arrays cor-
respond to g5 2 and g7 2:

01 6
01234 0112345 10 2
0123 10/13254
1032 103 4 2 150123 24 5
4: 5:[2 4]0 1[6] 6 735 4
2301 541032
32401 46 013
3210 234501
4 3[1[5]0 395410 52 1
6 3 0
(4)
Now, the statement follows from the obvious fact that a superposition
of Q-closed 2-quasigroups is an {2-closed n-quasigroup. O

The next obvious lemma is a suitable tool for obtaining a large number
of n-quasigroups, most of which are irreducible.



60 D. S. Krotov, V. N. Potapov, P. V. Sokolova

Lemma 3 (switching subquasigroups). Let ¢ : X" — X be an Q-closed
n-quasigroup with a subquasigroup g : Q" — Q, g = qlon, @ C X. And let
h: Q" — Q be another n-quasigroup of order |Q)|. Then

vaet [ R(Z) ifzeQ”
ray e )

is an n-quasigroup of order |X|.

4. Irreducible n-quasigroups

Lemma 4. A subquasigroup of a reducible n-quasigroup is reducible.

Proof. Let f: X" — X be a reducible Q-closed n-quasigroup. Without loss
of generality we assume that

f(z,9,2) = hig(x,9), 2)

for some (n — m + 1)- and m-quasigroups h and g where 1 < m < n. Take
o€ Q" 1and § € Q™. Then the quasigroups hg, go, and § defined
by (1) are Q-closed. Therefore, the representation (2) proves that f|on is
reducible. O

Theorem 2. For each n > 3 and k > 4 there exists an irreducible n-qua-
sigroup of order k.

Proof. (*) First we consider the case n > 4. By Lemma 2 we can construct
a reducible n-quasigroup ¢ : {0,...,k—1}" — {0,...,k—1} of order k with
a subquasigroup ¢ : {0,1}"™ — {0,1} of order 2. Let h: {0,1}" — {0,1} be
the n-quasigroup of order 2 different from g; and let f be defined by (5).
By Theorem 1 with 0 = (2,...,2), the n-quasigroup f is irreducible.
(*Yn =3,k =4,5,6,7. In each of these cases we will construct an
irreducible 3-quasigroup f, omitting the verification, which can be done,
for example, using the formulas (1), (2). Let quasigroups qs2, ¢52, 462,
and g7 be defined by the value arrays (4). For each case k = 4,5,6,7 we
define the ternary quasigroup q(z1,x2,x3) o qr,2(qr2(z1, x2), x3), which
have the subquasigroup ¢l 1ys (1, 22, 3) = 21 + 22 + 23 mod 2. Using (5),
we replace this subquasigroup by the ternary quasigroup h(z1,x2,23) =
21 + x2 + 3 + 1 mod 2. The resulting ternary quasigroup f is irreducible.
(***) n =3, 8 < k < co. Using Lemma 2, Lemma 3, and (**), we can
easily construct a ternary quasigroup of order k > 8 with an irreducible
subquasigroup of order 4. By Lemma 4, such quasigroup is irreducible.
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(***%) The case of infinite order. Let ¢ : X2 — X be an n-qua-

sigroup of infinite order K and g : ¥" — X be any irreducible n-quasi-
group of finite order (say, 4). Then, by Lemma 4, their direct product
gxq: (X E)" — (£ x o) defined as

def

9%q ([z1,1], - [on,yn]) = (921, 20), q(ys - yn)]

is an irreducible n-quasigroup of order K. O

Remark 2. Using the same arguments, it is easy to construct for any
n 2 4 and k > 4 an irreducible n-quasigroup of order k such that fixing one
argument (say, the first) by (say) 0 leads to an (n — 1)-quasigroup that is
also irreducible. This simple observation naturally blends with the following
context. Let k(q) be the maximal number such that there is an irreducible
k(q)-quasigroup that can be obtained from ¢ or one of its inverses by fixing
n — k(q) > 0 arguments. In this remark we observe that (for any n and k
when the question is nontrivial) there is an irreducible n-quasigroup ¢ with

k(q) = n — 1. In [10] for k:4 and even n > 4 an irreducible n-quasigroup
with k(q) = n — 2 is constructed. In [9, 12] it is shown that x(q) < n —3
(if k is prime then x(q) < n — 2) implies that ¢ is reducible.

5. On the number of n-quasigroups, I

We first consider a simple bound on the number of n-quasigroups of com-
posite order.

Proposition 1. The number |Q(n, sr)| of n-quasigroups of composite order
sr satisfies

Q(n, s7)| = 1Q(n, )] - 1Q(n, 5)[™" > [Q(n, )| (6)

Proof. Let g : Z' — Z, be an arbitrary n-quasigroup of order r; and let w(-)
be an arbitrary function from Z to the set Q(n,s) of all n-quasigroups of
order s. It is straightforward that the following function is an n-quasigroup
of order sr:

f(z1) Y g (y?) s+ w <y?> (z})  where y; S |zi/s], i < 2 mod s.

Moreover, different choices of w(-) result in different n-quasigroups. So,
this construction, which is known as the w-product of g, obviously provides
the bound (6). O
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If the order is divided by 2 or 3 then the bound (6) is the best known.
Substituting the known values |Q(n,2)| = 2 and |Q(n,3)| = 3 - 2", we get

Corollary 2. If k2 then |Q(n, k)| > 2/2)";
if k33 then |Q(n, k)| = (3-27)R/3" > on(k/3)",

The next statement is weaker than the bound considered in the next sec-
tion. Nevertheless, it provides simplest arguments showing that the number
of n-quasigroup of fixed order k grows double-exponentially, even for prime
k > 8. The cases k = 5 and k = 7 will be covered in the next section.

Proposition 2. The number |Q(n, k)| of n-quasigroups of order k > 8
satisfies

Q(n, k)| > 2LK/4". (7)

Proof. By Lemma 2, there is an n-quasigroup of order k with subquasi-
group of order 2|k/4]|. This subquasigroup can be switched (see Lemma 3)
in |Q(n,2|k/4])| ways. By Proposition 1, we have

1Q(n, 2 k/4])| = 1Q(n, 2)|F/4)" = olk/4I",

Clearly, these calculations have sense only if |k/4] > 1, i.e., k > 8. O

6. On the number of n-quasigroups, II

In this section we continue using the same general switching principle as in
previous ones: independent changing the values of n-quasigroups on disjoint
subsets of ¥X™. We improve the lower bound in the cases when the order is
not divided by 2 or 3; in particular, we establish a double-exponential lower
bound on the number of n-quasigroups of orders 5 and 7.

We say that a nonempty set © C X" is an ab-component or a switching
component of an n-quasigroup q iff

(a) ¢(©) = {a,b} and
(b) the function ¢© : X" — ¥ defined as follows is an n-quasigroup too:

(@) fzgO
@) =D ifz€©andq(z)=a
a if z € © and ¢(z) =b.
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For example, {(0,0),(0,1),(1,0),(1,1)} and {(2,2),(2,3),(3,3),(3,4),
(4,2),(4,4)} are 0l-components in (4.5).

Remark 3. From some point of view, it is naturally to require also © to be
inclusion-minimal, i.e., (c) © does not have a nonempty proper subset that
satisfies (a) and (b). Although in what follows all ab-components satisfy
(¢), formally we do not use it.

Lemma 5. Let an n-quasigroup q have s patrwise disjoint switching com-
ponents ©1, ..., Oy (note that we do not require them to be ab-components
for common a, b). Then |Q(n,|X])| > 2°.

f

Proof. Indeed, denoting ¢©° & q and ¢O©! S q©, we have 2% distinct n-
quasigroups ¢O...0%  (t1,...,ts) € {0,1}%. O

6.1. The order 5

In this section, we consider the n-quasigroups of order 5, the only case, when
the other our bounds do not guarantee the double-exponential growth of the
number of n-quasigroups as n — oco. Of course, the way that we use for
the order 5 works for any other order £ > 3, but the bound obtained is
worse than (6) provided k is composite, worse than (7) provided k& > 8,
and worse than (8) provided k > 6. The bound is based on the following
straightforward fact:

Lemma 6. Let {0,1}" be a 01-component of an n-quasigroup q. For every
i € {1,...,n} let ¢; be an n;-quasigroup and let ©; be its 01-component.
Then ©1 X ... X O, is a 01-component of the (n1 + ...+ ny)-quasigroup

f(:ljl,ly "',xl,nlva,la R axn,nn) dé% Q(CI1($1,1, “wxl,nl)v R qn(l‘n,la crey mn,nn))'

For a quasigroup q : £2 — ¥ denote ¢* © q, ¢*(z1, 9, 73) © q(r1,q (w2, 23)),
o @ (T1, 0, i) © q(w1, ¢ Y (wa, . .. 2i01)).

Proposition 3. If n = 3m then |Q(n,5)] > 23"; if n = 3m + 1 then
1Q(n,5)] = 243" if n. = 3m + 2 then |Q(n,5)| > 223™. Roughly, for any

n we have

In3
— I2n—0.44
377,/3 0.072 e 3"
2 >e .

1Q(n,5)| >
Proof. Let q be the quasigroup of order 5 with value table (4.5). Then

(*) ¢ has two disjoint 01-components Dy <= {(0,0), (0,1),(1,0), (1,1)}

def

and D; = {(2,2),(2,3),(3,3),(3,4), (4,2), (4,4)};
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(**) ¢% has three mutually disjoint 01-components Ty <= {0,1} x Dy,

T = {07 1} X D17 and 75 = {(331,3:2,303)|q2(:v1,x2,3:3) € {07 1}} \ (TO UTl);

(***) {0,1}™*! is a 01-component of ¢™.
By Lemma 6,

i. the 3m-quasigroup defined as the superposition
"N d ()
has 3™ components Ty, X ... x Ty, (t1,...,tm) € {0,1,2}™;
ii. the 3m + l-quasigroup defined as the superposition
0" (P () P )sa () a( )

has 3™ 14 components Ty, x...xTy, XDy, XDy 1, (t1,... tmy1) €
[0.1,2)7 1 x {0,112,

iii. the 3m + 2-quasigroup defined as the superposition
qm(qQ(" B ')7 s 7q2('7 ) ')7 Q(7 ))
has 32 components Ty, X...xTy, XDy, ., (t1,... tmy1) € {0,1,2}7x
{0,1}.

By Lemma 5, the theorem follows. O

Remark 4. If, in the proof, we consider the superposition q"/Q(q(‘7 ) I

¢*(-,-)), then we obtain the bound |Q(n,5)| > 22" for even n, which is

worse because % < 1%3

6.2. The case of order > 7

In this section, we will prove the following:

Proposition 4. The number |Q(n, k)| of n-quasigroups {0,1, ..., k—1}" —
{0,1,...,k — 1} satisfies

n—1 In|k/3]n+In|k/2]—In|k/3|—0.37 In|k/3]n+0.038
|Q(n,k)]>2Lk/2“k/3J S ef Lk/3]n+In|k/2]—In[k/3] S € Lk/3]n+ ‘ (8)

Note that this bound has no sense if k¥ < 6; and it is weaker than (6) if

k:2 or k3. The proof is based on the following straightforward fact:
Lemma 7. Let {c,d} x{e, f} be an ab-component of a quasigroup g. Then
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(a) {a,b} x {e, f} is a cd-component of the quasigroup g~ defined by
9(z,y) = 2 g~ (2,y) = x;

(b) if {a1,b1} X ... X {an,bp} is a ef-component of an n-quasigroup q,

then {c,d} x {a1,b1} x ... x{an, by} is an ab-component of the (n+1)-qua-
sigroup defined as the superposition g(-,q(-,...,")).
Proof of Proposition 4. Taking into account Corollary 2, it is enough to
consider only the cases of odd k # 0 mod 3. Moreover, we can assume that
k > 6 (otherwise the statement is trivial).

Define the 2-quasigroup q as

q(24,7) € i+ 3j mod k;
q(2j +1,i) & 7(i) + 3j mod k;
a(21k/3] +5,i) 2 7(6) + 3jmod k; j=0,...,|k/3] =1, i=0,....k—1

where 7, 7, and the remaining values of ¢ are defined by the following value
table (the fourth row is used only for the case k = 2 mod 3):

) 0 1 2 3 4 ... |k-5 k—4|k-3 k-2 k-1
(1) 1 0 3 2 5 ...|k-4 k-5|k-2 k-1 k-3
@) [k—=1] 2 1 [ 4 3] ... Jk=3 k4] 0 k=2
q(k—2,9) [ k=3 k—2 k-1 0 1 k—7 k—6|k—4 k—5
q(k=1,9) || k=2 k=1 0 1 2 k—6 k—5|k—3 k—4
In what follows, the tables illustrate the cases k =7 and k = 11.
01/23/456 012 3|4 5|6 7(8 910
10/32/564 10/32]/54|76/9108
34/56/01 2 3415 6|7 89100 1 2
k=T7143165[120 k=11:14 316 5|8 7]1109[1 2 0
6 7|8 91100|1 2|3 45
7 6/9 80102 1/45 3

For each j =0,...,|k/3] —1and i =0,..., |k/2| —2 the set {2j,2j + 1} X
{2i,2i + 1} is a (2i + 3j mod k)(2¢ + 3j + 1 mod k)-component of such g.
By Lemma 7(a), for the same pairs 7,7 the set {2i + 3j mod k,2i + 3j +
1 mod k} x {2i,2i + 1} is a (27)(2] + 1)-component of ¢ = ¢~; moreover,
we can observe that for each j there is one more “non-square” (25)(2j + 1)-
component of g which is disjoint with all considered “square” components,
see the following examples (we omit the analytic description; indeed, we can
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ignore this component if we do not care about the constant in the bound
In|k/3]n+const
e’ ).

01 54 203
01 213 10 45|32
Lol fs 2 ST
01 3 2 3223(1)(1) 5§4
k=712 310 k=11 2 S0 L
3 2 0 1 544533100 (
23|10 5
3 2 10 3 45331(1)0
By induction, using Lemma 7(b), we derive that for every ji,...,jn—1 €
{0,...,|k/3] —1} and i € {0,..., |k/2] — 2} the set
{  2j2+43j1modk, 2ja 4 341 + 1 mod k} x

{2jn-1+ 3jn—2 mod k, 2j,—1 + 3jn—2 + 1 mod k} x
{ 2i+43j,—1 mod k, 2i+ 3jn—1 + 1 mod k} x {2i,2i + 1}
is a (251)(2j1 + 1)-component of the n-quasigroup ¢g"~!. Also, for every
such ji,. .., jn_1 there is one more (241)(2j1 + 1)-component of g"~!, which
is generated by the “non-square” (2j,-1)(2jn—1 + 1)-component of g. In
summary, ¢" ! has at least |k/3|" 1| k/2] pairwise disjoint switching com-
ponents. By Lemma 5, the theorem is proved. ]
Summarizing Corollary 2, Propositions 3 and 4, we get the following
theorem.
Theorem 3. Let a finite set ¥ of size k > 3 be fized. The number |Q(n, k)|
of n-quasigroups X" — X satisfies the following:
(a) If k is even, then |Q(n, k)| > 2(-/2)",
(b) If k is divided by 3, then |Q(n, k)| > 2nk/3)"
(c) If k = 5, then |Q(n, k)| > 23" where ¢ < 0.072 depends on
n mod 3.
(d) In all other cases, |Q(n, k)| > 21-5LF/31"
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