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Direct product of quasigroups
and generalized diagonal subquasigroup

Tuval Foguel

Abstract

In this paper we look at when the direct product P ×Q of two quasigroups
contains a subquasigroup isomorphic to P.

1. Introduction
The direct product P × Q of two groups (loops) clearly contains at least
one subgroup (subloop) isomorphic to P, namely P × {1}. This is not the
case for a direct product of two quasigroups. Bruck in [4] gives examples of
�nite nontrivial quasigroups P and Q whose direct product has no proper
subquasigroups.

In this paper we will look at what we can say about the quasigroups P
and Q if their direct product contains a subquasigroup isomorphic to P.

2. Preliminaries
In this section, we review a few necessary notions from quasigroup theory
and establish some notation conventions.

A magma (Q, ·) consists of a set Q together with a binary operation on
Q. For x ∈ Q, de�ne the left (resp., right) translation by x by L(x)y = xy
(resp., R(x)y = yx) for all y ∈ Q. A magma with all left and right trans-
lations bijective is called a quasigroup. A quasigroup Q is an idempotent
quasigrop if for all x ∈ Q, xx = x. A quasigroup L with a two-sided identity
element 1 such that for any x ∈ L, x1 = 1x = x is called a loop. A loop
L is power-associative, if for any x ∈ L, the subloop generated by x is a
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group. For basic facts about loops and quasigroups, we refer the reader to
[2], [3] and [7].

Notation 2.1. Given the direct product P ×Q of two quasigroups, we will
denote the ith projection homomorpishm by πi.

Notation 2.2. Given two quasigroups K and Q, we will denote that K is
a subquasigroup of Q by K ≤ Q, and that K is a subquasigroup of Q but
not equal to Q by K � Q.

3. Generalized diagonal subquasigroup
Lemma 3.1. If Q̂ is a homomorphic image of a quasigroup P and Q̂ ⊆ Q
a quasigroup, then Q̂ is a quasigroup.
Proof. See [3].

Lemma 3.2. P ∼= K ≤ P ×Q where P and Q are quasigroups if and only
if there exists a homomorphism f : P → Q.

Proof. Assume P ∼= K ≤ P ×Q. Then π2 is a homomorphism from K → Q
and since P ∼= K there exists a homomorphism f : P → Q. Conversely, if
there exists a homomorphism f : P → Q, then P ∼= {(p, f(p))|p ∈ P} ≤
P ×Q.

Corollary 3.3. P ∼= K ≤ P × Q where P and Q are quasigroups if and
only if Q contains a subquasigroup that is a homomorphic image of P.
Proof. See Lemma 3.1 and Lemma 3.2.

Corollary 3.4. P ∼= K ≤ P × Q where P and Q are quasigroups with Q
containing no subquasigroups except for itself if and only if Q is a homo-
morphic image of P.
De�nition 3.5. Given P ×Q where P and Q are quasigroups, we will call
a subquasigroup K a generalized diagonal subquasigroup (gd-subquasigroup)
if K = {(p, f(p))|p ∈ P} ≤ P×Q where f is a homomorphism from P to Q.

Example 3.6. If P and Q are loops, then K = P × {1} ≤ P × Q is a
gd-subquasigroup.

Example 3.7. The diagonal-subquasigroup {(p, p)|p ∈ P} is a gd-subquasi-
group of P × P.
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Theorem 3.8. P ∼= K ≤ P×Q where P and Q are quasigroups if and only
if P ×Q contains a gd-subquasigroup.

Proof. By the de�nition of a gd-subquasigroup, it is isomorphic to P.
If P ∼= K ≤ P × Q, then by Lemma 3.2 there is a homomorphism

f : P → Q. Thus {(p, f(p))|p ∈ P} ≤ P × Q is a gd-subquasigroup of
P ×Q.

De�nition 3.9. A quasigroup is said to have a covering by subquasibgroups
if it is the set-theoretic union of proper subquasigroups, and, if the set of
subquasigroups is �nite, we say the covering is �nite. Such coverings have
been widely studied in groups, and recently, analogous coverings for rings,
semigroups, and loops have been discussed in [1], [6], and [5], respectively.
A covering is disjoint if any two distinct subquasigroups in the covering are
disjoint.

Lemma 3.10. If P is a quasigroup and Q is an idempotent quasigroup, then
P ×Q has a disjoint covering P ×Q =

⋃
i∈Q

(P ×{i}) where P ×{i} ∼= P for
all i ∈ Q.

Proof. P × {i} ∼= P since i is an idempotent for all i ∈ Q. If i, j ∈ Q and
i 6= j, then P × {i}⋂P × {j} = ∅ and if h ∈ P ×Q, then h = (p, i) where
p ∈ P and i ∈ {i} ≤ Q.

De�nition 3.11. A quasigroup is homogeneous if its automorphism group
is transitive. A quasigroup is doubly homogeneous if its automorphism group
is doubly transitive. A two-quasigroup is a nontrivial two generated doubly
homogeneous quasigroup.

Remark 3.12. If Q is a two-quasigroup, then it is generated as a quasi-
group by any two distinct elements, and by [8] Q is an idempotent quasi-
group.

Example 3.13. Given Q = GF (pn) (the Galois �eld of pn elements), and
α a primitive element in GF (pn). Then (Q,¯) is a two-qusigroup under
the binary operation

a¯ b = αa + (1− α)b
for all a, b ∈ Q.

Lemma 3.14. If P is a quasigroup with no subquasigroups except for itself,
and Q is a two-quasigroup, then every proper subquasigroup of P ×Q is of
the form P × {i} ∼= P where i ∈ Q.
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Proof. Assume K ≤ P × Q. Since π1(K) ≤ P and P is a quasigroup with
no proper subquasigroups, π1(K) = P.

Let k1 = (p1, i), k2 = (p2, j) ∈ K. If i 6= j, then since Q is a two-
quasigroup π2(K) = Q. Therefore given any (p, t) ∈ P × Q there exist
k = (p̂, t) ∈ K, but some �power� of p̂ is equal to p, and thus K = P × Q.
So if K ≤ P ×Q, then K = P ×Q or K = P × {i}.

4. The non gd-subquasigroup
Lemma 3.1. If P ∼= K ≤ P × Q where P and Q are quasigroups, then
π1(K) ≤ P and π1(K) is a homomrphic image of P.
Proof. π1(K) ≤ P by de�nition. Since π1(K) is a homomrphic image of K
it is a homomrphic image of P ∼= K.
Corollary 3.2. If P ∼= K ≤ P ×Q where P is a simple quasigroup and Q
is a quasigroup, then π1(K) ∼= P or {1}.
Corollary 3.3. If P ∼= K ≤ P × Q where P is a quasigroup with no
subquasigroups except for itself, and Q is a quasigroup, then π1(K) ∼= P.
Example 3.4. In Z × L, where Z denotes the integers and L is any loop,
K = 2Z× {1} ∼= Z ∼= π1(K), but note that π1(K) 6= Z.
Remark 3.5. Given K ≤ P ×Q where P and Q are quasigroups and P is
�nite, π1(K) ∼= P if and only if π1(K) = P.
De�nition 3.6. Given nonempty subsets A and B of a quasigroup P,we
will denote by AB = {ab| a ∈ A, b ∈ B}.

The following de�nition is due to Bruck (see [4]).

De�nition 3.7. Let K ≤ P×Q where P and Q are quasigroups. For p ∈ P
denote by Qp = {q ∈ Q| (p, q) ∈ K} ⊆ Q.

Lemma 3.8. If K ≤ P ×Q where P and Q are quasigroups, then QpQp̀ =
Qpp̀ for p, p̀ ∈ π1(K).
Proof. See [4] Lemma 15. Note that �niteness is not used in this part of
the proof.

Remark 3.9. If K ≤ P × Q where P and Q are quasigroups and p ∈
P − π1(K), then Qp = ∅.
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Lemma 3.10. If P ∼= K ≤ P×Q where P is a loop and Q is a quasigroup,
then Q1 is isomorphic to a normal subloop of P
Proof. Q1 is isomorphic to the kernel of π1.

Lemma 3.11. If P ∼= K ≤ P × Q where P is a �nite power associative
loop and Q is a quasigroup, then Qp · · · Qp︸ ︷︷ ︸

|p|−times

= Q1 for any p ∈ π1(K).

Proof. By Lemma 3.8 Qp · · · Qp︸ ︷︷ ︸
|p|−times

= Qp|p| = Q1.

De�nition 3.12. For a �nite power associative loop P, exp(P) = n is the
smallest positive integer such that given p ∈ P the identity pn = 1 holds.

Corollary 3.13. If P ∼= K ≤ P ×Q where P is a �nite power associative
loop and Q is a quasigroup, then for any q ∈ π2(K), qexp(P) ∈ Q1.
Proof. q ∈ Qp for some p ∈ π1(K), and thus qexp(P) ∈ Qpexp(P) = Q1.

Remark 3.14. If K ≤ P × Q where P and Q are quasigroups and K is
�nite, then |K| = ∑

p∈P
|Qp| =

∑
p∈π1(K)

|Qp|.

Lemma 3.15. If K ≤ P × Q where P and Q are quasigroups and K is
�nite, then |Qp| = |Qp̀| for p, p̀ ∈ π1(K) and Qp and Qp̀ are either disjoint
or identical.
Proof. By Remark 3.14 we see that |Qp| is �nite for each p, and thus by
[4] Lemma 15, |Qp| = |Qp̀| for p, p̀ ∈ π1(K) where Qp and Qp̀ are either
disjoint or identical.

Remark 3.16. If K ∼= P ≤ P ×Q where P is a �nite quasigroup and Q is
quasigroup, then |P| = ∑

p∈P
|Qp| =

∑
p∈π1(K)

|Qp|.

Lemma 3.17. If K ≤ P × Q where P and Q are quasigroups and K is
�nite, then |π1(K)| |Qp| = |K| for any p ∈ π1(K).
Proof. By Remarks 3.16 and Lemma 3.15 we get that

|K| =
∑

p∈π1(K)

|Qp| = |π1(K)| |Qp| . ¤

Corollary 3.18. If P ∼= K ≤ P × Q where P is a �nit quasigroup and Q
is quasigroup, then |π1(K)| |Qp| = |P| for any p ∈ π1(K).
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Lemma 3.19. If K ≤ P ×Q where P and Q are quasigroups, π1(K) ∼= K
and K is �nite, then p 7→ Qp for all p ∈ π1(K) is a homomorphism from
π1(K) to Q.
Proof. By Lemma 3.17 we see that |K| = |π1(K)| |Qp| = |K| |Qp|, and thus
we get that |Qp| = 1 for all p ∈ π1(K). Therefore by Lemma 3.8 p 7→ Qp is
a homomorphism for all p ∈ π1(K).

Corollary 3.20. If P ∼= K ≤ P × Q where P is a �nite quasigroup, Q is
quasigroup, and π1(K) ∼= P, then p 7→ Qp for all p ∈ P is a homomorphism
from P to Q and K is a gd-subquasigroup.
Proof. Note that K = {(p,Qp)|p ∈ P}.
Theorem 3.21. If P ∼= K ≤ P×Q where P and Q are quasigroups with P
�nite, then π1(K) ≤ P, π1(K) is a homomrphic image of P, |Qp| |π1(K)| =
|P| for any p ∈ π1(K), and if P = π1(K), then K is a gd-subquasigroup.
Proof. This follows from Lemmas 3.1, Corollary 3.18 and Corollay 3.20.

Example 3.22. Let Q be a �nite quasigroup, P = Q × Q, and K =
{(q, q, q̂)| q, q̂ ∈ Q} ⊆ P ×Q. Then K ∼= P but π1(K) � P and π2(K) � P.
Example 3.23. Let P = L × Zn = Q where L is a loop, Zn denotes
the integers mod n, and let K = {(l, 0, l, i)| l ∈ L and i ∈ Zn}. Then
Q(l,0) = {(l, i)| i ∈ Zn} is not a quasigroup if l 6= 1 and

∣∣Q(l,0)

∣∣ = n.
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