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Direct product of quasigroups

and generalized diagonal subquasigroup

Tuval Foguel

Abstract

In this paper we look at when the direct product P x Q of two quasigroups
contains a subquasigroup isomorphic to P.

1. Introduction

The direct product P x Q of two groups (loops) clearly contains at least
one subgroup (subloop) isomorphic to P, namely P x {1}. This is not the
case for a direct product of two quasigroups. Bruck in [4] gives examples of
finite nontrivial quasigroups P and Q whose direct product has no proper
subquasigroups.

In this paper we will look at what we can say about the quasigroups P
and @ if their direct product contains a subquasigroup isomorphic to P.

2. Preliminaries

In this section, we review a few necessary notions from quasigroup theory
and establish some notation conventions.

A magma (Q,-) consists of a set Q together with a binary operation on
Q. For z € Q, define the left (resp., right) translation by x by L(z)y = xy
(resp., R(z)y = yx) for all y € Q. A magma with all left and right trans-
lations bijective is called a quasigroup. A quasigroup Q is an idempotent
quasigrop if for all x € Q, zx = x. A quasigroup £ with a two-sided identity
element 1 such that for any x € £, 21 = 1x = z is called a loop. A loop
L is power-associative, if for any x € L, the subloop generated by x is a
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group. For basic facts about loops and quasigroups, we refer the reader to
[2], [3] and [7].

Notation 2.1. Given the direct product P x Q of two quasigroups, we will
denote the i projection homomorpishm by ;.

Notation 2.2. Given two quasigroups K and Q, we will denote that IC is
a subquasigroup of Q by K < Q, and that I is a subquasigroup of Q but
not equal to @ by K < Q.

3. Generalized diagonal subquasigroup

Lemma 3.1. If Q is a homomorphic image of a quasigroup P and o) ao)
a quasigroup, then Q is a quasigroup.

Proof. See [3]. O

Lemma 3.2. P =K <P x Q where P and Q are quasigroups if and only
iof there exists a homomorphism f: P — Q.

Proof. Assume P = I <P x Q. Then 79 is a homomorphism from I — Q
and since P = K there exists a homomorphism f : P — Q. Conversely, if
there exists a homomorphism f : P — Q, then P = {(p, f(p))|p € P} <
P x Q. O

Corollary 3.3. P =2 K <P x Q where P and Q are quasigroups if and
only if Q contains a subquasigroup that is a homomorphic image of P.

Proof. See Lemma 3.1 and Lemma 3.2. O

Corollary 3.4. P2 K <P x Q where P and Q are quasigroups with Q
containing no subquasigroups except for itself if and only if Q is a homo-
morphic image of P.

Definition 3.5. Given P x Q where P and Q are quasigroups, we will call
a subquasigroup K a generalized diagonal subquasigroup (gd-subquasigroup)
it K ={(p, f(p))lp € P} <P xQ where f is a homomorphism from P to Q.

Example 3.6. If P and Q are loops, then K = P x {1} <P x Qis a
gd-subquasigroup.

Example 3.7. The diagonal-subquasigroup {(p, p)|p € P} is a gd-subquasi-
group of P x P.
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Theorem 3.8. P =2 K <P x Q where P and Q are quasigroups if and only
if P x Q contains a gd-subquasigroup.

Proof. By the definition of a gd-subquasigroup, it is isomorphic to P.

IfP =K <P xQ, then by Lemma 3.2 there is a homomorphism
f:P — Q. Thus {(p, f(p))lp € P} < P x Q is a gd-subquasigroup of
P x Q. O

Definition 3.9. A quasigroup is said to have a covering by subquasibgroups
if it is the set-theoretic union of proper subquasigroups, and, if the set of
subquasigroups is finite, we say the covering is finite. Such coverings have
been widely studied in groups, and recently, analogous coverings for rings,
semigroups, and loops have been discussed in [1], [6], and [5], respectively.
A covering is disjoint if any two distinct subquasigroups in the covering are
disjoint.

Lemma 3.10. If P is a quasigroup and Q is an idempotent quasigroup, then
P x Q has a disjoint covering P x Q = |J (P x {i}) where P x {i} =P for
all i € Q. i€Q

Proof. P x {i} = P since i is an idempotent for all i € Q. If i,j7 € Q and
i # j, then P x {i} P x {j} =0 and if h € P x Q, then h = (p,i) where
peEPandie€ {i} <Q. O

Definition 3.11. A quasigroup is homogeneous if its automorphism group
is transitive. A quasigroup is doubly homogeneous if its automorphism group
is doubly transitive. A two-quasigroup is a nontrivial two generated doubly
homogeneous quasigroup.

Remark 3.12. If Q is a two-quasigroup, then it is generated as a quasi-
group by any two distinct elements, and by [8] Q is an idempotent quasi-

group.

Example 3.13. Given Q = GF(p") (the Galois field of p™ elements), and
« a primitive element in GF(p™). Then (Q,®) is a two-qusigroup under
the binary operation

a®b=aa+ (1—a)b
for all a,b € Q.

Lemma 3.14. If P is a quasigroup with no subquasigroups except for itself,
and Q is a two-quasigroup, then every proper subquasigroup of P x Q is of
the form P x {i} = P where i € Q.
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Proof. Assume K < P x Q. Since m(K) < P and P is a quasigroup with
no proper subquasigroups, m1(K) = P.

Let k1 = (p1,i),ka = (p2,j) € K. If i # j, then since Q is a two-
quasigroup m2(K) = Q. Therefore given any (p,t) € P x Q there exist
k= (p,t) € K, but some “power” of p is equal to p, and thus £ =P x Q.
Soif <P xQ,then =P x Qor K=P x{i}. O

4. The non gd-subquasigroup
Lemma 3.1. If P =2 K < P x Q where P and Q are quasigroups, then
m1(K) <P and m1(K) is a homomrphic image of P.

Proof. m1(K) < P by definition. Since 71 (K) is a homomrphic image of K
it is a homomrphic image of P = K. O

Corollary 3.2. If P =K <P x Q where P is a simple quasigroup and Q
is a quasigroup, then w1 (k) = P or {1}.

Corollary 3.3. If P =2 K < P x Q where P is a quasigroup with no

~Y

subquasigroups except for itself, and Q is a quasigroup, then m (K) = P.

Example 3.4. In Z x L, where Z denotes the integers and L is any loop,
K =27 x {1} 2 Z = 71(K), but note that m (K) # Z.

Remark 3.5. Given K < P x Q where P and Q are quasigroups and P is
finite, m (KC) = P if and only if m1(K) = P.

Definition 3.6. Given nonempty subsets A and B of a quasigroup P,we
will denote by AB = {ab| a € A,b € B}.

The following deffinition is due to Bruck (see [4]).

Definition 3.7. Let < P x Q where P and Q are quasigroups. For p € P
denote by Q, = {q € Q| (p,q) € £} C Q.

Lemma 3.8. If K <P x Q where P and Q are quasigroups, then Q,Q; =
pr? fOT’ pap € WI(IC)'

Proof. See [4] Lemma 15. Note that finiteness is not used in this part of
the proof. O

Remark 3.9. If £ < P x Q where P and Q are quasigroups and p €
P — mi(K), then Q, = 0.
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Lemma 3.10. If P =2 I <P x Q where P is a loop and Q is a quasigroup,
then Q1 is isomorphic to a normal subloop of P

Proof. Qi is isomorphic to the kernel of 7. O

Lemma 3.11. [f P = K < P x Q where P is a finite power associative
loop and Q is a quasigroup, then Q.- Qp = Q1 for any p € m1(K).
—_———

|p|—times
Proof. By Lemma 3.8 Q)+ -+ Q) = Q,» = Q1. O
—_———
|p|—times

Definition 3.12. For a finite power associative loop P, exp(P) = n is the
smallest positive integer such that given p € P the identity p™ =1 holds.

Corollary 3.13. If P =2 K <P x Q where P is a finite power associative
loop and Q is a quasigroup, then for any q € m(K), ¢®*P) € Q;.

Proof. q € Qp for some p € m1(K), and thus q=P(P) ¢ Qpeso(r) = Q1. O

Remark 3.14. If £ < P x Q where P and Q are quasigroups and K is
finite, then |[K| = > [Qpl = > 19yl

peEP pemi(K)
Lemma 3.15. If K < P x Q where P and Q are quasigroups and K is
finite, then |Qp| = |Qp| for p,p € m(K) and Q, and Qj are either disjoint
or identical.

Proof. By Remark 3.14 we see that |Q,| is finite for each p, and thus by
[4] Lemma 15, |Q,| = |Q;| for p,p € 7 (K) where Q) and Qj are either
disjoint or identical. O

Remark 3.16. If K =P <P x Q where P is a finite quasigroup and Q is

quasigroup, then |P| = > |Qpl = > |9yl
peEP pemi(K)

Lemma 3.17. If K < P x Q where P and Q are quasigroups and K is
finite, then |m(K)||Qp| = |K| for any p € m(K).
Proof. By Remarks 3.16 and Lemma 3.15 we get that

Kl = > 19 = Im(K)]1Qyl- O
pem(K)

Corollary 3.18. If P = K <P x Q where P is a finit quasigroup and Q
is quasigroup, then |m1(K)||Qp| = |P| for any p € m1(K).
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Lemma 3.19. If K <P x Q where P and Q are quasigroups, m1(K) = K
and K is finite, then p — Q, for all p € m(K) is a homomorphism from
m1(K) to Q.

Proof. By Lemma 3.17 we see that |[K| = |71 (K)||Qp| = K| |Qp|, and thus
we get that |Q,| =1 for all p € m(K). Therefore by Lemma 3.8 p — Q,, is
a homomorphism for all p € 71 (K). O

Corollary 3.20. If P =2 K <P x Q where P is a finite quasigroup, Q is
quasigroup, and m(K) = P, then p — Q) for all p € P is a homomorphism
from P to Q and K is a gd-subquasigroup.

Proof. Note that K = {(p, Qp)|p € P}. O

Theorem 3.21. If P 2 K <P x Q where P and Q are quasigroups with P
finite, then m (K) < P, m1(K) is a homomrphic image of P, |Qp||m1(K)| =
|P| for any p € m1(K), and if P = 71(K), then K is a gd-subquasigroup.

Proof. This follows from Lemmas 3.1, Corollary 3.18 and Corollay 3.20. O

Example 3.22. Let Q be a finite quasigroup, P = Q x Q, and K =
{(¢,9,9)| ¢,q € Q} CP x Q. Then KL = P but m1(K) 2 P and m2(K) 2 P.

Example 3.23. Let P = £L X Z, = Q where L is a loop, Z, denotes
the integers mod n, and let £ = {(,0,1,i)] | € £ and i € Z,}. Then
Q) = {(l,1)] i € Zyn} is not a quasigroup if [ # 1 and }Q(l,o)| =n.
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