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On middle translations of �nite quasigroups

Ivan I. Deriyenko

Abstract
We prove that a �nite quasigroup is isotopic to a group if and only if some
set of bijections induced by middle transformations of this quasigroup is a
group.

1. Introduction
Let Q = {1, 2, 3, . . . , n} be a �nite set, ϕ and ψ permutations of Q. The mul-
tiplication (composition) of permutations is de�ned as ϕψ(x) = ϕ(ψ(x)).

Let Q(·) be a quasigroup. Permutations La : x → a · x, Ra : x → x · a
are called left and right translations of Q(·). Permutations λi, ϕi (i ∈ Q) of
Q such that

λi(x) · x = i, (1)

x · ϕi(x) = i (2)

for all x ∈ Q, are called left (respectively: right) middle translations of an
element i in a quasigroup Q(·). Such translation were �rstly studied by
V. D. Belousov (cf. [1]) in connection with some groups associated with
quasigroups. Next, the investigations of such translations were continued
by many authors, see for example [3] or [5].

The above two conditions say that in a Latin square n × n connected
with a quasigroup Q(·) of order n we select n cells, one in each row, one
in each column, containing the same �xed element i. λi(x) means that to
�nd in the column x the cell containing an element i we must select the
row λi(x). Analogously, ϕi(x) means that to �nd in the row x the cell
containing i we must select the column ϕi(x). Thus, λi is a selection of
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rows, ϕi � a selection of columns, containing an element i. In connection
with this fact λi will be called a left track (l-track), ϕi - a right track (r-track)
of an element i. It is clear that for a quasigroup Q(·) of order n the set
{λ1, λ2, . . . , λn} uniquely determines its Latin square, and conversely, any
Latin square n× n uniquely determines the set {λ1, λ2, . . . , λn}. A similar
situation holds for {ϕ1, ϕ2, . . . , ϕn}.

More interesting facts on connections of translations with Latin squares
one can �nd in [2].

As a simple consequence of the above de�nitions we obtain

Proposition 1.1. In any quasigroup Q(·) the following identities hold:

1) λi = ϕ−1
i ,

2) ϕ−1
i (x) · x = i,

3) Li(x) = (λi(x) · x) · x,
4) Li(x) = (x · ϕi(x)) · x,
5) Ri(x) = x · (λi(x) · x),

6) Ri(x) = x · (x · ϕi(x)). 2

Corollary 1.2. In any group G(·) we have

1) ϕi(x) = x−1 · i, λi(x) = i · x−1,

2) ϕ1(x) = λ1(x) = x−1,

3) Li(x) = λi(x) · x2,

4) Ri(x) = x2 · ϕi(x),

where 1 is the identity element of the group G(·). 2

2. Isotopy invariants in quasigroups
Two quasigroups Q(·) and Q(◦) are isotopic if there exists an ordered triple
T = (α, β, γ) of bijections α, β, γ : Q → Q such that

γ(x ◦ y) = α(x) · β(y)
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for all x, y ∈ Q.
For y = ψi(x), where ψi is a r-track of a quasigroup Q(◦), this identity

has the form
γ(x ◦ ψi(x)) = α(x) · βψi(x),

whence, according to (2), we obtain

γ(i) = α(x) · βψi(x).

This for z = α(x) and j = γ(i) gives

j = z · βψiα
−1(z).

Since
j = z · ϕj(z) = z · ϕγ(i)(z)

for r-tracks ϕj and ϕγ(i) of a quasigroup Q(·), the above implies

ϕγ(i) = βψiα
−1. (3)

Remark 2.1. For l-tracks λi and µi of isotopic quasigroups Q(·) and Q(◦)
we have

λγ(i) = αµiβ
−1. (4)

De�nition 2.2. By a spin of a quasigroup Q(·) we mean the permutation

ϕij = ϕiϕ
−1
j = ϕiλj ,

where ϕi and λj are tracks of Q(·). The spin ϕii is called trivial.

The set of all spins of a quasigroup Q(·) is denoted by ΦQ(·).
Proposition 2.3. Spins have the following properties

1) ϕij(x) 6= x for all x ∈ Q and i 6= j,

2) ϕpi(x) 6= ϕpj(x) for all x ∈ Q and i 6= j,

3) ϕij = ϕ−1
ji ,

4) ϕkiϕil = ϕkl,

5) ϕmk = ϕ−1
imϕik.
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Proof. (1) If ϕij(x) = x holds for some i 6= j and x ∈ Q, then, according
to the de�nition of ϕij , we have ϕiϕ

−1
j (x) = x. Whence, for x = ϕj(y), we

obtain ϕi(y) = ϕj(y). Consequently y · ϕi(y) = y · ϕj(y), i.e., i = j. This
contradicts our assumption. So, ϕij(x) 6= x for all x ∈ Q and i 6= j.

(2) Analogously as (1).
(3) ϕij = ϕiϕ

−1
j = (ϕjϕ

−1
i )−1 = ϕ−1

ji .
(4) ϕkiϕil = (ϕkϕ

−1
i )(ϕiϕ

−1
l ) = ϕk(ϕ−1

i ϕi)ϕ−1
l = ϕkl.

(5) ϕmk = ϕmϕ−1
k = ϕmϕ−1

i ϕiϕ
−1
k = (ϕiϕ

−1
m )−1(ϕiϕ

−1
k ) = ϕ−1

imϕik.

As it is well-known any permutation ϕ of the set Q of order n can be
decomposed into r 6 n cycles of the length k1, . . . , kr and k1 + . . .+kr = n.
We denote this fact by

Z(ϕ) = [k1, k2, . . . , kr] .

Since conjugate permutations are decomposable into cycles of the same
length (see for example [4]), for any two conjugate permutations ϕ and ψ
we have Z(ϕ) = Z(ψ). Obviously Z(ϕ) = Z(ϕ−1) for any permutation ϕ.
So, Z(ϕij) = Z(ϕji) for all spins.

De�nition 2.4. Let Φ = {ϕ1, ϕ2, . . . , ϕn} be a collection of permutations
of the set Q. The set

Sp(Φ) = [Z(ϕ1), Z(ϕ2), . . . , Z(ϕn)]

is called the spectrum of Φ.

Two collections Φ = {ϕ1, ϕ2, . . . , ϕn} and Σ = {σ1, σ2, . . . , σn} of per-
mutations of Q have the same spectrum if and only if there exists a permu-
tation γ of Q such that Z(ϕi) = Z(σγ(i)) for all i = 1, 2, . . . , n.

The spectrum of all spins of a quasigroup Q(·), i.e., the set

[Z(ϕ11), Z(ϕ12), . . . , Z(ϕnn)]

is called the spin-spectrum of Q(·) and is denoted by Ssp(Q, ·).
Theorem 2.5. Finite isotopic quasigroups have the same spin-spectrum.

Proof. Let Q(·) and Q(◦) be isotopic quasigroups. Then

γ(x ◦ y) = α(x) · β(y)

for some permutations α, β, γ of Q.
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In this case tracks of Q(·) and Q(◦) are connected by the formula (3).
Spins of Q(·) and Q(◦) are pairwise conjugate. Namely

ϕγ(i)γ(j) = βψijβ
−1.

Indeed,

ϕγ(i)γ(j) = ϕγ(i)ϕ
−1
γ(j) = (βψiα

−1)(βψjα
−1)−1

= (βψiα
−1)(αψ−1

j β−1) = βψiψ
−1
j β−1 = βψijβ

−1.

Since spins ϕγ(i)γ(j) and ψij are conjugate, we have Z
(
ϕγ(i)γ(j)

)
=

Z(ψij). This means that Q(·) and Q(◦) have the same spin-spectrum.

Corollary 2.6. If the isotopy of quasigroups Q(·) and Q(◦) has the form
(α, α, γ), then also sets of all r-tracks (l-tracks) of these quasigroups have
the same spectrum.

Proof. Indeed, from (3) and (4), it follows that in this case l-tracks (respec-
tively, r-tracks) of these quasigroups are pairwise conjugate.

3. Spin-basis of quasigroups
De�nition 3.1. Let Φ be a collection of all nontrivial spins of a quasigroup
Q(·). A minimal subset B of Φ is called a basis of Φ if each spin from Φ
can be written as a multiplication of spins (and their inverses) from B.

For example, the set

B0 = {ϕ12, ϕ23, . . . , ϕi(i+1), . . . , ϕ(n−1)n}
containing (n− 1) spins is a basis since each spin ϕpq, where p < q, can be
written in the form
ϕpq = ϕpϕ

−1
q = ϕp(ϕ−1

p+1ϕp+1ϕ
−1
p+2ϕp+2 . . . ϕ−1

q−1ϕq−1)ϕ−1
q

= (ϕpϕ
−1
p+1)(ϕp+1ϕ

−1
p+2) . . . (ϕq−1ϕ

−1
q ) = ϕp(p+1)ϕ(p+1)(p+2) . . . ϕ(q−1)q.

Also
Bi = {ϕi1, ϕi2, . . . , ϕik, . . . , ϕin}, i 6= k,

is a basis for every i = 1, 2, . . . , n. Indeed, according to Proposition 2.3 (5),
each spin ϕpq can be written in the form

ϕpq = ϕ−1
ip ϕiq.
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De�nition 3.2. Let Q(·) be a quasigroup of order n. The set

χi(Q, ·) = {ϕi1, ϕi2, . . . , ϕii, . . . , ϕin} = Bi ∪ {ϕii}
is called the ith spin-basis of Q(·).

It coincides with the ith row of the matrix [ϕij ]. In general, it is not
closed under multiplication of spins, but in some cases it is a group. Since
ϕkiϕij = ϕkj , by Proposition 2.3, for all i, k = 1, 2, . . . , n holds

ϕki(χi(Q, ·)) = χk(Q, ·).
Proposition 3.3. If one of the spin-basis of a quasigroup Q(·) is a group,
then each of its spin-basis is a group and

χ1(Q, ·) = χ2(Q, ·) = . . . = χn(Q, ·).
Proof. Let χi(Q, ·) be a group. Then χi(Q, ·) together with ϕik contains
also ϕ−1

ik = ϕki. This means that {ϕ1i, ϕ2i, . . . , ϕni} ⊆ χi(Q, ·). Therefore
each spin ϕkj belongs to χi(G, ·) because ϕkj = ϕkiϕij ∈ χi(G, ·) for all
j, k. So, χk(Q, ·) ⊆ χi(Q, ·) and ϕki(χi(Q, ·)) = χk(Q, ·) which completes
the proof.

Proposition 3.4. Let quasigroups Q(·) and Q(◦) be isotopic. If one spin-
basis of Q(·) is a group, then each spin-basis of Q(◦) is a group and for all
i = 1, . . . , n we have χi(Q, ·) ∼= χi(Q, ◦).
Proof. Let γ(x ◦ y) = α(x) · β(y). Then, as in the proof of Theorem 2.5,

ϕγ(i)γ(j) = βψijβ
−1.

Whence
ψij = β−1ϕγ(i)γ(j)β. (5)

To prove that
χi(G, ◦) = {ψi1, ψi2, . . . , ψin}

is a group observe that for all ψip, ψiq ∈ χi(Q, ◦) we have

ψipψiq = β−1ϕγ(i)γ(p)ϕγ(i)γ(q)β = β−1ϕγ(i)kβ = ψit,

where γ(t) = k, since, by Proposition 3.3, each spin-basis of Q(·) is a group.
Moreover, for every ψik ∈ χi(Q, ◦), by (5) and Proposition 2.3, we obtain

ψ−1
ik = ψki = β−1ϕγ(k)γ(i)β = β−1ϕ−1

γ(i)γ(k)β = β−1ϕγ(i)rβ = ψis,
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where γ(s) = r. This means that χi(Q, ◦) together with ψik also contains
ψ−1

ik . So, it is a group. Clearly χi(Q, ◦) = χk(Q, ◦) for all k = 1, . . . , n.
In view of (5) the isomorphism h : χγ(i)(Q, ·) → χi(Q, ◦) = χγ(i)(Q, ◦)

has the form h(ϕγ(i)γ(j)) = β−1ϕγ(i)γ(j)β.

Theorem 3.5. A �nite quasigroup which is a group is isomorphic to its
spin-basis.

Proof. Let G(·) be a group and χ1(G, ·) = {ϕ11, ϕ12, . . . , ϕ1n} its spin-basis.
Then, according to the de�nition of spins, Proposition 1.1 and Corollary 1.2,

ϕ1i(x) = ϕ1(λi(x)) = ϕ1(i · x−1) = (i · x−1)−1 = x · i−1 = Ri−1(x),

which means that the spin-basis χ1(G, ·) can be identi�ed with the set of
all right translations of G(·). So, χ1(G, ·) and G(·) are isomorphic.

Proposition 3.3 completes the proof.

Theorem 3.6. A quasigroup for which the spin-basis is a group is isotopic
to this group.

Proof. Let Q(◦) be a quasigroup. Since it is isotopic to some loop Q(·) with
the identity 1, in view of Propositions 3.3 and 3.4, it is su�cient to prove
that Q(·) is isotopic to the group χ1(Q, ·) = {ϕ11, ϕ12, ϕ13, . . . , ϕ1n}.

For this we consider the mapping
h : χ1(Q, ·) −→ Q(·) such that h(ϕ1i) = i.

It is one-to-one and onto. We prove that it is an isomorphism, i.e.,

h(ϕ1kϕ1l) = h(ϕ1k) · h(ϕ1l)

for all ϕ1k, ϕ1l from χi(Q, ·).
As χ1(Q, ·) is a group, the product of ϕ1k and ϕ1l also belongs to

χ1(Q, ·). Let
ϕ1kϕ1l = ϕ1p.

By the de�nition of spins, the last equality is equivalent to

ϕ1ϕ
−1
k ϕ1ϕ

−1
l = ϕ1ϕ

−1
p ,

i.e., to
ϕ−1

k ϕ1ϕ
−1
l = ϕ−1

p
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which can be written as
ϕp = ϕlϕ

−1
1 ϕk.

This means that
ϕp(x) = ϕlϕ

−1
1 ϕk(x)

holds for every x ∈ Q. Since Q(·) is a loop, the last identity is equivalent to

x · ϕp(x) = x · ϕlϕ
−1
1 ϕk(x),

whence, by (2), for x = k we obtain

p = k · ϕp(k) = k · ϕlϕ
−1
1 ϕk(k) = k · ϕlϕ

−1
1 (1) = k · ϕl(1) = k · l

because in any loop ϕk(k) = 1 and ϕk(1) = k.
So, h(ϕ1kϕ1l) = p = k·l = h(ϕ1k)·h(ϕ1l), which completes the proof.

As a consequence of the above results we obtain

Theorem 3.7. A �nite quasigroup is isotopic to a group if and only if its
spin-basis is a group.
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