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Counting loops with the inverse property

Asif Ali and John Slaney

Abstract
The numbers of isomorphism classes of IP loops of order up to 13 have
been obtained by exhaustive enumeration, and are presented here along
with some basic observations concerning IP loops.

1. Introduction
An IP loop is a set L and a binary operation ∗, where L contains an identity
e such that a ∗ e = a = e ∗ a for all a ∈ L, and where each x ∈ L has a
two-sided inverse x−1 such that for all y ∈ L

x−1 ∗ (x ∗ y) = y = (y ∗ x) ∗ x−1.

For an account of the properties of IP loops, see Bruck's survey [3]). Clearly
every group is an IP loop, but the converse is not the case. Steiner loops are
also IP loops, satisfying the extra condition x−1 = x. IP loops form a very
important class, not only in that they represent a strong generalization of
both groups and Steiner loops, but also in that the Moufang nucleus (the set
of a ∈ L such that a[(xy)a] = (ax)(ya) for all x, y ∈ L) of such loops behaves
as a nilpotency function for this class. Moreover IP loops are exactly those
groupoids whose power sets are the semiassociative relation algebras [7].

The present paper reports the numbers of non-isomorphic IP loops hav-
ing order up to 13. Since these were obtained by exhaustive enumeration,
they are available for inspection.
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2. History of counting loops
The number of non-isomorphic loops up to order 6 was found by Schön-
hardt [12] in 1930, but this was not noticed by Albert [1] or Sade [11] who
obtained weaker results much later. Dénes and Keedwell [5] present counts
of �quasigroups� up to order 6, but in fact count loops owing to their as-
sumption that each �quasigroup� is isomorphic to a reduced square, which
is obviously untrue of quasigroups in general. The loops of order 7 were
counted in 1985 by Brant and Mullen [2]. In 2001, �QSCGZ� announced
the number of loops of order 8 in an electronic forum [10], and the same
value was found independently by Gujerin. For more on the history of
counting loops, see McKay et al [9].

3. IP loops of small order
The smallest IP loop which is not a group is of order 7:

∗ 1 2 3 4 5 6 7
e = 1 1 2 3 4 5 6 7

2 2 3 1 6 7 5 4
3 3 1 2 7 6 4 5
4 4 7 6 5 1 2 3
5 5 6 7 1 4 3 2
6 6 4 5 3 2 7 1
7 7 5 4 2 3 1 6

x x−1

1 1
2 3
3 2
4 5
5 4
6 7
7 6

This structure has proper subalgebras {1, 2, 3}, {1, 4, 5} and {1, 6, 7}. Note
that the order of these subloops does not divide the order of the loop,
marking a signi�cant di�erence between IP loops and groups.

Note also that the only element which is its own inverse is the identity
e. This is a general feature of IP loops of odd order, as may be shown by a
simple counting argument:

Observation 1. IP loops of odd order have no subloops of even order.

Proof. Let (L, ∗) be an IP loop and let (S, ∗) be a subloop of (L, ∗) of even
order. Clearly, S consists of e and some subset of elements of L along with
their inverses. For this subset to be of even cardinality, some element in it
other than e must be self-inverse and thus of order 2. Let a ∈ L be such an
element of order 2. Let †x be de�ned as a ∗ x. Then the operation † is of
period 2, because † † x = a ∗ (a ∗ x) = a−1 ∗ (a ∗ x) = x. Moreover, † has
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no �xed points, because if †x = x then a ∗ x = x, so a = e, contradicting
the assumption that a is of order 2. Hence † partitions L into pairs, so the
cardinality of L must be even.

The IP loops of small orders were counted by using a �nite domain con-
straint solver to generate representatives of all isomorphism classes. The
solver FINDER [13] has previously been used to generate results concern-
ing the spectra of quasigroup identities [6]. It works by expressing each
equation or other de�ning condition as the set of its ground instances on
the domain of N elements, compiling these into constraints and then con-
ducting a backtracking search for solutions to the constraint satisfaction
problem using standard techniques such as forward checking and nogood
learning [4].

Some symmetries were broken by enforcing conditions such as that e is
always the �rst element. The remaining isomorphic copies were eliminated
in a postprocessing phase. The results to order 11 were independently cor-
roborated using the �rst order theorem prover PROVER9 and its associated
propositional satis�ability solver MACE-4 [8]. In the cases of order 12 and
order 13, the required searches are too hard for MACE and PROVER9, so
we have only the results by FINDER in those cases.

size groups non− groups total
1 1 0 1
2 1 0 1
3 1 0 1
4 2 0 2
5 1 0 1
6 2 0 2
7 1 1 2
8 5 3 8
9 2 5 7
10 2 45 47
11 1 48 49
12 5 2679 2684
13 1 10341 10342

Table 1. Numbers of IP loops of given order
The full list of these small IP loops, in a simple matrix format as for the

order 7 example above, is available online.1

1http://users.rsise.anu.edu.au/∼jks/IPloops/
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