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On �nite quasigroups whose subquasigroup lattices
are distributive

Konrad Pióro

Abstract

We prove that if the subquasigroup lattice of a �nite quasigroup Q is dis-
tributive, then Q is cyclic (i.e., Q is generated by one element) and also,
each of its subquasigroups is also cyclic. Finally, we give examples which
show that the inverse implication does not hold.

It is a classical result of Group Theory, showed by Ore in [5] (see also
[7]), that the subgroup lattice of a group G is distributive if and only if G
is locally cyclic (i.e., each �nitely generated subgroup of G is cyclic). In
particular, a �nite group G has a distributive subgroup lattice if and only
if G is cyclic.

In the present paper we prove the following result for quasigroups (for
de�nitions and simple facts of quasigroups and lattices see e.g. [1], [2], [3])

Theorem 1. Let Q = (Q, ◦, \, /) be a �nite quasigroup such that its sub-
quasigroup lattice S(Q) is distributive. Then Q and each subquasigroup of
Q are cyclic.

Before the proof observe that, in the contrary to groups, a subquasigroup
of a cyclic quasigroup need not be cyclic. Let Q be a six-element quasigroup
given by the following table (recall, see e.g. [1], that a �nite groupoid (Q, ◦)
is a quasigroup if and only if the multiplication table of ◦ is a Latin square,
i.e., each element of Q occurs exactly once in each row and each column)
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◦ a b c d e f
a a c b f e d
b c b a d f e
c b a c e d f
d f d e c a b
e e f d a b c
f d e f b c a

Then Q = 〈f〉 = 〈e〉 = 〈d〉, so Q is cyclic. On the other hand, {a, b, c} is
a subquasigroup of Q which is non-cyclic, because a ◦ a = a, b ◦ b = b and
c ◦ c = c. Note that the constructed quasigroup Q is even commutative.

Observe also that such example cannot be found among quasigroups
having less than 6 elements. More precisely, it is easy to see that any two-
element quasigroup is cyclic. So if a quasigroup Q contains a non-cyclic
subquasigroup G, then G must have at least three elements, say a, b, c. Next,
there is q ∈ Q which generate Q, in particular q ∈ Q \ G. The elements
q ◦a, q ◦ b and q ◦ c are pairwise di�erent. They are also di�erent from a, b, c
(more precisely, {q ◦ a, q ◦ b, q ◦ c} ∩ G = ∅, because a, b, c ∈ G and G is a
quasigroup). At most one of them may be equal q. Thus we have obtained
at least six di�erent elements of Q.

Theorem 1 is straightforward implied by the following more general
lemma (where ∧ and ∨ are lattice operations of in�mum and supremum
respectively)

Lemma 1. Let Q = (Q, ◦, \, /) be a �nite quasigroup such that for any two
di�erent elements p, q ∈ Q

(∗) 〈p ◦ q〉 = (〈p ◦ q〉 ∧ 〈p〉) ∨ (〈p ◦ q〉 ∧ 〈q〉).
Then all subquasigroups of Q are cyclic.

Obviously if the subquasigroup lattice S(Q) is distributive, then (∗)
holds. Because 〈p ◦ q〉 = 〈p ◦ q〉 ∧ 〈p, q〉 = 〈p ◦ q〉 ∧ (〈p〉 ∨ 〈q〉) = (〈p ◦ q〉 ∧
〈p〉) ∨ (〈p ◦ q〉 ∧ 〈q〉).
Proof. Assume that Q contains subquasigroups which are non-cyclic. Take
a family A of all such subquasigroups. Since Q is a �nite quasigroup, A is a
�nite set which is partially ordered by set-inclusion. Thus (A,⊆) contains
at least one minimal element, say G. Then G is a subquasigroup of Q such
that
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(i) G is non-cyclic,

(ii) each proper (i.e., non-empty and non-equal G) subquasigroup of G is
cyclic.

Further,

(iii) G is generated by two elements.

More precisely, G is �nite, so G is generated by some elements g1, g2, . . . , gk,
i.e.,

G = 〈g1, g2, . . . , gk〉.
Take the new subquasigroup 〈g1, g2〉 ≤ G. If G 6= 〈g1, g2〉, then 〈g1, g2〉 is a
cyclic subquasigroup. Let 〈g1, g2〉 = 〈g′〉 for some g′ ∈ G. Then

G = 〈g′, g3, . . . , gk〉.

Thus by simple induction on k we obtain that G is generated by two ele-
ments.

Let B be a set of all pairs (g1, g2) of elements of G which generate G
(i.e., 〈g1, g2〉 = G). Note that B is �nite and non-empty.

Now from the set

{g1 ∈ G : (g1, g2) ∈ B for some g2 ∈ G}

we choose an element g such that

|〈g〉| = min{|〈g1〉| : (g1, g2) ∈ B for some g2 ∈ G} (1)

Next, from the set
{g2 ∈ G : (g, g2) ∈ B}

we choose an element h such that

|〈h〉| = min{|〈g2〉| : (g, g2) ∈ B} (2)

Observe that
g ◦ h 6∈ 〈g〉 and g ◦ h 6∈ 〈h〉 (3)

Assume for example that g ◦ h ∈ 〈g〉. Then h = g\(g ◦ h) ∈ 〈g〉, so
〈h〉 ⊆ 〈g〉, and consequently G = 〈g, h〉 = 〈g〉. But it is a contradiction with
the assumption that G is not cyclic.
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Thus 〈g〉, 〈h〉 and 〈g ◦ h〉 are three di�erent subquasigroups of G. Of
course 〈g〉 and 〈h〉 are not comparable (otherwise G would be cyclic).

By the condition (∗) we have

〈g ◦ h〉 = (〈g ◦ h〉 ∧ 〈g〉) ∨ (〈g ◦ h〉 ∧ 〈h〉).

Let
G1 = 〈g ◦ h〉 ∧ 〈g〉 = 〈g ◦ h〉 ∩ 〈g〉

and
G2 = 〈g ◦ h〉 ∧ 〈h〉 = 〈g ◦ h〉 ∩ 〈h〉

Then G1 ⊆ 〈g〉 and G2 ⊆ 〈h〉. Moreover,

G1 6= 〈g〉 or G2 6= 〈h〉 (4)

Assume that both equalities hold. Then g and h both belong to 〈g ◦ h〉,
because G1 and G2 are contained in 〈g ◦ h〉. Hence 〈g, h〉 is contained in
〈g ◦ h〉, and consequently G = 〈g, h〉 = 〈g ◦ h〉, which is impossible.

Since G1 ⊆ 〈g〉 $ G, we have by the minimality of G, that G1 is cyclic,
i.e.,

G1 = 〈g1〉 for some g1.
Analogously, G2 is also cyclic, i.e.,

G2 = 〈h1〉 for some h1.
Assume �rst that

〈g1〉 $ 〈g〉 (a.1)

Then |〈g1〉| � |〈g〉|. So by the choice of g we obtain that for each element h
of G, g1 and h don't generate G. In particular,

〈g1, h〉 $ G.

Hence 〈g1, h〉 has less elements than G, so (by the minimality of G) 〈g1, h〉
is cyclic. Let g1 be an element of G such that

〈g1, h〉 = 〈g1〉.

On the other hand,

G1 ⊆ 〈g1, h〉, G2 ⊆ 〈h〉 ⊆ 〈g1, h〉
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and
〈g ◦ h〉 = G1 ∨ G2.

Thus
g ◦ h ∈ 〈g ◦ h〉 ⊆ 〈g1, h〉 = 〈g1〉.

Since 〈g1〉 contains g ◦h and h, we obtain that 〈g1〉 contains also g, because
g = (g ◦ h)/h. Hence, the cyclic quasigroup 〈g1〉 contains g and h, which
implies

G = 〈g, h〉 = 〈g1〉.
But it is impossible, because we have assumed that G is not cyclic.

Now assume that
G2 = 〈h1〉 $ 〈h〉 (a.2)

Then
|〈h1〉| � |〈h〉|,

so by the choice of h we obtain that g and h1 don't generate G, i.e.,

〈g, h1〉 $ G.

Hence, 〈g, h1〉 has less elements than G, so 〈g, h1〉 is cyclic (by the minimality
of G). Let h1 be an element of G such that

〈g, h1〉 = 〈h1〉.

Similarly as in the �rst case we have

g ◦ h ∈ 〈g ◦ h〉 = G1 ∨ G2 = 〈g1, h1〉 ⊆ 〈g, h1〉.

Since 〈h1〉 = 〈g, h1〉 contains g ◦h and g, we have that 〈h1〉 contains also h,
because h = g\(g ◦ h). This fact implies that

G = 〈g, h〉 = 〈h1〉.

Thus we again obtain a contradiction.
Summarizing we have shown that G1 = 〈g〉 and G2 = 〈h〉. But it con-

tradicts (4), which completes the proof.

Obviously any groupoid (in particular, each quasigroup) with at most
three elements in which each subgroupoid is cyclic, has at most four sub-
groupoids (together with the empty subgroupoid). In particular, its sub-
groupoid lattice is distributive.
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Unfortunately, there is a four-element quasigroup with a non-distributive
subquasigroup lattice, although each of its subquasigroups is cyclic. For
example, let Q = {a, b, c, d} be a quasigroup de�ned by the following mul-
tiplication table

◦ a b c d
a c a d b
b d b a c
c b d c a
d a c b d

Then 〈a〉 = 〈b, c〉 = 〈b, d〉 = 〈c, d〉 = Q, and 〈b〉 = {b}, 〈c〉 = {c}, 〈d〉 = {d}.
Thus Q has exactly �ve subquasigroups ∅, 〈b〉, 〈c〉, 〈d〉 and Q. These sub-
quasigroups form the non-distributive lattice M5 , so S(Q) is not dis-
tributive. Observe also that, for example, elements b and d (together with
b ◦ d = c) do not satisfy (∗) of Lemma 1.

Now we show that even commutativity is not enough as an additional
assumption. Let Q be a commutative �ve-element quasigroup such that

◦ a b c d e
a a c d b e
b c b e d a
c d e c a b
d b d a e c
e e a b c d

Then 〈a〉 = {a}, 〈b〉 = {b}, 〈c〉 = {c} and 〈e〉 = 〈d〉 = 〈a, b〉 = 〈a, c〉 =
〈b, c〉 = Q. Thus ∅, 〈a〉, 〈b〉, 〈c〉 and Q are all pairwise di�erent subquasi-
groups of Q. Moreover, the lattice S(Q) is isomorphic withM5, so it is not
distributive. Note also that elements a and b do not satisfy (∗) of Lemma 1.

Remark 1. For any commutative quasigroupQ with at most four elements,
if each subquasigroup of Q is cyclic, then the subquasigroup lattice S(Q) is
distributive.

It is true for an arbitrary groupoid with at most three elements, so we
take a four-element commutative quasigroup Q. Note that if each sub-
quasigroup of Q is cyclic, then Q has at most |Q| + 1 = 5 subquasigroups
(because the empty set is also a subquasigroup). But if a quasigroup has at
most four subquasigroups, then of course it has distributive subquasigroup
lattice. Thus we can take Q with exactly �ve subquasigroups (three proper
subquasigroups).
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Assume that S(Q) is not distributive. Then S(Q) is isomorphic with
the non-modular lattice N5 or with the non-distributive lattice M5.

First we consider the case when S(Q) is isomorphic with N5. Let G1 and
G2 be proper subquasigroups ofQ such that G1 $ G2. Let ∅ 6= G3 $ Q be the
subquasigroup which is not comparable with G1 and G2 (i.e., G3 ∩ G2 = ∅
and G3 ∨ G1 = Q). Let q generates Q; and g1, g2, g3 generate G1,G2,G3

respectively. Of course q, g1, g2, g3 are pairwise di�erent elements, i.e., Q =
{q, g1, g2, g3}. Moreover, it is easy to see that G1 = {g1}, G2 = {g1, g2} and
G3 = {g3}. In other words we have

g1 ◦ g1 = g1, g3 ◦ g3 = g3, g2 ◦ g2 = g1.

By the �rst equality and the de�nition of quasigroup we have also

g2 ◦ g1 = g2 and g1 ◦ g2 = g2,

because each of equations x ◦ g1 = g1 and g1 ◦ x = g1 has exactly one
solution.

These all equalities imply that g3 ◦ g1 and g3 ◦ g2 cannot be equal g3, g1

and g2. Thus g3 ◦ g1 = q and g3 ◦ g2 = q. But it is impossible, because the
equation g3 ◦ x = q has two di�erent solutions. This contradiction shows
that S(Q) cannot be isomorphic with N5.

Now assume that S(Q) is isomorphic withM5. Then there are pairwise
di�erent proper and non-comparable subquasigroups G1,G2,G3 of Q. Let
g1, g2, g3 generate these three subquasigroups, respectively. Let q be a gener-
ator of Q. Of course q, g1, g2, g3 are pairwise di�erent, so Q = {q, g1, g2, g3}.
Hence we obtain G1 = {g1}, G2 = {g2}, G3 = {g3}. So

g1 ◦ g1 = g1, g2 ◦ g2 = g2, g3 ◦ g3 = g3.

Moreover, since q generate Q we have that q ◦ q 6= q. Of course we can
assume that q ◦ q = g1. Then q ◦ g1 = g1 ◦ q is di�erent from g1 (because
the equation q ◦ x = g1 has exactly one solution) and q ◦ g1 is not equal q
(because q generates Q). Of course we can assume that g1 ◦ q = q ◦ g1 = g2

(replacing g3 by g2 if necessary).
Now observe that equalities q ◦ q = g1, g1 ◦ q = g2 and g3 ◦ g3 = g3

imply that g3 ◦ q cannot equals g1, g2 and g3. So g3 ◦ q = q. Analogously
q ◦ g1 = g2, g1 ◦ g1 = g1 and g3 ◦ g3 = g3 imply g3 ◦ g1 = q. But these
equalities cannot hold in a quasigroup, because g1 6= q. This contradiction
completes the proof.
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At the end of the paper observe that if G is a �nite group satisfying the
condition (∗) from Lemma 1, then G is cyclic, and consequently its subgroup
lattice S(G) is distributive. But the following example shows that for �nite
(and even commutative) quasigroups the condition (∗) is indeed weaker.

Let Q = (Q, ◦) be a commutative six-element quasigroup such that
◦ a b c d e f
a a c f e b d
b c b a f d e
c f a d b e c
d e f b d c a
e b d e c a f
f d e c a f b

Then 〈a〉 = {a}, 〈b〉 = {b}, 〈d〉 = {d} and 〈c〉 = 〈e〉 = 〈f〉 = 〈a, b〉 =
〈a, d〉 = 〈b, d〉 = Q. So Q has exactly �ve subquasigroups (together with
the empty subquasigroup) which form the non-distributive lattice M5.

On the other hand, we obtain by a straightforward veri�cation that Q
satis�es (∗). More precisely, if g ∈ {c, e, f}, then 〈g◦h〉∧〈g〉 = 〈g◦h〉∧Q =
〈g ◦ h〉; so (∗) holds. The analogous situation we have for h ∈ {c, e, f}. If
g, h ∈ {a, b, d}, then g ◦ h ∈ {c, e, f}; so 〈g ◦ h〉 = Q which implies (∗)
(because then 〈g ◦h〉∧ 〈g〉 = 〈g〉 and 〈g ◦h〉∧ 〈h〉 = 〈h〉, thus the right hand
side of (∗) equals 〈g〉 ∨ 〈h〉 = Q).
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