Decomposition of AG*-groupoids

Qaiser Mushtaq and Madad Khan

Abstract

We have shown that an AG^{*}-groupoid S has associative powers, and S/ρ , where $a\rho b$ if and only if $ab^n = b^{n+1}$, $ba^n = a^{n+1} \forall a, b \in S$, is a maximal separative commutative image of S.

An Abel-Grassmann's groupoid [9], abbreviated as an AG-groupoid, is a groupoid S whose elements satisfy the invertive law:

$$(ab)c = (cb)a. \tag{1}$$

It is also called a *left almost semigroup* [3, 4, 5, 7]. In [1], the same structure is called a *left invertive groupoid*. In this note we call it an AG-groupoid. It is a useful non-associative algebraic structure, midway between a groupoid and a commutative semigroup, with wide applications in the theory of flocks.

An AG-groupoid S is *medial* [2], i.e., it satisfies the identity

$$(ab)(cd) = (ac)(bd).$$

$$(2)$$

It is known [3] that if an AG-groupoid contains a left identity then it is unique. It has been shown in [3] that an AG-groupoid contains a left identity then it is unique. It has been proved also that an AG-groupoid with right identity is a commutative monoid, that is, a semigroup with identity element.

If an AG-groupoid satisfy one of the following equivalent identities:

$$(ab)c = b(ca) \tag{3}$$

$$(ab)c = b(ac) \tag{4}$$

²⁰⁰⁰ Mathematics Subject Classification: 20M10, 20N99

Keywords: LA-semigroup, AG^* -groupoid, invertive law, medial law, congruence.

then it is called an AG^* -groupoid [10].

Let S be an AG^{*}-groupoid and a relation ρ be defined in S as follows. For a positive integer n, $a\rho b$ if and only if $ab^n = b^{n+1}$ and $ba^n = a^{n+1}$, for all a and b in S.

In this paper, we have shown that ρ is a *separative congruence* in S, that is, $a^2\rho ab$ and $ab\rho b^2$ implies that $a\rho b$ when $a, b \in S$.

The following four propositions have been proved in [10].

Proposition 1. Every AG^* -groupoid has associative powers, i.e., $aa^n = a^n a$ for all a.

Proposition 2. In an AG^* -groupoid S, $a^m a^n = a^{m+n}$ for all $a \in S$ and positive integers m, n.

Proposition 3. In an AG^* -groupoid S, $(a^m)^n = a^{mn}$ for all $a \in S$ and positive integers m, n.

Proposition 4. If S is an AG^* -groupoid, then for all $a, b \in S$, $(ab)^n = a^n b^n$ and positive integer $n \ge 1$ and $(ab)^n = b^n a^n$ for n > 1.

Theorem 1. Let S be an AG^* -groupoid. If $ab^m = b^{m+1}$ and $ba^n = a^{n+1}$ for $a, b \in S$ and positive integers m, n then $a\rho b$.

Proof. For the sake of definiteness assume that m < n and m > 1. Then by multiplying, $ab^m = b^{m+1}$ by b^{n-m} and successively applying Proposition 1, identities (1) and (2), we obtain

$$b^{m+1}b^{n-m} = (ab^m)b^{n-m} = a(b^{m-1}b)b^{n-m} = (b^{m-1}a)b^{n-m}$$

= $(b^{n-m}b)(b^{m-1}a) = (b^{n-m})(b^{m-1}a) = b^{n-m}(b(b^{m-1}a))$
= $b^{n-m}((ab)b^{m-1}) = ((ab)b^{n-m})b^{m-1} = (b^{n-m+1}a)b^{m-1}$
= $a(b^{n-m+1}b^{m-1}) = ab^n$.

Thus $ab^n = b^{n+1}$, $ba^n = a^{n+1}$ and so $a\rho b$.

Theorem 2. The relation ρ on an AG^{*}-groupoid is a congruence relation.

Proof. Evidently ρ is reflexive and symmetric. For transitivity we may proceed as follows.

Let $a\rho b$ and $b\rho c$ so that there exist positive integers n, m such that,

$$ab^n = b^{n+1}$$
, $ba^n = a^{n+1}$ and $bc^m = c^{m+1}$, $cb^m = b^{m+1}$

Let k = (n+1)(m+1) - 1, that is, k = n(m+1) + m. Using identities (1), (2) and Propositions 2 and 3, we get

$$\begin{split} ac^k &= ac^{n(m+1)+m} = a(c^{n(m+1)}c^m) = a((c^{m+1})^n c^m) = a((bc^m)^n c^m) \\ &= a((b^n c^{mn})c^m) = a(c^{m(n+1)}b^n) = (b^n a)c^{m(n+1)} = (b^n a)(c^{m(n+1)-1}c) \\ &= (b^n c^{m(n+1)-1})(ac) = ((ac)c^{m(n+1)-1})b^n = (c(ac^{m(n+1)-1}))b^n \\ &= (b^n (ac^{m(n+1)-1}))c = ((ab^n)c^{m(n+1)-1})c = (b^{n+1}c^{m(n+1)-1})c \\ &= ((bb^n)c^{m(n+1)-1})c = (b^n (bc^{m(n+1)-1}))c = (c(bc^{m(n+1)-1}))b^n \\ &= ((bc)c^{m(n+1)-1})b^n = (b^n c^{m(n+1)-1})(bc) = (b^n b)(c^{m(n+1)-1}c) \\ &= b^{n+1}c^{m(n+1)} = (bc^m)^{n+1} = c^{(m+1)(n+1)} = c^{k+1}. \end{split}$$

Similarly, $ca^k = a^{k+1}$. Thus ρ is an equivalence relation. To show that ρ is compatible, assume that $a\rho b$ such that for some positive integer n,

$$ab^n = b^{n+1}$$
 and $ba^n = a^{n+1}$.

Let $c \in S$. Then by identity (2) and Propositions 4 and 1, we get

$$(ac)(bc)^n = (ac)(b^nc^n) = (ab^n)(cc^n) = b^{n+1}c^{n+1}.$$

Similarly, $(bc)(ac)^n = (ac)^{n+1}$. Hence ρ is a congruence relation on S. \Box

Theorem 3. The relation ρ is separative.

Proof. Let $a, b \in S$, $ab\rho a^2$ and $ab\rho b^2$. Then by definition of ρ there exist positive integers m and n such that,

$$(ab)(a^2)^m = (a^2)^{m+1}, \qquad a^2(ab)^m = (ab)^{m+1}, (ab)(b^2)^n = (b^2)^{n+1}, \qquad b^2(ab)^n = (ab)^{n+1}.$$

Now using identities (3), (2), (1) and Proposition 1, we get

$$\begin{split} ba^{2m+1} &= b(a^{2m}a) = (ab)a^{2m} = (ab)(a^m a^m) = (aa^m)(ba^m) \\ &= a^{m+1}(ba^m) = (ba^{m+1})a^m = (b(a^m a))a^m = ((a^m b)a)a^m \\ &= (a^m a)(a^m b) = (aa^m)(a^m b) = a^m(a(a^m b)) \\ &= a^m((ba)a^m) = ((ba)a^m)a^m = ((a^m a)b)a^m \\ &= (a^{m+1}b)a^m = b(a^{m+1}a^m) = ba^{2m+1} = b(a^{2m}a) \\ &= (ab)a^{2m} = (ab)(a^2)^m = (a^2)^{m+1} = a^{2m+2}. \end{split}$$

Using identities (3), (2) and (1) and Theorem 2, 3, we get

$$ab^{2n+1} = a(b^{2n}b) = (ba)b^{2n} = (ba)(b^nb^n) = (bb^n)(ab^n)$$

= $(b^n(bb^n))a = ((b^nb^n)b)a = (ab)(b^nb^n)$
= $(ab)(b^{2n}) = (ab)(b^2)^n = (b^2)^{n+1} = b^{2n+2}.$

Now by Theorem 1, $a\rho b$. Hence ρ is separative.

The following Lemma has been proved in [10]. We re-state it without proof for use in our later results.

Lemma 1. Let σ be a separative congruence on an AG^* -groupoid S, then for all $a, b \in S$ it follows that $ab\sigma ba$.

Theorem 4. Let S be an AG^{*}-groupoid. Then $S \neq \rho$ is a maximal separative commutative image of S.

Proof. By Theorem 3, ρ is separative, and hence $S \swarrow \rho$ is separative. We now show that ρ is contained in every separative congruence relation σ on S. Let $a\rho b$ so that there exists a positive integer n such that,

$$ab^n = b^{n+1}$$
 and $ba^n = a^{n+1}$.

We need to show that $a\sigma b$, where σ is a separative congruence on S. Let k be any positive integer such that,

$$ab^k \sigma b^{k+1}$$
 and $ba^k \sigma a^{k+1}$.

Suppose $k \ge 2$. Putting $ab^0 = a$ in the next term (if k = 2)

$$\begin{aligned} (ab^{k-1})^2 &= (ab^{k-1})(ab^{k-1}) = a^2 b^{2k-2} = (aa)(b^{k-2}b^k) \\ &= (ab^{k-2})(ab^k) = (ab^{k-2})b^{k+1}, \end{aligned}$$

i.e., $ab^{k-2}(ab^k)\sigma(ab^{k-2})b^{k+1}$.

Using identity (1) and Proposition 2 we get

$$\begin{aligned} (ab^{k-2})b^{k+1} &= (b^{k+1}b^{k-2})a = b^{2k-1}a = (b^kb^{k-1})a = (ab^{k-1})b^k, \\ (ab^{k-1})b^k &= (b^kb^{k-1})a = b^{2k-1}a = (b^{k-1}b^k)a = (ab^k)b^{k-1}. \end{aligned}$$

Thus $(ab^{k-1})^2 \sigma(ab^k) b^{k-1}$.

Since $ab^k \sigma b^{k+1}$ and $(ab^k)b^{k-1} \sigma b^{k+1}b^{k-1}$, hence $(ab^{k-1})^2 \sigma (b^k)^2$. It further implies that, $(ab^{k-1})^2 \sigma (ab^{k-1})b^k \sigma (b^k)^2$. Thus $ab^{k-1} \sigma b^k$. Similarly, $ba^{k-1} \sigma a^k$.

Thus if (1) holds for k, it holds for k + 1. By induction down from k, it follows that (1) holds for k = 1, $ab\sigma b^2$ and $ba\sigma a^2$. Hence by Lemma 1 and separativity of σ it follows that $a\sigma b$.

Lemma 2. If xa = x for some x and for some a in an AG^* -groupoid, then $x^n a = x^n$ for some positive integer n.

Proof. Let n = 2, then identity (3) implies that

$$x^{2}a = (xx)a = x(xa) = xx = x^{2}.$$

Let the result be true for k, that is $x^k a = x^k$. Then by identity (3) and Proposition 1, we get

$$x^{k+1}a = (xx^k)a = x^k(xa) = x^kx = x^{k+1}.$$

Hence $x^n a = x^n$ for all positive integers n.

Theorem 5. Let a be a fixed element of an AG^* -groupoid S, then $Q = \{x \in S \mid xa = x \text{ and } a = a^2\}$

is a commutative subsemigroup.

Proof. As aa = a, we have $a \in Q$. Now if $x, y \in Q$ then by identity (2),

$$xy = (xa)(ya) = (xy)(aa) = (xy)a.$$

To prove that Q is commutative and associative, assume that x and y belong to Q. Then by using identity (1), we get xy = (xa)y = (ya)x = yx, and commutativity gives associativity. Hence Q is a commutative subsemigroup of S.

Theorem 6. Let η and ξ be separative congruences on an AG^* -groupoid S and $x^2a = x^2$, for all $x \in S$. If $\eta \cap (Q \times Q) \subseteq \xi \cap (Q \times Q)$, then $\eta \subseteq \xi$.

Proof. If $x\eta y$ then,

$$(x^{2}(xy))^{2}\eta(x^{2}(xy)(x^{2}y^{2})\eta(x^{2}y^{2})^{2}.$$

It follows that $(x^2(xy))^2, (x^2y^2)^2 \in Q$. Now by identities (2), (1), (3), respectively and Lemma 2, it means that,

$$\begin{aligned} (x^2(xy))(x^2y^2) &= (x^2x^2)((xy)y^2) = (x^2x^2)(y^3x) \\ &= x^4(y^3x) = (xx^4)y^3 = x^5y^3, \\ (x^5y^3)a &= (x^5y^3)(aa) = (x^5a)(y^3a) = x^5y^3. \end{aligned}$$

So, $x^2(xy)(x^2y^2) \in Q$. Hence $(x^2(xy))^2 \xi(x^2(xy)(x^2y^2)\xi(x^2y^2)^2)$ implies that $x^2(xy)\xi x^2y^2$.

Since $x^2y^2\eta x^4$ and $x^2a = x^2$ for all $x \in S$, so $(x^2y^2), x^4 \in Q$. Thus $x^2y^2\xi x^4$ and it follows from Proposition 4 that $x^2y^2 = (xy)^2$. So $(x^2)^2\xi x^2(xy)\xi(xy)^2$ which means that $x^2\xi xy$. Finally, $x^2\eta y^2$ and $x^2, y^2 \in Q$, means that $x^2\xi y^2, x^2\xi xy\xi y^2$. As ξ is separative so $x\xi y$. Hence $\eta \subseteq \xi$ and by Lemma 1, S / η is the maximal separative commutative image of S. \Box

References

- P. Holgate: Groupoids satisfying a simple invertive law, The Math. Stud. 61 (1992), 101 - 106.
- [2] M. A. Kazim and M. Naseeruddin: On almost-semigroups, The Alig. Bull. Math. 2 (1972), 1-7.
- [3] Q. Mushtaq: Abelian groups defined by LA-semigroups, Studia Sci. Math. Hungar. 18 (1983), 427 - 428.
- [4] Q. Mushtaq and Q. Iqbal: Decomposition of a locally associative LAsemigroup, Semigroup Forum 41 (1990), 154 - 164.
- [5] Q. Mushtaq and Q. Iqbal: On representation theorem for inverse LAsemigroups, Proc. Pakistan Acad. Sci. 30 (1993), no. 4.
- [6] Q. Mushtaq and M. Khan: Ideals in AG-band and AG^{*}-groupoid, Quasigroups and Related Systems 14 (2006), 207 – 216.
- [7] Q. Mushtaq and S. M. Yusuf: On LA-semigroups, The Alig. Bull. Math. 8 (1978), 65 - 70.
- [8] P. V. Protić and N. Stevanović: On Abel-Grassmann's groupoids, Proc. Math. Conf. Pristina, 1994, 31 – 38.
- [9] P. V. Protić and N. Stevanović: AG-test and some general properties of Abel-Grassmann's groupoids, PU. M. A. 6 (1995), 371-383.
- [10] N. Stevanović and P. V. Protić: Some decomposition on Abel-Grassmann's groupoids, PU. M. A. 8 (1997), 355 - 366.

Received October 9, 2006 Revised December 18, 2006 Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan E-mail: gmushtag@isb.apollo.net.pk