A note on an Abel-Grassmann's 3-band

Qaiser Mushtaq and Madad Khan

Abstract

An Abel-Grassmann's groupoid is discussed in several papers. In this paper we have investigated AG-3-band and ideal theory on it. An AG-3-band S has associative powers and is fully idempotent. A subset of an AG-3-band is a left ideal if and only it is right and every ideal of S is prime if and only if the set of all ideals of S is totally ordered under inclusion. An ideal of S is prime if and only if it is strongly irreducible. The set of ideals of S is a semilattice.

1. Introduction

An left almost semigroup [3], abbreviated as an LA-semigroup, is a groupoid S whose elements satisfy for all $a, b, c \in S$ the invertive law:

$$
\begin{equation*}
(a b) c=(c b) a \tag{1}
\end{equation*}
$$

In [[1], the same structure is called a left invertive groupoid and in [7] it is called an $A G$-groupoid. It is a useful non-associative algebraic structure, midway between a groupoid and a commutative semigroup, with wide applications in the theory of flocks and has a character similar to commutative semigroup.

An AG-groupoid S is medial [3], that is,

$$
\begin{equation*}
(a b)(c d)=(a c)(b d) \tag{2}
\end{equation*}
$$

holds for all $a, b, c, d, \in S$.
If an AG-groupoid S satisfies for all $a, b, c, d, \in S$ one of the following properties

$$
\begin{equation*}
(a b) c=b(c a) \tag{3}
\end{equation*}
$$

2000 Mathematics Subject Classification: 20M10, 20N99
Keywords: LA-semigroup, AG-3-band, invertive law, medial law, paramedial and prime ideals.

$$
\begin{equation*}
(a b) c=b(a c), \tag{4}
\end{equation*}
$$

then it is called an AG^{*}-groupoid [9]. It is easy to see that the conditions (3) and (4) are equivalent.

In AG^{*}-groupoid S holds all permutation identities of a next type [9],

$$
\begin{equation*}
\left(x_{1} x_{2}\right)\left(x_{3} x_{4}\right)=\left(x_{p(1)} x_{p(2)}\right)\left(x_{p(3)} x_{p(4)}\right) \tag{5}
\end{equation*}
$$

where $\{p(1), p(2), p(3), p(4)\}$ means any permutation of the set $\{1,2,3,4\}$.
An AG-groupoid satisfying the identity

$$
\begin{equation*}
a(b c)=b(a c) \tag{6}
\end{equation*}
$$

is called an $\mathrm{AG}^{* *}$-groupoid [6]. An AG-groupoid in which (aa) $a=a(a a)=a$ holds for all a is called an AG-3-band [9]. In an AG-3-band S we have $S^{2}=S, \quad(S a) S=S(a S)$ and $(S S) S=S(S S)$.

It has been shown in [9], that ($a a$) $a=a(a a)=a$ and $(b b) b=b(b b)=b$ imply

$$
a b=(a b)((a b)(a b))=((a b)(a b))(a b) .
$$

2. AG-3-bands

By an $\mathrm{AG}^{* *}$-3-band we mean an AG-3-band satisfying identity (6). An $\mathrm{AG}^{* *}-3$-band S is a commutative semigroup because using (2), (6) and (1), we get

$$
\begin{aligned}
x y & =(x y)((x y)(x y))=(x y)((x x)(y y))=(x x)((x y)(y y)) \\
& =(x x)((y y) y) x)=((y y) y)((x x) x)=y x
\end{aligned}
$$

for all $x, y \in S$. The commutativity and (1) leads us to the associativity.
By an $\mathrm{AG}^{*}-3$-band we mean an AG-3-band satisfying (3). If S is an AG-3-band, then $S=S^{2}$ and by virtue of identity (5), a non-associative AG^{*} - 3 -band does not exist.

An AG-groupoid S is paramedial [2], that is,

$$
(a b)(c d)=(d b)(c a)
$$

holds for all $a, b, c, d, \in S$.
A paramedial AG-3-band becomes a commutative semigroup because

$$
a b=(a b)((a b)(a b))=(a b)((b a)(b a))=((b a)(b a))(b a)=b a .
$$

Lemma 1. Every left identity in an AG-3-band is a right identity.
Proof. Let e be a left identity and a be any element in an AG-3-band S. Then using (1), we get

$$
a e=(a(a a)) e=(e(a a)) a=(a a) a=a
$$

Hence e is right identity.
As a consequence of Lemma 1, one can see that an AG-3-band with a left identity becomes a commutative monoid, because it has been shown in [5] that every right identity is the unique identity in an AG-groupoid and the identity implies commutativity which further implies associativity.

Lemma 2. An $A G-3-b a n d ~ S$ is a commutative semigroup if and only if $(x y)^{2}=(y x)^{2} \quad$ holds for all $x, y \in S$.

Proof. Indeed, using (1), (2), we get

$$
\begin{aligned}
s a & =((s s) s) a=(a s)(s s)=((a(a a)) s)(s s)=(a s)((a a) s) s) \\
& =(a s)((s s)(a a))=(a s)((a a)(s s))=(a(a a))(s(s s))=a s
\end{aligned}
$$

The converse is easy.
Lemma 3. If S is an $A G-3-b a n d$, then $a S \subseteq S a$ for all a in S.
Proof. Using (1) and (2), we get

$$
\begin{aligned}
a s & =(a(a a))(x y)=(a x)((a a) y)=(a x)(y a) a) \\
& =(a(y a))(x a)=((x a)(y a)) a,
\end{aligned}
$$

which completes the proof.
It is easy fact that $(a S) S=S a, S(a S)=(S a) S, \quad(S a) S \subseteq S(S a)$ and $S a \subseteq(S a) S$.

Lemma 4. If S is an $A G-3-b a n d$, then $a^{n}=a$ and $a^{n+1}=a^{2}$, where n is a positive odd integer.

Proof. Obviously $a^{3}=(a a) a=a(a a)$. Let the result be true for an odd integer k, that is $a^{k}=a$. Then using (1), we obtain $a^{k+2}=a^{k+1+1}=$ $a^{k+1} a^{1}=\left(a^{k} a\right) a=a^{2} a^{k}=a^{2} a=a^{3}=a$. Hence $a^{n}=a$ for all odd integers n. This proves the first identity. To prove the second, observe that $a^{4}=a^{3} a=a a=a^{2}$ and assume that $a^{s}=a^{2}$ is true for an even integer s. Then using (1), we get $a^{s+2}=a^{2} a^{s}=a^{2} a^{2}=a^{4}=a^{2}$, which proves that $a^{n+1}=a^{2}$ is true for a positive odd integer n.

Lemma 5. An AG-3-band has associative powers.
Proof. The proof is easy.
As a consequence of Lemmas 4 and 5 , one can easily see that the sequence of the powers of a has an element a at odd position and a^{2} at even position that is, $a, a^{2}, a, a^{2} \ldots$.

The following proposition can be proved easily.
Proposition 1. In an $A G$-3-band S for all $a, b \in S$ and all positive integers m, n we have

$$
a^{m} a^{n}=a^{m+n}, \quad(a b)^{n}=a^{n} b^{n}, \quad\left(a^{m}\right)^{n}=a^{m n} .
$$

Let $\left\{S_{\alpha}: \alpha \in I\right\}$ be a family of AG-3-bands containing a zero element. We may denote all the zeros elements by common symbol 0 . The disjoint union of $\{0\}$ and all $S_{\alpha} \backslash\{0\}$ becomes an AG-3-band if we define the product of x and y as their product in S_{α}, if they are in the same S_{α}, and zero otherwise.

An AG-groupoid S is called locally associative if $a(a a)=(a a) a$ holds for all $a \in S$ [4].

Lemma 6. Every $A G-3$-band is locally associative $A G$-groupoid, but the converse is not true.

Example 1. Let the binary operation on $S=\{a, b, c, d\}$ be defined as follows [4]:

\cdot	a	b	c	d
a	d	d	b	d
b	d	d	a	d
c	a	b	c	d
d	d	d	d	d

Then (S, \cdot) is locally associative but it is not AG-3-band because $a(a a)=$ (aa) $a=d \neq a$.

A subset I of an AG-groupoid S is said to be right (left) ideal if $I S \subseteq I$ $(S I \subseteq I)$. As usual I is said to be an ideal if it is both right and left ideal. An ideal I of an AG-groupoid is called 3-potent if $I(I I)=(I I) I=I$.

An AG-groupoid S without zero is called simple (left simple, right simple) if it does not properly contain any two sided (left, right) ideal.

An AG-groupoid S with zero is called zero-simple if it has no proper ideals and $S^{2} \neq\{0\}$.

The existence of non-associative simple and zero-simple AG-3-bands is guaranteed by the following example.

Example 2. The set $S=\{1,2,3,4,5,6,7,8\}$ with the binary operation defined as follows [9]:

\cdot	1	2	3	4	5	6	7	8
1	1	2	7	8	3	4	5	6
2	2	1	8	7	4	3	6	5
3	5	6	3	4	7	8	1	2
4	6	5	4	3	8	7	2	1
5	7	8	1	2	5	6	3	4
6	8	7	2	1	6	5	4	3
7	3	4	5	6	1	2	7	8
8	4	3	6	5	2	1	8	7

is an AG-3-band which has no proper ideals, so it is simple. If we add the element 0 to the set S and extend the binary operation putting $0 \cdot 0=0 \cdot s=$ $s \cdot 0=0$ for all s in S, then $(S \cup\{0\}, \cdot)$ will be a zero-simple AG-3-band.
 is left.

Proof. Let A be a right ideal of S. Then using (1) we get $s a=((s s) s) a=$ (as)(ss), which implies that A is a left ideal of S.

The converse follows from Lemma 3.
A subset M of an AG-groupoid S is called an m-system if for $a, b \in M$ there exists $x \in S$ such that $(a x) b \in M$.

A subset B of an AG-groupoid S is called a p-system if for every $b \in B$ there exists $x \in S$ such that $(b x) b \in B$.

Proposition 3. In an $A G$-groupoid each m-system is a p-system.
Lemma 7. In an AG-3-band every (left, right) ideal is p-system, but the converse is not true.

Proof. If a, b belongs to an ideal I of an AG-3-band S, then ($a s$) $a \in(I S) I$.
The converse statement follows from Example 2. In this example $B=$ $\{1,2\}$ is a p-system but not an ideal.

Two subsets A, B of an AG-groupoid S are called right (left) connected if $A S \subseteq B$ and $B S \subseteq A$ (resp. $S A \subseteq B$ and $S B \subseteq A$) [8]. A and B are connected if they are both left and right connected.

Lemma 8. If A and B are ideal of an $A G-3$-band S, then $A B$ band $B A$ are right and left connect.

Proof. Using (1), we get $(A B) S=(S B) A \subseteq B A$. Similarly $(B A) S \subseteq$ $A B$. So, $A B$ and $B A$ are right connected. Also $S(B A)=(S S)(B A)=$ $((B A) S) S=((S A) B) S \subseteq A B$, and $S(A B) \subseteq B A$.

Proposition 4. If A and B are ideals of an $A G-3$-band, then $A B$ is an ideal.

Proof. Using (2), one can easily show that $A B$ is an ideal.
It is interesting to note that if S is an AG-3-band and I_{1}, I_{2}, I_{3} are proper ideals of S, then $\left(I_{1} I_{2}\right) I_{3}$ is an ideal of S. It can be generalized, that is, if $I_{1}, I_{2}, \ldots, I_{n}$ are ideals, then $\left(\ldots\left(\left(I_{1} I_{2}\right) I_{3}\right) \ldots\right) I_{n}$ is also an ideal and $\left(\ldots\left(\left(I_{1} I_{2}\right) I_{3}\right) \ldots\right) I_{n} \subseteq I_{1} \cap I_{2} \cap \ldots \cap I_{n}$.

An AG-groupoid S is said to be fully idempotent if every ideal of S is idempotent, i.e., for ecery ideal I of S we have $I^{2}=I$.

An AG-groupoid S is said to be fully semiprime if every ideal of S is semiprime, i.e., for every ideal P of S from $A^{2} \subseteq P$, where A is an ideal of S, it follows $A \subseteq P$.

Every AG-3-band is fully idempotent and fully semiprime. Consequently, $A^{n}=A$ for an ideal A and any positive integer n.

Lemma 9. $I J=J I=I \cap J$ for all ideals of an AG-3-band.
Proof. If $x \in I \cap J$, then $x=x(x x) \in I J$, whence $I J=I \cap J$. So, $I J=J I$.

An ideal I of an AG-groupoid S is said to be strongly irreducible if and only if for ideals H and K of $S, H \cap K \subseteq I$ implies either $H \subseteq I$ or $K \subseteq I$.

An AG-groupoid S is called totally ordered if for all ideals A, B of S either $A \subseteq B$ or $B \subseteq A$.

An ideal P of an AG-groupoid S is called prime if and only if $A B \subseteq P$ implies that either $A \subseteq P$ or $B \subseteq P$ for all ideals A and B in S.

Using Lemma 9, one can prove the following Theorems.

Theorem 1. In an $A G$-3-band an ideal is strongly irreducible if and only if it is prime.

Theorem 2. An ideal of an $A G-3$-band S is prime if and only if the set of all ideals of S is totally ordered under inclusion.

Theorem 3. The set of ideals of an $A G-3-b a n d ~ S$ form a semilattice, $\left(L_{S}, \wedge\right)$, where $A \wedge B=A B, A$ and B are ideals of S.

References

[1] P. Holgate: Groupoids satisfying a simple invertive law, The Math. Stud. 61 (1992), 101 - 106.
[2] J. Ježek and T. Kepka: Equational theory of paramedial groupoids, Czechoslovak Math. J. 50(125) (2000), $25-34$.
[3] M. A. Kazim and M. Naseeruddin: On almost-semigroups, The Alig. Bull. Math. 2 (1972), $1-7$.
[4] Q. Mushtaq and Q. Iqbal: Decomposition of a locally associative LAsemigroup, Semigroup Forum 41 (1990), 154 - 164.
[5] Q. Mushtaq and S. M. Yusuf: On LA-semigroups, The Alig. Bull. Math. 8 (1978), $65-70$.
[6] P. V. Protić and M. Bozinović: Some congruences on an $A G^{* *}$-groupoid, Algebra Logic and Discrete Math., 14-16 (1995), 879 - 886.
[7] P. V. Protić and N. Stevanović: On Abel-Grassmann's groupoids, Proc. Math. Conf. Pristina, 1994, $31-38$.
[8] P. V. Protić and N. Stevanović: AG-test and some general properties of Abel-Grassmann's groupoids, PU. M. A. 6 (1995), $371-383$.
[9] N. Stevanović and P. V. Protić: Some decomposition on AbelGrassmann's groupoids, PU. M. A. 8 (1997), $355-366$.
[10] N. Stevanović and P. V. Protić: Composition of Abel-Grassmann's 3bands, Novi Sad. J. Math. 34.2 (2004), 175 - 182.

Department of Mathematics
Received April 26, 2006
Quaid-i-Azam University
Islamabad
Pakistan
E-mail: qmushtaq@apollo.net.pk

