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Biembeddings of Latin squares of side 8

Mike J. Grannell, Terry S. Griggs and Martin Knor

Abstract
Face 2-colourable triangular embeddings of complete tripartite graphs Kn,n,n

correspond to biembeddings of Latin squares of side n. We consider biem-
beddings that contain any of the �ve Latin squares derived from the Cayley
tables of �nite groups of order 8. Up to isomorphism, we determine all such
biembeddings.

1. Background
In our paper [1] we discuss, in some detail, face 2-colourable topological
embeddings of complete regular tripartite graphs Kn,n,n in which all faces
are triangular. Such embeddings are equivalent to biembeddings of Latin
squares of side n and, as proved in [1], the supporting surfaces are nec-
essarily orientable. Up to isomorphism, this earlier paper gives all such
biembeddings for n = 3, 4, 5 and 6, and it summarizes the results for n = 7.
For n = 4, 5 and 6, there are Latin squares which do not appear in any
biembedding. Another interesting feature is the partitioning of the 147
main classes of Latin squares of side 7 into sub-classes of sizes 1, 1, 1, 2, 3,
3, 3, 6, 6, 8, 8, 9, 18, 19, 26 and 33, such that within each sub-class most
of the squares biembed with one another, but there are no biembeddings of
two squares taken from di�erent sub-classes. We refer the reader to [1] for
details of this and for items of terminology.

In the current paper we turn our attention to Latin squares of side 8,
where there are 283 657 main classes [3]. It is computationally infeasible to
determine all possible biembeddings of these squares and here we restrict

2000 Mathematics Subject Classi�cations: 05B15, 05C10.
Keywords: Topological embedding, Latin square, complete tripartite graph.
M.Knor acknowledges partial support by Slovak research grants VEGA 1/2004/05,
APVT-20-000704 and APVV-0040-06.



274 M. J. Grannell, T. S. Griggs and M. Knor

ourselves to seeking biembeddings that contain at least one of those squares
that arise from the Cayley tables of groups of order 8. Another reason for
considering these particular squares is that, whilst squares which arise from
the Cayley tables of cyclic groups always appear in biembeddings, those
from the groups C2 × C2 and D3 do not. It is therefore appropriate to
consider the Cayley tables of the groups of order 8. There are �ve such
groups, usually denoted by C3

2 = C2 × C2 × C2, C4 × C2, C8, D4 and Q.
Here Cn denotes the cyclic group of order n, Dn is the dihedral group of
order 2n, and Q is the quaternion group. We take the corresponding Latin
squares as shown in Table 1.

0 1 2 3 4 5 6 7
1 0 4 5 2 3 7 6
2 4 0 6 1 7 3 5
3 5 6 0 7 1 2 4
4 2 1 7 0 6 5 3
5 3 7 1 6 0 4 2
6 7 3 2 5 4 0 1
7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 5 6 7 0 1 2 3
5 6 7 4 1 2 3 0
6 7 4 5 2 3 0 1
7 4 5 6 3 0 1 2

0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6

C3
2 C4 × C2 C8

0 1 2 3 4 5 6 7
1 2 3 0 5 6 7 4
2 3 0 1 6 7 4 5
3 0 1 2 7 4 5 6
4 7 6 5 0 3 2 1
5 4 7 6 1 0 3 2
6 5 4 7 2 1 0 3
7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 1 0 6 7 5 4
3 2 0 1 7 6 4 5
4 5 7 6 1 0 2 3
5 4 6 7 0 1 3 2
6 7 4 5 3 2 1 0
7 6 5 4 2 3 0 1

D4 Q

Table 1. Group-based squares of side 8.

2. Results
There are 3 167 nonisomorphic biembeddings that contain at least one of
the �ve group-based squares of side 8. Table 2 gives a breakdown of these
by the individual squares and the size of the automorphism group Γ of the
biembedding. The column sums given in the last line of the table exclude
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duplications arising from biembeddings that contain a pair of group-based
squares.

|Γ| 1 2 3 4 6 8 12 16 > 16
∑

C3
2 23 6 4 6 − 2 2 5 1 49

C4 × C2 1 750 126 19 55 − 7 5 2 − 1 964
C8 568 54 60 − 6 − 1 1 11 701
D4 159 37 18 5 − 3 − 5 − 227
Q 183 16 20 12 − 2 2 1 − 236∑

2 683 235 120 75 6 14 10 12 12 3 167

Table 2. Biembeddings containing a group-based square.

As regards the biembeddings whose groups of automorphisms have or-
ders greater than 16, there is one of C3

2 with 48 automorphisms, while C8

has one with 24 automorphisms (forming S4), four with 32 automorphisms,
one with 64 automorphisms, two with 128 automorphisms, one with 192
automorphisms, one with 256 automorphisms and one with 768 automor-
phisms. This last biembedding, which is of C8 with a copy of itself, is the
unique regular triangular embedding of K8,8,8 in an orientable surface (see
[1] and [2] for details). The biembedding of C3

2 with an automorphism group
of order 48 is with a non group-based Latin square, but all 11 biembeddings
of C8 are with copies of itself.

The method for obtaining these biembeddings was to select one of the
�ve group-based squares and to regard its triples of row, column and entry
symbols as triangles with the common clockwise orientation (row, column,
entry). In any biembedding containing this Latin square, the rotation about
each point contains 8 known ordered pairs; what remains unknown is the
ordering of these pairs. By considering all possible orderings and reject-
ing those which give rise to pseudosurfaces, all biembeddings containing
the given square may be determined. Working through the �ve squares,
each new biembedding was checked for isomorphism with those found pre-
viously. The large number of biembeddings to be checked required the use
of an e�ective invariant in order to establish the isomorphism classes. The
invariant used was as follows.

Consider a �xed biembedding of Latin squares of side 8. Denote by ρz

the rotation around a vertex z. Since ρz is a cyclic permutation of order 16,
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for each two neighbours x and y of z there are integers m1 and m2 such that
y = ρm1

z (x) and y = ρ−m2
z (x), where 1 6 m1,m2 6 15 and m1 + m2 = 16.

Put
d(z;x, y) = min{m1,m2}.

Now if d(z; x, v) = d(z; v, y) = 1, and x 6= y, then d(v; x, y) = 2. However
if d(z; x, v) = d(z; v, y) = 3, and x 6= y, then d(v; x, y) can be any even
number from 2 to 8. (Note we cannot use d(z; x, v) = d(z; v, y) = 2 because
then v is not adjacent to either x or y, being in the same vertex partition
set.) Let Iv be the sum of the 16 numbers given by the formula

Iv =
∑

vz∈E(G)

(d(v; x, y) : where d(z; x, v) = d(z; v, y) = 3 and x 6= y).

Now the multiset of 24 elements Iv, together with the number of au-
tomorphisms, forms a satisfactory invariant for our biembeddings. There
is just one pair of biembeddings for C4 × C2 and two pairs for C8, which
represent nonisomorphic biembeddings, although their invariants coincide.

Up to isomorphism, there are 23 biembeddings where both the Latin
squares are group-based. In Table 3, in each of these cases, we spec-
ify a representative biembedding from the isomorphism class by means of
a vector (A, B, p1, p2, p3) where A, B identify the two squares as in Ta-
ble 1, and p1, p2, p3 specify permutations applied respectively to the rows,
columns and entries of the second square. From these, the biembedding
may be constructed by taking the two squares exactly as in Table 1 and
then applying the permutations to the second square, �nally sewing the
resulting triangular faces together along their common edges. A permu-
tation entry such as p1 = 31267405 is to be read as the permutation(

0 1 2 3 4 5 6 7
3 1 2 6 7 4 0 5

)
, indicating that row 0 of the square from

Table 1 is placed in row 3, row 3 is placed in row 6, and so on. We
use I to denote the identity permutation. In no case do we need to per-
mute rows, columns and entries with each other. We also give information
about the automorphism group Γ of each biembedding with a second vector
(M ;m1,m2,m3,m4) denoting that |Γ| = M and that there are m1 map-
pings which preserve orientation and colour classes, m2 mappings which
preserve orientation and reverse the colour classes, m3 mappings which re-
verse orientation and preserve the colour classes, and m4 mappings which
reverse orientation and reverse the colour classes.
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1. (C3
2 , D4, 31267405, 45203617, 35061427), (3; 3, 0, 0, 0),

2. (C4 × C2, D4, 64752103, 32104567, 21034567), (16; 8, 0, 8, 0),
3. (C4 × C2, D4, 53261407, 61204357, 41263057), (4; 2, 0, 2, 0),
4. (C4 × C2, D4, 51302647, 61250347, 40351267), (2; 2, 0, 0, 0),
5. (C4 × C2, D4, 24673105, 12306547, 23561047), (2; 2, 0, 0, 0),
6. (C4 × C2, Q, 54670213, 13024657, 20134657), (16; 8, 0, 8, 0),
7. (C4 × C2, Q, 53601472, 64310257, 03152647), (4; 2, 0, 2, 0),
8. (C4 × C2, Q, 24601573, 64210357, 13254607), (4; 2, 0, 2, 0),
9. (C4 × C2, Q, 21706354, 53420617, 20134657), (2; 2, 0, 0, 0),
10. (C4 × C2, Q, 54601273, 64310257, 14253607), (2; 2, 0, 0, 0),
11. (C8, C8, 12345670, I, I), (768; 192, 192, 192, 192), regular,
12. (C8, C8, 52741630, I, I), (256; 64, 64, 64, 64),
13. (C8, C8, 56341270, 05634127, 45230167), (192; 48, 48, 48, 48),
14. (C8, C8, 16745230, I, I), (128; 32, 32, 32, 32),
15. (C8, C8, 52741630, I, 45230167), (128; 32, 32, 32, 32),
16. (C8, C8, 52741630, 05634127, 45230167), (64; 16, 16, 16, 16),
17. (C8, C8, 12367450, I, I), (32; 8, 8, 8, 8),
18. (C8, C8, 14763250, I, I), (32; 8, 8, 8, 8),
19. (C8, C8, 12547630, I, I), (32; 8, 8, 8, 8),
20. (C8, C8, 16347250, I, I), (32; 8, 8, 8, 8),
21. (C8, C8, 16345270, 01634527, 05234167), (24; 12, 0, 12, 0),
22. (C8, C8, 34561270, 05634127, 45230167), (16; 4, 4, 4, 4),
23. (C8, C8, 34561270, 03456127, 23450167), (12; 3, 3, 3, 3).

Table 3. Biembeddings containing two group-based squares.

Table 4 summarizes these biembeddings where both squares are group-
based. The entries give the number of biembeddings of square A with
square B.

C3
2 C4 × C2 C8 D4 Q

C3
2 − − − 1 −

C4 × C2 − − − 4 5
C8 − − 13 − −
D4 1 4 − − −
Q − 5 − − −

Table 4. Numbers of mutual biembeddings of group-based squares.
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It can be seen that there are, for example, no biembeddings of two
squares both derived from C3

2 . A very recent result gives a partial explana-
tion for the partitioning of the squares of side 7 described in our earlier paper
and establishes the non-biembeddability of two copies of Cn

2 for n > 2, as
well as other non-biembeddability results. A paper describing these results
is in preparation.

Finally we give the exceptional biembedding of C3
2 with a non group-

based square and having an automorphism group of order 48. The square
C3

2 is taken as in Table 1, and the other square is as follows.

7 0 1 4 2 3 5 6
6 4 5 2 3 7 1 0
1 2 7 5 0 6 4 3
4 6 0 7 1 2 3 5
5 3 6 1 4 0 2 7
2 5 3 6 7 1 0 4
0 1 4 3 6 5 7 2
3 7 2 0 5 4 6 1

The two squares generate triangular faces that are sewn together along
common edges to form the embedding. The automorphism type is given by
the vector (48; 24, 0, 24, 0).
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