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Short identities implying a quasigroup is a loop
or group

Nick C. Fiala

Abstract

In this note, we �nd all identities in product only with at most six variable occurrences
that imply that a quasigroup satisfying the identity is a not necessarily trivial loop
(group). These investigations were aided by the automated theorem-prover Prover9 and
the model-�nder Mace4.

1. Introduction
A quasigroup consists of a non-empty set Q equipped with a binary oper-
ation, which we simply denote by juxtaposition, such that for all a, b ∈ Q,
there exist unique x, y ∈ Q such that ax = b and ya = b. Quasigroups are of
interest not only in algebra but in combinatorics as well. Alternatively, we
may de�ne quasigroups equationally as algebras (Q; ·, \, /) of type (2, 2, 2)
such that x\(x · y) = y, (x · y)/y = x, x · (x\y) = y, and (x/y) · y = x.

A quasigroup is trivial if it consists of a single element. A quasigroup Q
is a left (right) loop if there exists a left (right) neutral element e ∈ Q such
that ex = x (xe = x) for all x ∈ Q. A loop is a quasigroup that is both a
left loop and a right loop.

Henceforth, e will always denote the (left, right) neutral element of a
(left, right) loop and the variables x, y, and z will always be universally
quanti�ed over the elements of a quasigroup.

De�nition 1.1. We say that an identity implies that a quasigroup is a (left,
right) loop (group) if and only if all quasigroups satisfying the identity are
(left, right) loops (groups). Furthermore, if there exists a non-trivial (left,
right) loop (group) satisfying the identity, then we say that the identity
implies that a quasigroup is a not necessarily trivial (left, right) loop (group).
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In [1], Belousov raised the problem of determining which identities imply
that a quasigroup is a loop. It is well-known that an associative quasigroup
is a loop, and therefore a group. In [5], it is shown that each of the four
Moufang identities

(x(yz))x = (xy)(zx) (xz)(yx) = x((zy)x)

((xy)z)y = x(y(zy)) ((yz)y)x = y(z(yx))

imply that a quasigroup is a loop, but not necessarily a group. More gen-
erally, in [6], Kunen considers weak associative laws (identities, other than
associativity, for which the left-hand side and right-hand side are di�er-
ent associations of the same word) that imply that a quasigroup is a loop.
In particular, he completely settles the problem for the identities of Bol-
Moufang type (weak associative laws with three distinct variables and eight
variable occurrences). Similarly, one may ask which identities imply that
a quasigroup is a group. This question was settled for the identities of
Bol-Moufang type in [11].

In this note, we endeavor to �nd all identities in product only with
at most six variable occurrences that imply that a quasigroup is a not
necessarily trivial loop (group). Perhaps some interesting identities will
arise. The author hopes that this note will be of some use as a sort of
beginner's tutorial on the use of automated reasoning in equational logic in
general and on the powerful software Prover9 and Mace4 in particular. As
such, a great deal of detail is shown and many examples and references are
given.

2. Prover9 and Mace4
In this section, we brie�y describe the software Prover9 and Mace4.

Prover9 [10] is a resolution-style [2], [13] automated theorem-prover for
�rst-order logic with equality that was developed by McCune. Prover9 is the
successor to the well-known OTTER [8] theorem-prover and, like OTTER,
utilizes the set of support strategy [2], [14].

The language of Prover9 is the language of clauses, a clause being a
disjunction of (possible one or zero) literals in which all variables whose
names begin with u, v, w, x, y, or z are implicitly universally quanti�ed and
all other symbols represent constants, functions, or predicates (relations).
An axiom may also be given to Prover9 as an explicitly quanti�ed �rst-
order formula which is immediately transformed by Prover9 into a set of
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clauses by a Skolemization [2], [3] procedure. The conjunction of these
clauses is not necessarily logically equivalent to the formula, but they will
be equisatis�able (one is satis�able if and only if the other is as well) [2], [3].
Therefore, the set of clauses can be used by Prover9 in place of the formula
in proofs by contradiction.

Prover9 can be asked to prove a potential theorem by giving it clauses or
formulas expressing the hypotheses and a clause or formula expressing the
negation of the conclusion. Prover9 �nds a proof when it derives the empty
clause, a contradiction. Prover9 can also be used for question answering
through the use of answer literals [2], [4], [7].

Prover9 has an autonomous mode [10] in which all inference rules, set-
tings, and parameters are automatically set based upon a syntactic anal-
ysis of the input clauses. The mechanisms of inference for purely equa-
tional problems are paramodulation and demodulation, a restricted from of
paramodulation [2], [12]. Paramodulation from an equation i into an equa-
tion j is accomplished as follows: unify the left-hand side l of i with a
subterm s of j by �nding a substitution into the variables of l and s that
make them identical (a most general uni�er), instantiate j with the corre-
sponding substitution, and infer the equation obtained by replacing s in j
with the corresponding instance of the right-hand side of i.

One very important parameter used by Prover9 is the maximum weight
[10] of a clause. By default, the weight of a literal is the number of occur-
rences of constants, variables, functions, and predicates in the literal and
the weight of a clause is the sum of the weights of its literals. Prover9
discards derived clauses whose weight exceeds the maximum weight speci-
�ed. By specifying a maximum weight, we sacri�ce refutation-completeness
(the guarantee of the existence of a derivation of the empty clause from a
non-satis�able set of clauses) [2], [13], although in practice it is frequently
necessary in order to control the size of the clause space while searching for a
proof. We will use the autonomous mode throughout this paper, sometimes
overriding Prover9's assignment to the maximum weight parameter.

A useful companion to Prover9 is Mace4 [9], also developed by McCune.
Mace4 is a �nite �rst-order model-�nder. With possibly some minor mod-
i�cations, the same input can be given to Mace4 as to Prover9, Prover9
searching for a proof by contradiction and Mace4 searching for counter-
examples of speci�ed sizes (a structure of size n with a single binary oper-
ation found by Mace4 would be returned as an n×n Cayley table with the
elements of the structure assumed to be 0, 1, . . . , n − 1 and the element in
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the ith row and jth column being ij).

Remark 2.1. The reader should note that Mace4 interprets non-negative
integers as distinct constants and other constants as not necessarily distinct
unless otherwise stated. This is in contrast to Prover9 which interprets
all constants as not necessarily distinct unless otherwise stated. The use
of non-negative integers for constants in Mace4 can have the advantage of
speeding up the search for a model.

The scripting language Perl was also used to further automate the pro-
cess.

3. The Search
In this section, we describe our search for identities in product only with
at most six variable occurrences that imply that a quasigroup is a not
necessarily trivial loop. Clearly, we need not consider identities with more
than three distinct variables.

First, all identities in product only with at most three distinct vari-
ables and at most six variable occurrences with di�erent left-hand side and
right-hand side were generated up to renaming, canceling, mirroring, and
symmetry. This resulted in 1353 identities.

Next, we sent each identity (stored in the Perl variable $identity) to
Prover9 and ran
set(auto). % autonomous mode
assign(max_seconds, 1). % one second time limit

% per identity
op(500, infix, [/, *, \]). % quasigroup operations
clauses(sos). % set of support clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
e * x = x.
x * e = x. % loop
$identity. % candidate identity
a != e. % non-trivial
end_of_list. % end of set of support clauses

to search for a proof that a loop satisfying the identity must be trivial. Any
identity for which a proof was found was eliminated. This resulted in 332
identities.
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Remark 3.1. We determine whether or not Prover9 has found a proof by
observing its exit status. Prover9 outputs an exit code of 0 if and only if it
�nds a proof.

We then sent each remaining identity to Mace4 and ran
assign(max_seconds, 60). % one minute time limit

% per identity
op(500, infix, [/, *, \]). % quasigroup operations
clauses(theory). % theory clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
$identity. % candidate identity
end_of_list. % end of theory clauses
formulas(theory). % theory formulas
-(exists e all x (e * x = x & x * e = x)). % not a loop
end_of_list. % end of

% theory formulas

to search for a non-loop quasigroup of size at most 200 (this is simply
Mace4's upper limit and is speci�ed on the command line with -n2 -N200
or just -N200) that satis�es the identity. Any identity for which an example
was found was eliminated. This resulted in 35 identities. For example, the
identity

x(((yx)z)y) = z

was eliminated since it is valid in the non-loop quasigroup below.
* :

| 0 1 2 3 4 5 6 7
--+----------------
0 | 1 6 4 3 5 0 7 2
1 | 3 2 5 1 4 7 0 6
2 | 0 4 6 7 2 1 3 5
3 | 5 7 3 4 1 2 6 0
4 | 2 3 7 6 0 5 4 1
5 | 7 5 2 0 6 3 1 4
6 | 6 1 0 2 7 4 5 3
7 | 4 0 1 5 3 6 2 7

Remark 3.2. We determine whether or not Mace4 has found a model by
observing its exit status. Mace4 outputs an exit code of 0 if and only if it
�nds a model.

Next, we sent each remaining identity to Prover9 and ran
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set(auto). % autonomous mode
assign(max_seconds, 60). % one minute time limit

% per weight per identity
assign(max_weight, $max_weight). % maximum clause weight
op(500, infix, [/, *, \]). % quasigroup operations
clauses(sos). % set of support clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
$identity. % candidate identity
x * f(x) != f(x) # answer(x). % not a left loop
end_of_list. % end of

% set of support clauses

to search for a proof that the identity implies that a quasigroup is a left
loop. We have Skolemized [2], [3] the negation of (∃e)(∀x)(ex = x) to obtain
the clause x * f(x) != f(x), where f is a Skolem function [2], [3]. We use
the answer literal answer(x) to obtain an expression for the left neutral
element for the identities for which we �nd a proof (this information could
also be extracted from the proof itself, although this is not always so easy
to do and does not lend itself to automating). We always make a run for
every value of the Perl variable $max_weight from 20 to 100 in steps of 10.
A proof was found for all 35 identities. For example, Prover9 found the
following proof that the identity

(xy)(x(zy)) = z

implies that a quasigroup is a left loop.
-------- PROOF --------
Length of proof is 31.
Level of proof is 13.
Maximum clause weight is 11.
7 x \ (x * y) = y. [input]
8 (x * y) / y = x. [input]
9 x * (x \ y) = y. [input]
10 (x / y) * y = x. [input]
11 (x * y) * (x * (z * y)) = z. [input]
12 x * f(x) != f(x) # answer(x). [input]
13 x / (y \ x) = y. [para (9 (a 1) 8 (a 1 1))]
14 (x / y) \ x = y. [para (10 (a 1) 7 (a 1 2))]
15 (x * y) \ z = x * (z * y). [para (11 (a 1) 7 (a 1 2))]
16 x / (y * (x * z)) = y * z. [para (11 (a 1) 8 (a 1 1))]
17 x * (y * (z * (y \ x))) = z. [para (9 (a 1) 11 (a 1 1))]
19 x * ((x / y) * (z * y)) = z. [para (10 (a 1) 11 (a 1 1))]
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26 x \ y = z * (y * (z \ x)). [para (9 (a 1) 15 (a 1 1))]
29 x / (y * z) = y * (x \ z). [para (9 (a 1) 16 (a 1 2 2))]
34 x / (x * y) = y. [back_demod 9 demod (29 (R))]
35 x / (y \ z) = z * (y * x). [para (10 (a 1) 17 (a 1 2 2)) flip a]
41 x * (y * x) = y. [back_demod 13 demod (35)]
43 (x * y) / z = x * (z * y). [para (11 (a 1) 34 (a 1 2))]
44 x \ y = y * x. [para (34 (a 1) 14 (a 1 1))]
45 x / y = z * (y * (x * z)). [para (17 (a 1) 34 (a 1 2)) demod (44)]
47 x * (y * y) = x. [back_demod 8 demod (43)]
52 x / (y * z) = y * (z * x). [back_demod 35 demod (44)]
55 x * (y * (z * x)) = y * z. [back_demod 26 demod (44 44) flip a]
62 x / y = y * x. [back_demod 45 demod (55)]
68 (x * y) * z = x * (y * z). [back_demod 52 demod (62)]
71 x * (x * y) = y. [back_demod 19 demod (62 68 55)]
75 x * x = y * y. [para (47 (a 1) 71 (a 1 2))]
76 x * x = c0. [new_symbol 75]
77 x * c0 = x. [back_demod 47 demod (76)]
80 c0 * x = x. [para (77 (a 1) 41 (a 1 2))]
81 $F # answer(c0). [resolve (80 a 12 a)]
-------- end of proof -------

Furthermore, lines 76 and 81 show that xx = e. The interested reader
should consult [10] for information on how to read such computer-generated
proofs.

We then sent each of these 35 identities, along with the correspond-
ing expression for the left neutral element (stored in the Perl variable
$left_neutral), to Prover9 and ran
set(auto). % autonomous mode
assign(max_seconds, 60). % one minute time limit

% per weight per identity
assign(max_weight, $max_weight). % maximum clause weight
op(500, infix, [/, *, \]). % quasigroup operations
clauses(sos). % set of support clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
e * x = x. % left loop
$left_neutral = e. % might help Prover9
$identity. % candidate identity
a * e != a. % not a right loop
end_of_list. % end of set of support clauses

to search for a proof that the identity implies that a quasigroup is a right
loop (if $left_neutral contains the Skolem function f, then we omit the
line $left_neutral = e.). A proof was found for all 35 identities.

Finally, we sent each of these 35 identities to Mace4 and ran
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assign(max_seconds, 60). % one minute time limit per identity
op(500, infix, [/, *, \]). % quasigroup operations
clauses(theory). % theory clauses
x \ (x * y) = y.
(x * y) / y = x.
x * (x \ y) = y.
(x / y) * y = x. % quasigroup
0 * x = x.
x * 0 = x. % loop
$identity. % candidate identity
end_of_list. % end of theory clauses

to search for a non-trivial loop that satis�es the identity. An example was
found for all 35 identities.

4. Conclusion
In this �nal section, we state our main results.
Theorem 4.1. There are exactly 35 identities in product only with at most
six variable occurrences that imply that a quasigroup is a not necessarily
trivial loop (up to renaming, canceling, mirroring, and symmetry). These
35 identities are shown below.

(xx)y = x(yx) x(x((yy)z)) = z (xx)(y(yz)) = z (x(x(yy)))z = z
((x(xy))y)z = z (xx)y = z(yz) x(((xy)z)y) = z (xx)(y(zy)) = z
((xx)(yz))y = z x(xy) = (zz)y ((xx)y)z = zy x(y(xy)) = zz
x((yx)y) = zz x(y((xy)z)) = z x((yx)(yz)) = z (xy)(x(yz)) = z

(x(y(xy)))z = z ((x(yx))y)z = z x((yx)z) = yz (xy)(x(zy)) = z
((xy)(xz))y = z x(y(xz)) = zy x((yy)(xz)) = z (x(y(yx)))z = z
((x(yy))x)z = z (xy)(yz) = xz x(((yy)z)x) = z x((yy)z) = zx
x(yz) = (xy)z x(y(zx)) = yz (xy)(zx) = yz x(yz) = (xz)y
(xy)(zx) = zy x(yz) = y(zx) (xy)z = y(zx)
Similarly, one can prove the following.

Theorem 4.2. There are exactly 16 identities in product only with at most
six variable occurrences that imply that a quasigroup is a not necessarily
trivial group (up to renaming, canceling, mirroring, and symmetry). These
16 identities are shown below.

x(((xy)z)y) = z x(y((xy)z)) = z x((yx)(yz)) = z (xy)(x(yz)) = z
x((yx)z) = yz (xy)(x(zy)) = z ((xy)(xz))y = z x(y(xz)) = zy
(xy)(yz) = xz x(yz) = (xy)z x(y(zx)) = yz (xy)(zx) = yz
x(yz) = (xz)y (xy)(zx) = zy x(yz) = y(zx) (xy)z = y(zx)
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