A graphical technique to obtain homomorphic images of $\Delta(2,3,11)$

Qaiser Mushtaq and Munir Ahmed

Abstract

In this paper we have developed a technique by which a suitably created fragment of a coset diagram for the action of $\operatorname{PSL}(2, Z)$ or $P G L(2, Z)$ on projective lines over Galois fields $F_{p}, p \equiv \pm 1(\bmod 11)$, can be used to obtain a family of permutation groups $\Delta(2,3,11)=\left\langle x, y: x^{2}=y^{3}=(x y)^{11}=1>\right.$.

1. Introduction

It is well known that the modular group $\operatorname{PSL}(2, Z)$ is generated by the linear fractional transformations $x: z \rightarrow-1 / z$ and $y: z \rightarrow(z-1) / z$, satisfying the relations $x^{2}=y^{3}=1$. The extended modular group $\operatorname{PGL}(2, Z)$ is generated by the linear fractional transformations $x: z \rightarrow-1 / z, y: z \rightarrow$ $(z-1) / z$, and $t: z \rightarrow 1 / z$, such that $x^{2}=y^{3}=t^{2}=(x t)^{2}=(y t)^{2}=1$.

Let $q=p^{m}$ where $m>0$ and p is a prime number. A number $\omega \in F_{q}$ is said to be a non-zero square in F_{q} if $\omega \equiv a^{2}(\bmod p)$ for some non-zero element a in F_{q}. The projective lines over a finite field $F_{q}, F_{q} \cup\{\infty\}$, is denoted by $P L\left(F_{q}\right)$.

The group $P G L(2, q)$ is a group consisting of all the transformations $z \rightarrow(a z+b) /(c z+d)$, where $a, b, c, d \in F_{q}$ and $a d-b c \neq 0$. The group $\operatorname{PSL}(2, q)$ is a group containing transformations $z \rightarrow(a z+b) /(c z+d)$ where $a, b, c, d \in F_{q}$ and $a d-b c$ is a non-zero square in F_{q}.

Let $\Delta(l, m, n)$ denote the triangle group $\left\langle x, y: x^{l}=y^{m}=(x y)^{k}=1>\right.$. The triangle group $\Delta(l, m, k)$ is infinite for $k \geqslant 6$. For $k \leqslant 5, \Delta(2,3, k)$ is trivial, S_{3}, A_{4}, S_{4}, and A_{5} respectively. The group $\Delta(2,3,6)$ is an extension by the cyclic group C_{6} of a free abelian group of rank 2 . For $k=7$, the triangle group $\Delta(2,3, k)$ is a Hurwitz group [1]. The group $\Delta(2,3, k)$,
when $k=8,9$ and 10 are known to be less interesting. There is relatively less information available about $\Delta(2,3,11)$. We therefore consider $\Delta(2,3,11)$ and use coset diagrams for the actions of $P G L(2, Z)$ on $P L\left(F_{p}\right)$, $p \equiv \pm 1(\bmod 11)$ and see for what values of p these actions evolve triangle groups $\Delta(2,3,11)$ as subgroups of S_{p+1}.

A coset diagram for $P G L(2, Z)$ consists of a set of small triangles and a set of edges. The three cycles of y are denoted by small triangles whose vertices are permuted counter-clockwise by y and any two vertices which are interchanged by x are joined by an edge. The action of t is represented by reflection about a vertical line of axis in the case of $\operatorname{PGL}(2, Z)$. The fixed points of x and y are denoted by heavy dots.

Let $P S L(2, Z)$ act on a space Ω. If an element $(x y)^{n_{1}}\left(x y^{-1}\right)^{n_{2}} \cdots\left(x y^{-1}\right)^{n_{l}}$ of $\operatorname{PSL}(2, Z)$ fixes an element of Ω, then the patch of the coset diagram is called a circuit. We denote it by $\left(n_{1}, n_{2}, \ldots, n_{l}\right)$. For a given sequence of positive integers $\left(n_{1}, n_{2}, n_{3}, \ldots, n_{2 k}\right)$ the circuit of the type

$$
\left(n_{1}, n_{2}, n_{3}, \ldots, n_{2 k^{\prime}}, n_{1}, n_{2}, n_{3}, \ldots, n_{2 k^{\prime}}, \ldots, n_{1}, n_{2}, n_{3}, \ldots, n_{2 k^{\prime}}\right)
$$

where k^{\prime} divides k, is said to be a periodic circuit of length $2 k^{\prime}$. A trivial circuit consists of a path followed by its own inverse. A portion of a coset diagram is called a fragment of a coset diagram. First of all we construct a fragment composed of two connected, non-trivial circuits such that neither of them is periodic and more than two vertices in the fragment are fixed by $(x y)^{11}$. Corresponding to two circuits we have two words (elements of $\operatorname{PSL}(2, Z)$), yielding a polynomial $f(z)$ in $Z[z]$ as in [4]. A homomorphism $\alpha: P G L(2, Z) \rightarrow P G L(2, q)$ is called non-degenerate if x, y, t do not belong to $\operatorname{Ker}(\alpha)$. Of course α gives rise to an action of $P G L(2, Z)$ on $P L\left(F_{q}\right)$. Two non-degenerate homomorphisms α and β are called conjugate if there exists an inner automorphism ρ on $P G L(2, q)$ such that $\alpha=\rho \beta$. In [5], these actions, or conjugacy classes, have been parameterized with the elements $\theta \in F_{q}$. Corresponding to each root $\theta(\neq 0,3)$ of $f(\theta)=0$ in F_{p} where $p \equiv \pm 1(\bmod k)$, we obtain a conjugacy class of actions of $P G L(2, Z)$ on $P L\left(F_{p}\right)$ each action evolving $\Delta(2,3, k)$. By $D(\theta, q)$ we mean a coset diagram of the conjugacy class corresponding to parameter $\theta \in F_{q}$.

We need the following results proved in [4] and [5].
Theorem 1. [4] Given a fragment γ, where γ is a non-simple fragment consisting of two connected, non-trivial circuits such that neither of them is periodic, there exists a polynomial $F(z)$ in $Z[z]$ such that
(i) if the fragment γ occurs in $D(\theta, q)$, then $F(\theta)=0$,
(ii) if $F(\theta)=0$ then the fragment, or a homomorphic image of it occurs in $D(\theta, q)$ or in $D(\theta, \bar{q})$, where $D(\theta, \bar{q})$ denotes the diagram with the vertices from the complement $P L\left(F_{q^{2}}\right) \backslash P L\left(F_{q}\right)$.

Theorem 2. [5] The conjugacy classes of a non-degenerate homomorphisms of $P G L(2, Z)$ into $P G L(2, q)$ are in one-to-one correspondence with the elements $\theta \neq 0,3$ of F_{q}. under the correspondence which maps each class to its parameter.

2. Appropriate fragments

By an appropriate fragment we shall mean a fragment composed of two nontrivial, connected circuits C_{1} and C_{2} such that neither of them is periodic and at least three vertices of this fragment are fixed by $(x y)^{11}$.

By Theorems 1 and 2, we can find conjugacy classes of non-degenerate homomorphisms corresponding to the elements $\theta(\neq 0,3)$ in some finite field $F_{p}, p \equiv \pm 1(\bmod 11)$ obtained from the condition in the form of a polynomial. Each conjugacy class corresponds to a diagram. These coset diagrams will be such that every vertex in these diagrams will be a fixed point of $(\bar{x} \bar{y})^{11}$, and so by a well known fact that no non-trivial linear fractional transformation in $\operatorname{PGL}(2, q)$ can fix more than two vertices in F_{q}, it will depict the triangle group $\alpha(\Delta(2,3,11))$.

Theorem 3. Let γ be an appropriate fragment of a coset diagram for $\operatorname{PGL}(2, Z)$ with at least one of the three vertices as the common vertex of C_{1} and C_{2}. Then there exists a coset diagram $D(\theta, p)$ containing γ, or its homomorphic image, representing $\alpha(\Delta(2,3,11))$.

Proof. Consider γ which is composed of two non-periodic circuits C_{1} and C_{2}. Let w_{1} and w_{2} be two elements of $\operatorname{PSL}(2, Z)$ induced by the circuits C_{1} and C_{2} respectively. That is $w_{1}=x y x y x y y x y x y$ and $w_{2}=x y y x y y x y x y y$. We can represent w_{1} and w_{2} as matrices $W_{1}=X Y X Y X Y Y X Y X Y$ and $W_{2}=X Y Y X Y Y X Y X Y Y$ which are elements of $S L(2, Z)$, where X and Y are the matrices representing the elements x and y (of orders 2 and 3 respectively) of $\operatorname{PSL}(2, Z)$. According to Mushtaq [4], we can express W_{1} and W_{2} as linear combinations of I, X, Y and $X Y$, that is,

$$
W_{1}=\lambda_{0} I+\lambda_{1} X+\lambda_{2} Y+\lambda_{3} X Y
$$

and

$$
W_{2}=\mu_{0} I+\mu_{1} X+\mu_{2} Y+\mu_{3} X Y .
$$

We take $\quad X=\left[\begin{array}{cc}a & k c \\ c & -a\end{array}\right], \quad Y=\left[\begin{array}{cc}d & k f \\ f & -d-1\end{array}\right]$, with $\operatorname{trace}(X)=0$ and $\operatorname{det}(X)=\Delta$. Then the characteristic equation of X is $X^{2}+\Delta I=O$, and since $\operatorname{trace}(Y)=-1$ and $\operatorname{det}(Y)=1$, the characteristic equation of Y is $Y^{2}+Y+I=O$. Thus the characteristic equation of $X Y$ is $(X Y)^{2}-r(X Y)+$ $\Delta I=O$, where $r=\operatorname{trace}(X Y)$ and $\Delta=\operatorname{det}(X Y)$. Also, $\Delta=-\left(a^{2}+k c^{2}\right)$ and $d^{2}+d+k f^{2}+1=0$. Using these equations, we obtain

$$
\begin{aligned}
(X Y)^{n}= & \left\{\binom{n-1}{0} r^{n-1}-\binom{n-2}{1} r^{n-3} \triangle+\ldots\right\} X Y \\
& -\triangle\left\{\binom{n-2}{0} r^{n-2}-\binom{n-3}{1} r^{n-4} \triangle+\ldots\right\} I
\end{aligned}
$$

After a suitable manipulation of the above equations, we get $X Y X=r X+$ $\triangle I+\triangle Y, Y X Y=r Y+X$ and $Y X=r I-X-X Y$. Of course
$(X Y)^{3}=\left(r^{2}-\Delta\right) X Y-r \Delta I$,
$(X Y)^{4}=\left(r^{3}-2 r \Delta\right) X Y-\left(r^{2} \Delta-\Delta^{2}\right) I$,
$\left(X Y^{2}\right)^{2}=r X Y+r X-\Delta I$,
$\left(X Y^{2}\right)^{3}=\left(r^{2}-\Delta\right) X Y+\left(r^{2}-\Delta\right) X-r \Delta I$, and
$\left(X Y^{2}\right)^{4}=\left(r^{3}-2 r \Delta\right) X Y+\left(r^{3}-2 r \Delta\right) X-\left(r^{2} \Delta-\Delta^{2}\right) I$.
Now,

$$
\begin{aligned}
W_{1}= & X Y X Y X Y^{2} X Y X Y \\
= & (X Y)^{3} Y(X Y)^{2} \\
= & {\left[\left(r^{2}-\Delta\right) X Y-r \Delta I\right] Y(r X Y-\Delta I) } \\
= & {\left[\left(r^{2}-\Delta\right) X Y^{2}-r \Delta Y\right][r X Y-\Delta I] } \\
= & {\left[\left(r^{2}-\Delta\right)(-X Y-X)-r \Delta Y\right][r X Y-\Delta I] } \\
= & {\left[\left(-r^{2}+\Delta\right) X Y+\left(-r^{2}+\Delta\right) X-r \Delta Y\right][r X Y-\Delta I] } \\
= & {\left[\left(-r^{3}+r \Delta\right)(X Y)^{2}+\left(-r^{3}+r \Delta\right) X^{2} Y-r^{2} \Delta Y X Y+\left(r^{2} \Delta-\Delta^{2}\right) X Y\right.} \\
& \left.+\left(r^{2} \Delta-\Delta^{2}\right) X+r \Delta^{2} Y\right] \\
= & {\left[\left(-r^{3}+r \Delta\right)(r X Y-\Delta I)+\left(-r^{3}+r \Delta\right)(-\Delta I) Y-r^{2} \Delta(r Y+X)+\right.} \\
& \left.\left(r^{2} \Delta-\Delta^{2}\right) X Y+\left(r^{2} \Delta-\Delta^{2}\right) X+r \Delta^{2} Y\right] \\
= & {\left[\left(-r^{4}+r^{2} \Delta\right) X Y+\left(r^{3} \Delta-r \Delta^{2}\right) I+\left(r^{3} \Delta-r \Delta^{2}\right) Y-r^{3} \Delta Y-r^{2} \Delta X\right.} \\
& \left.+\left(r^{2} \Delta-\Delta^{2}\right) X Y+\left(r^{2} \Delta-\Delta^{2}\right) X+r \Delta^{2} Y\right] \\
= & {\left[\left(r^{3} \Delta-r \Delta^{2}\right) I-\Delta^{2} X+0 Y+\left(-r^{4}+2 r^{2} \Delta-\Delta^{2}\right) X Y\right.}
\end{aligned}
$$

and

$$
\begin{aligned}
W_{2} & =X Y Y X Y Y X Y X Y Y \\
& =\left(X Y^{2}\right)^{2}(X Y)^{2} Y \\
& =[r X Y+r X-\Delta I][r X Y-\Delta I] Y
\end{aligned}
$$

$$
\begin{aligned}
= & {[r X Y+r X-\Delta I]\left[r X Y^{2}-\Delta Y\right] } \\
= & {[r X Y+r X-\Delta I][r(-X Y-X)-\Delta Y] } \\
= & {[r X Y+r X-\Delta I][-r X Y-r X-\Delta Y] } \\
= & {\left[-r^{2}(X Y)^{2}-r^{2} X Y X-r \Delta X Y^{2}-r^{2} X Y-r^{2} X^{2}-r \Delta X Y+r \Delta X Y+\right.} \\
& \left.r \Delta X+\Delta^{2} Y\right] \\
= & {\left[-r^{2}(r X Y-\Delta I)-r^{2}(r X+\Delta Y+\Delta I)+r \Delta(X Y+X)+r^{2} \Delta Y+\right.} \\
& \left.r^{2} \Delta I-r \Delta X Y+r \Delta X Y+r \Delta X+\Delta^{2} Y\right] \\
= & r^{2} \Delta I+\left(-r^{3}+2 r \Delta\right) X+\Delta^{2} Y+\left(-r^{3}+r \Delta\right) X Y .
\end{aligned}
$$

Using equations

$$
\begin{aligned}
& W_{1}=\lambda_{0} I+\lambda_{1} X+\lambda_{2} Y+\lambda_{3} X Y \\
& W_{2}=\mu_{0} I+\mu_{1} X+\mu_{2} Y+\mu_{3} X Y
\end{aligned}
$$

we obtain $\lambda_{1}=-\Delta^{2}, \lambda_{2}=0$ and $\lambda_{3}=\left(-r^{4}+2 r^{2} \Delta-\Delta^{2}\right), \mu_{1}=\left(-r^{3}+2 r \Delta\right)$, $\mu_{2}=\Delta^{2}$ and $\mu_{3}=\left(-r^{3}+r \Delta\right)$.

Now substituting these values in the equation

$$
\begin{aligned}
& \left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)^{2}+\triangle\left(\lambda_{3} \mu_{1}-\mu_{3} \lambda_{1}\right)^{2}+\left(\lambda_{1} \mu_{2}-\mu_{1} \lambda_{2}\right)^{2} \\
& \quad+r\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)\left(\lambda_{3} \mu_{1}-\mu_{3} \lambda_{1}\right)+\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)\left(\lambda_{1} \mu_{2}-\mu_{1} \lambda_{2}\right)=0
\end{aligned}
$$

we get:

$$
\begin{aligned}
& {\left[0-\Delta^{2}\left(-r^{4}+2 r^{2} \Delta-\Delta^{2}\right)\right]^{2}+\Delta\left[\left(-r^{3}+2 r \Delta\right)\left(-r^{4}+2 r^{2} \Delta-\Delta^{2}\right)\right.} \\
& \left.\quad+\Delta^{2}\left(-r^{3}+r \Delta\right)\right]^{2}+\left[-\Delta^{2} . \Delta^{2}-0\right]^{2}+r\left[0-\Delta^{2}\left(-r^{4}+2 r^{2} \Delta-\Delta^{2}\right)\right] \\
& {\left[\left(-r^{3}+2 r \Delta\right)\left(-r^{4}+2 r^{2} \Delta-\Delta^{2}\right)+\Delta^{2}\left(-r^{3}+r \Delta\right)\right]+} \\
& {\left[0-\Delta^{2}\left(-r^{4}+2 r^{2} \Delta-\Delta^{2}\right)\right]\left[-\Delta^{4}-0\right]=0,} \\
& {\left[\Delta^{4}\left(r^{4}-2 r^{2} \Delta+\Delta^{2}\right)^{2}+\Delta\left(r^{7}-2 r^{5} \Delta+\Delta^{2} r^{3}-2 r^{5} \Delta+4 r^{3} \Delta^{2}-2 r \Delta^{3}\right.\right.} \\
& \left.-r^{3} \Delta^{2}+r \Delta^{3}\right)+\Delta^{8}+r \Delta^{2}\left(r^{4}-2 r^{2} \Delta+\Delta^{2}\right)\left(r^{7}-2 r^{5} \Delta+r^{3} \Delta^{2}-2 r^{5} \Delta\right. \\
& \left.\left.+4 r^{3} \Delta^{2}-2 r \Delta^{3}+r^{3} \Delta^{2}+r \Delta^{3}\right)+\Delta^{6}\left[-r^{4}+2 r^{2} \Delta-\Delta^{2}\right]\right]=0, \\
& \quad \Delta^{4}\left[\Delta^{2} \theta^{2}-2 \Delta^{2} \theta+\Delta^{2}\right]^{2}+\Delta\left[r^{7}-4 r^{5} \Delta+4 r^{3} \Delta^{2}-r \Delta^{3}\right]^{2}+\Delta^{8} \\
& \quad+r \Delta^{2}\left[\Delta^{2} \theta^{2}-2 \Delta^{2} \theta+\Delta^{2}\right]\left[r^{7}-4 r^{5} \Delta+4 r^{3} \Delta^{2}-r \Delta^{3}\right] \\
& \quad+\Delta^{6}\left[-\Delta^{2} \theta^{2}+2 \Delta^{2} \theta-\Delta^{2}\right]=0 .
\end{aligned}
$$

That is,

$$
\begin{gathered}
\Delta^{8}\left[\left(\theta^{2}-2 \theta+1\right)^{2}+\theta\left(\theta^{3}-4 \theta^{2}+4 \theta-1\right)^{2}+1+\right. \\
\left.\theta\left(\theta^{2}-2 \theta+1\right)\left(\theta^{3}-4 \theta^{2}+4 \theta-1\right)+\left(-\theta^{2}+2 \theta-1\right)\right]=0
\end{gathered}
$$

By Theorem 1 we obtain a polynomial $f(\theta)=\theta^{7}-7 \theta^{6}+18 \theta^{5}-20 \theta^{4}+$ $7 \theta^{3}+3 \theta^{2}-2 \theta+1$. If we let $f(\theta)=0$, then $f\left(\theta_{i}\right)=0$ where $\theta_{i} \in F_{p}$ and
$p \equiv \pm 1(\bmod 11)$, then according to our Theorem $2, D\left(\theta_{i}, p\right)$ is such that it corresponds to a conjugacy class of non-degenerate homomorphisms α from $P G L(2, Z)$ into $P G L(2, p)$. This depicts an action of $P G L(2, Z)$ on $P L\left(F_{p}\right)$ and the diagram depicting the action is such that every vertex in the diagram is fixed by the element $(\bar{x} \bar{y})^{11}$. Since no non-trivial linear fractional transformation can fix more than two vertices in $P L\left(F_{p}\right)$, thus $(\bar{x} \bar{y})^{11}=1$ and so the coset diagram represents the homomorphic image of the triangle group $\Delta(2,3,11)$, that is, $\alpha(\Delta(2,3,11))$.

Theorem 4. There exists only two coset diagrams $D(19,67)$ and $D(125,199)$ for the action of $P G L(2, Z)$ on $P L\left(F_{p}\right)$ depicting $\alpha(\Delta(2,3,11)$), where $2 \leqslant p \leqslant 1033$, and p is a prime congruent to $\pm 1(\bmod 11)$.

Proof. In order to obtain the required coset diagram first of all we take the following fragment γ which is composed of two non-trivial, and nonperiodic circuits C_{1} and C_{2} with the vertex \mathbf{v} of γ as the common vertex of C_{1} and C_{2} as shown in the fragment. Note that the fragment is required to contain at least three vertices, namely $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v} which are fixed by $(\bar{x} \bar{y})^{11}$. Let $w_{1}=$ xyxyxyyxyxy and $w_{2}=$ xyyxyyxyxyy be the elements induced by the circuits C_{1} and C_{2} respectively. Notice that w_{1} and w_{2} are the elements of $P S L(2, Z)$ and represent the matrices $W_{1}=X Y X Y X Y Y X Y X Y$ and $W_{2}=X Y Y X Y Y X Y X Y Y$ belonging to $G L(2, Z)$, where X and Y are the matrices representing x and y of $P G L(2, Z)$, so $(185,185)(0, \infty)(3,198)(88,156)$.

As in [4],

$$
\begin{aligned}
W_{1} & =X Y X Y X Y^{2} X Y X Y \\
& =\left[\left(r^{3} \Delta-r \Delta^{2}\right) I-\Delta^{2} X+0 Y+\left(-r^{4}+2 r^{2} \Delta-\Delta^{2}\right) X Y\right.
\end{aligned}
$$

and

$$
\begin{aligned}
W_{2} & =X Y Y X Y Y X Y X Y Y \\
& =r^{2} \Delta I+\left(-r^{3}+2 r \Delta\right) X+\Delta^{2} Y+\left(-r^{3}+r \Delta\right) X Y
\end{aligned}
$$

and by using Theorem 1, we can obtain a polynomial $f(\theta)=\theta^{7}-7 \theta^{6}+$ $18 \theta^{5}-20 \theta^{4}+7 \theta^{3}+3 \theta^{2}-2 \theta+1$. If we convert this polynomial into an equation $f(\theta)=0$, and solve it in the field F_{67}, we obtain 19,60 and 61 as its roots. By using theorem 2 for $\theta=19$, we obtain the matrices $X=\left[\begin{array}{cc}9 & 38 \\ 19 & -9\end{array}\right], \quad Y=\left[\begin{array}{cc}0 & 20 \\ 10 & -1\end{array}\right] \quad$ and $\quad T=\left[\begin{array}{cc}0 & -2 \\ 1 & 0\end{array}\right]$. Therefore the corresponding transformations are, $\bar{x}: z \mapsto \frac{9 z+38}{19 z-9}, \bar{y}: z \mapsto \frac{20}{10 z-1}$ and
$\bar{t}: z \mapsto \frac{-2}{z}$. So,

$$
\begin{aligned}
\bar{x}: & (33,0)(1,65)(62,2)(3,53)(4, \infty)(22,5)(6,13)(7,10)(8,42)(21,9) \\
& (11,64)(12,23)(14,46)(15,30)(39,16)(26,17)(18,34)(19,32)(20,47) \\
& (24,25)(31,27)(28,55)(61,29)(35,37)(36,59)(38,40)(41,57)(43,56) \\
& (44,48)(45,60)(49,58)(50,51)(52,63)(54,66),
\end{aligned}
$$

$\bar{y}:(0,47, \infty)(32,49,1)(65,15,46)(48,2,61)(45,66,53)(3,3,3)(44,44,44)$ $(28,14,4)(33,19,43)(34,5,51)(42,13,63)(31,25,6)(22,16,41)(10,9,7)$ $(38,37,40)(24,64,8)(50,23,39)(26,35,11)(12,21,36)(55,17,58)$ $(30,59,56)(18,60,62)(54,29,52)(27,20,57)$,
and
$\bar{t}:(0, \infty)(1,65)(2,66)(3,44)(4,33)(5,13)(6,22)(7,38)(8,50)(9,37)$
$(10,40)(11,12)(14,19)(15,49)(16,25)(17,59)(18,52)(20,20)(21,35)$
$(23,64)(24,39)(26,36)(27,57)(28,43)(29,60)(30,58)(31,41)(32,46)$
$(33,4)(34,63)(55,56)(42,51)(54,62)(48,53)(61,45)(47,47)$.
Thus we have a coset diagram $D(19,67)$ in which each vertex of the diagram is fixed by $(\bar{x} \bar{y})^{11}$, and we have $(\bar{x} \bar{y})^{11}=1$. Thus the diagram $D(19,67)$ is a representation of the triangle group $\alpha(\Delta(2,3,11))$.

Now solving the equation $f(\theta)=\theta^{7}-7 \theta^{6}+18 \theta^{5}-20 \theta^{4}+7 \theta^{3}+3 \theta^{2}-$ $2 \theta+1=0$ in F_{199}, we obtain 125,159 , and 193 as its roots.

For instance, if we consider $\theta=125$, we obtain $X=\left[\begin{array}{cc}121 & 124 \\ 174 & -121\end{array}\right]$, $Y=\left[\begin{array}{cc}0 & 14 \\ 71 & -1\end{array}\right]$ and $T=\left[\begin{array}{cc}0 & -3 \\ 1 & 0\end{array}\right]$ as before. The corresponding transformations are: $\bar{x}: z \mapsto \frac{121 z+124}{174 z-121}, \bar{y}: z \mapsto \frac{14}{71 z-1}$, and $\bar{t}: z \mapsto \frac{-3}{z}$. Thus,

$$
\begin{aligned}
\bar{x}: \quad & (22,0)(106,1)(2,141)(96,3)(99,4)(5,48)(6,49)(7,70)(8,177) \\
& (9,119)(10,101)(31,11)(18,12)(13,60)(14,185)(165,15)(16,69) \\
& (113,17)(35,19)(93,20)(104,21)(43,23)(181,24)(59,25)(91,26) \\
& (27, \infty)(28,162)(194,29)(72,30)(32,54)(33,149)(160,34)(42,36) \\
& (140,37)(184,38)(39,88)(40,68)(41,193)(44,152)(45,134)(46,76) \\
& (183,47)(154,50)(51,157)(52,112)(53,147)(110,55)(114,56) \\
& (131,57)(58,179)(61,189)(62,173)(63,180)(64,192)(65,151) \\
& (66,107)(67,105)(71,116)(73,190)(195,74)(92,75)(77,169) \\
& (135,78)(79,87)(80,191)(81,129)(82,138)(83,168)(84,176) \\
& (85,170)(90,86)(89,103)(94,130)(95,108)(97,100)(98,127) \\
& (188,102)(109,133)(111,121)(115,171)(117,128)(118,175) \\
& (120,144)(122,196)(123,159)(124,172)(125,136)(126,155) \\
& (132,142)(137,182)(139,197)(143,198)(145,158)(146,187) \\
& (148,186)(150,164)(153,156)(161,178)(163,167)(166,174),
\end{aligned}
$$

$\bar{y}:(0,185, \infty)(1,40,188)(145,184,196)(137,87,2)(98,48,183)$
$(3,47,186)(138,182,198)(166,136,4)(49,19,181)(106,5,63)$
$(180,79,122)(86,6,30)(179,99,155)(7,57,157)(128,178,28)$
$(172,61,8)(124,13,177)(9,78,119)(107,176,66)(46,10,25)$
$(175,139,160)(131,11,24)(174,54,161)(69,36,12)(149,116,173)$
$(171,14,192)(55,26,15)(159,130,170)(123,16,20)(169,62,165)$
$(167,33,17)(152,18,168)(74,43,21)(142,111,164)(22,83,158)$
$(102,163,27)(70,64,23)(121,115,162)(88,41,29)(144,97,156)$
$(146,153,31)(32,39,154)(112,109,34)(76,73,151)(60,35,195)$
$(150,125,189)(82,56,37)(129,103,148)(134,117,38)(68,51,147)$
$(96,114,42)(71,89,143)(127,72,44)(113,58,141)(45,81,132)$
$(104,140,53)(50,84,197)(101,135,187)(120,52,190)(133,65,194)$
$(90,67,59)(118,95,126)(75,85,193)(100,110,191)(105,92,77)$
$(93,80,108)(91,91,91)(94,94,94)$,
and

$$
\begin{aligned}
\bar{t}: \quad & (2,98)(4,49)(5,79)(6,99)(7,28)(8,124)(9,66)(10,139)(11,54) \\
& (12,149)(13,61)(14,14)(15,159)(16,62)(17,152)(18,33)(19,136) \\
& (20,169)(21,142)(22,27)(23,121)(24,174)(25,175)(26,130) \\
& (29,144)(30,179)(31,32)(34,76)(35,125)(36,116)(37,129) \\
& (38,68)(39,153)(40,184)(41,97)(42,71)(43,111)(44,113) \\
& (45,53)(46,160)(47,182)(48,87)(50,187)(51,117)(52,65) \\
& (55,170)(56,103)(57,178)(58,72)(59,118)(60,189)(63,180) \\
& (64,115)(67,95)(69,173)(70,162)(73,109)(74,164)(75,191) \\
& (77,93)(78,176)(80,92)(81,140)(82,148)(83,163)(84,135) \\
& (85,110)(86,155)(89,114)(90,126)(91,94)(96,143)(100,193) \\
& (101,197)(102,158)(104,132)(105,108)(106,122)(107,119) \\
& (112,151)(120,194)(123,165)(127,141)(128,157)(131,161) \\
& (133,190)(134,147)(137,183)(138,186)(145,188)(146,154) \\
& (150,195)(166,181)(1,196)(167,168)(171,192)(172,177) \\
& (185,185)(0, \infty)(3,198)(88,156) .
\end{aligned}
$$

Thus we have the coset diagram $D(125,199)$ (see the next page) in which each vertex is fixed by $(\bar{x} \bar{y})^{11}$. We have therefore $(\bar{x} \bar{y})^{11}=1$.

Thus the diagram $D(125,199)$ is a representation of the triangle group $\alpha(\Delta(2,3,11))$.

Corollary 5. For prime $p, 2 \leqslant p \leqslant 1033$ such that $p \equiv \pm 1(\bmod 11)$,
(i) the action of $P G L(2, Z)$ on $P L\left(F_{p}\right)$ is transitive,
(ii) the diagram of $\alpha(\Delta(2,3,11))$ is connected.

Proof. (i) Consider the action of $P G L(2, Z)$ on $P L\left(F_{67}\right)$. Of course, by Theorem 3 , there is only one orbit $\Omega=\{\infty, 0,1,2, \ldots, 66\}$ under this action. Thus the action of $P G L(2, Z)$ on $P L\left(F_{67}\right)$ is transitive.

A similar argument shows that the action of $P G L(2, Z)$ on $P L\left(F_{199}\right)$ is transitive.
(ii) The coset diagrams given in theorem 3 are the connected diagrams of $\alpha(\Delta(2,3,11))$.

References

[1] M. D. E. Conder: Hurwitz groups: a brief survey, Bull. Amer. Math. Soc. 23 (1990), 359 - 370.
[2] B. Fine and G. Rosenberger: A note on generalized triangle groups, Abh. Math. Sem. Univ. Hamburg 56 (1986), 233 - 244.
[3] Q. Mushtaq and F. Shaheen: Coset diagrams for a homomorphic image of $\triangle(2,3,6)$, Ars Combinatoria 23A (1987), 187 - 193.
[4] Q. Mushtaq: A condition for the existence of a fragment of a coset diagram, Quart. J. Math. (Oxford) 2(39) (1988), 81 - 95.
[5] Q. Mushtaq: Parametrization of all homomorphisms from $\operatorname{PGL}(2, Z)$ into PGL (2, q), Comm. algebra 20 (1992), 1023 - 1040.
[6] J. S. Rose: A course on group theory, Cambridge University Press, Cambridge, 1978.

Department of Mathematics
Quaid-i-Azam University
Islamabad 45320
Pakistan
e-mail: qmushtaq@apollo.net.pk

