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On the prime graph of L2(q)

where q = pα < 100

Behrooz Khosravi and Seyyed Sadegh Salehi Amiri

Abstract

Let G be a �nite group. We construct the prime graph of G as follows: the vertices of
this graph are the prime divisors of |G| and two vertices p and q are joined by an edge if
and only if G contains an element of order pq. The prime graph of G is denoted by Γ(G).

Mina Hagie (Comm. Algebra, 2003) determined �nite groups G such that Γ(G) =

Γ(S), where S is a sporadic simple group. In this paper we determine �nite groups G

such that Γ(G) = Γ(L2(q)) for some q < 100.

1. Introduction

Let G be a �nite group. We denote by π(G) the set of all prime divisors of
|G|. If |π(G)| = n, then G is called a Kn−group.

The prime graph (Gruenberg-Kegel graph) Γ(G) of a group G is the
graph whose vertex set is π(G), and two distinct primes p and q are joined
by an edge (we write p ∼ q) if and only if G contains an element of order
pq. Let t(G) be the number of connected components of Γ(G) and let π1,
π2, . . . , πt(G) be the connected components of Γ(G). If 2 ∈ π(G), then we
always suppose 2 ∈ π1. Also the set of orders of the elements of G is denoted
by πe(G). Obviously πe(G) is partially ordered by divisibility. Therefore
it is uniquely determined by µ(G), the subset of its maximal elements.
We know that µ(L2(q)) = {p, (q − 1)/d, (q + 1)/d} and µ(PGL(2, q)) =
{p, (q− 1), (q + 1)} where q = pα and d = (2, q− 1). Also we know that the
prime graph components of L2(q) are cliques (i.e., complete subgraphs).

The structure of �nite groups G with disconnected prime graph has been
determined by Gruenberg and Kegel (1975) and they have been described
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in [9, 13, 16]. It has been proved that t(G) 6 6 [9, 13, 16], and we know
that the diameter of Γ(G) is at most 5 (see[14]).

Mina Hagie in [8] determined �nite groups G such that Γ(G) = Γ(S)
where S is a sporadic simple group. Also in [12] �nite groups were de-
termined which have the same prime graph as a CIT simple group. In
this paper we determine �nite groups G such that Γ(G) = Γ(L2(q)), where
q < 100 is a prime power. Throughout this paper we denote by (a, b), the
greatest common divisor of a and b.

2. Preliminary results

Lemma 2.1. ([5]) Let G be a �nite group, H a subgroup of G and N a
normal subgroup of G. Then

(1) if p and q are joined in Γ(H), then p and q are joined in Γ(G);
(2) if p and q are joined in Γ(G/N), then p and q are joined in Γ(G).

In fact if xN ∈ G/N has order pq, then there is a power of x which has
order pq.

Lemma 2.2. ([1]) If G is a simple K3−group, then G is isomorphic to one
of the following groups: A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) and
U4(2).

Lemma 2.3. ([1]) If G is a simple K4−group, then G is isomorphic to one
of the following groups:

A7, A8, A9, A10, M11, M12, J2, L3(4), L3(5), L3(7), L3(8), L3(17), L4(3),
O5(4), O5(5), O5(7), O5(9), O7(2), O+

8 (2), G2(3), 3D4(2), 2F4(2)′, Sz(8),
Sz(32), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3), U5(2), L2(q),
where q is a prime power satisfying q(q2 − 1) = (2, q − 1)2α13α2pα3rα4 ,
αi ∈ N (1 6 i 6 4) and 2, 3, p, r are distinct primes.

The next lemma is an immediate consequence of Theorem A in [16]:

Lemma 2.4. If G is a �nite group whose prime graph is disconnected,
then one of the following holds: G is a Frobenius group or a 2−Frobenius
group; or G has a normal series 1 E N E M E G such that G/M and N are
π1−groups, N is a nilpotent π1−group and M/N is a non-abelian simple
group.

Corollary 2.1. [16] If G is a solvable group with disconnected prime graph,
then t(G) = 2 and G is either Frobenius or 2−Frobenius group and G has
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exactly two components, one of which consists of the primes dividing the
lower Frobenius complement.

The next lemma follows from [2] and the structure of Frobenius com-
plements:

Lemma 2.5. Let G be a Frobenius group of even order and let H, K
be Frobenius complement and Frobenius kernel of G, respectively. Then
t(G) = 2 and the prime graph components of G are π(H), π(K) and G has
one of the following structures:

(a) 2 ∈ π(K) and all Sylow subgroups of H are cyclic;

(b) 2 ∈ π(H), K is an abelian group, H is a solvable group, the Sylow
subgroups of odd order of H are cyclic groups and the 2−Sylow sub-
groups of H are cyclic or generalized quaternion groups;

(c) 2 ∈ π(H), K is an abelian group and there exists H0 6 H such that
|H : H0| 6 2, H0 = Z × SL(2, 5), π(Z) ∩ {2, 3, 5} = ∅ and the Sylow
subgroups of Z are cyclic.

Also the next lemma follows from [2] and the properties of Frobenius
groups:

Lemma 2.6. Let G be a 2−Frobenius group of even order, i.e. G has a
normal series 1 E H E K E G, such that K and G/H are Frobenius groups
with kernels H and K/H, respectively. Then

(a) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);
(b) G/K and K/H are cyclic, |G/K| | (|K/H|−1) and G/K 6 Aut(K/H);
(c) H is nilpotent and G is a solvable group.

Lemma 2.7. Let L be a �nite group with t(L) = 3. If G is a �nite group
such that Γ(G) = Γ(L), then G has a normal series 1 E N E M E G such
that G/M and N are π1−groups, N is a nilpotent π1−group and M/N is a
non-abelian simple group, where t(M/N) > 3. Also |G/M | | |Out(M/N)|.

Proof. The �rst part of theorem follows from the above lemmas. Since
t(G) = 3, it follows that t(G/N) > 3. Moreover, we have Z(G/N) = 1. For
any xN ∈ G/N and xN 6∈ M/N , xN induces an automorphism of M/N
and this automorphism is trivial if and only if xN ∈ Z(G/N). Therefore
G/M 6 Out(M/N) and since Z(G/N) = 1, the result follows.

Lemma 2.8. ([7]) The equation pm − qn = 1, where p and q are prime
numbers and m, n > 1, has only one solution, namely 32 − 23 = 1.
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Lemma 2.9. ([7])With the exceptions of the relations (239)2−2(13)4 = −1
and (3)5 − 2(11)2 = 1 every solution of the equation pm − 2qn = ±1; p, q
prime; m,n > 1, has exponents m = n=2.

Lemma 2.10. (Zsigmondy Theorem) ([17]) Let p be a prime and n be a
positive integer. Then one of the following holds:

(i) there is a prime p′ such that p′|(pn − 1) but p′ - (pm − 1) for every
1 6 m < n;

(ii) p = 2, n = 1 or 6;

(iii) p is a Mersenne prime and n = 2.

Lemma 2.11. ([15, Proposition 3.2]) Let G be a �nite group and H a
normal subgroup of G. Suppose G/H is isomorphic to PSL(2, q), q odd
and q > 5, and that an element t of order 3 in G\H has no �xed points on
H. Then H = 1.

3. Main results

In this section we determine �nite groups G satisfying Γ(G) = Γ(L2(q)),
where q < 100 is a prime power.

Theorem 3.1. Let L= L2(q) where q < 100. If G is a non-abelian simple
group such that Γ(G) is a subgraph of Γ(L) and πi(L) ⊆ πi(G) for 2 6 i 6 3,
then G is one of the groups in the 2nd column of Table 1.

In the table, X is one of the following non-abelian simple groups: L2(q)
such that q = pα is a prime power and q 6= 72, 16 6 q < 100.

Proof. By assumptions we have π(G) ⊆ π(L). We consider three steps:

Step 1. If |π(L)| = 3, then L ∼= L2(5), L2(7), L2(8), L2(9) or L2(17), by
Lemma 2.2. Also G is a simple K3−group, since G is a non-abelian simple
group. Now by using the atlas of �nite groups [6], it follows that the result
holds.

Table 1.

L G

L2(5) L2(5), L2(9)
L2(7) L2(7), L2(8)
L2(8) L2(7), L2(8)
L2(9) L2(5), L2(9)

L G

L2(11) L2(11), M11

L2(13) L2(13), G2(3)
L2(49) A7, L2(49), L3(4), U4(3)

X X
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Step 2. If |π(L)|=4, then L is isomorphic to one of the following groups:
L2(11), L2(13), L2(16), L2(19), L2(23), L2(25), L2(27), L2(31), L2(32),
L2(37), L2(47), L2(49), L2(53), L2(73), L2(81) and L2(97), by Lemma 2.3.
Since G is a non-abelian simple group and Γ(G) is a subgraph of Γ(L), it
follows that G is a simple K3−group or a simple K4−group. For each L,
there exists a prime number p in πi(L), for 2 6 i 6 3, which is not in π(G),
for every simple K3−group G [6]. So G is a simple K4−group. Then G is
one of the groups listed in Lemma 2.3. Since the proofs of these cases are
similar, we do only one of them, namely L2(11).

Let L = L2(11) and G be a simple K4−group such that Γ(G) is a
subgraph of Γ(L). Since G and L are K4−groups, it follows that π(G) =
π(L). Therefore π(G) = {2, 3, 5, 11}. Hence by using Lemma 2.3 and [6],
it follows that G ∼= M11,M12, U5(2) or L2(q) where q is a prime power
satisfying q(q2 − 1) = (2, q − 1)2α13α25α311α4 , where αi ∈ N (1 6 i 6 4).
We know that 2 ∼ 5 in M12 and 3 ∼ 5 in U5(2), but 2 6∼ 5 and 3 6∼ 5 in
Γ(L). Hence G ∼= M11 or G ∼= L2(q) where q is a prime power satisfying
q(q2 − 1) = (2, q − 1)2α13α25α311α4 , where αi ∈ N (1 6 i 6 4).

If Γ(G) = Γ(L2(q)) is a subgraph of Γ(L), it follows that Γ(L2(11)) =
Γ(L2(q)), since the components of L2(q) are cliques. Now we prove that
q=11. We know that µ(L2(11)) = {5, 6, 11}. Note that {p} is a prime
graph component of G ∼= L2(q) where q = pα, and so p 6∼ p′ for every prime
number p′ 6= p. As Γ(L2(11)) = Γ(L2(q)), it follows that Γ(L2(q)) has the
same components as Γ(L2(11)). Also 2 ∼ 3 in Γ(L2(11)) and hence q 6= 2α

and q 6= 3α where α ∈ N. Therefore q = 5α or q = 11β for some α, β ∈ N.
If q = 5α, then 4 | (q− 1) and so µ(L2(q)) = {5, (5α − 1)/2, (5α + 1)/2}.

Also 2 divides (5α−1)/2 and hence 2 ∈ π((5α−1)/2). Therefore (5α+1)/2 =
11k for some k > 0. Then 5α−2 ·11k = −1 and as this diophantine equation
has no solution, by Lemma 2.9, we have a contradiction. If q = 11β , then
we consider two cases: if β is even, then 4 | (11β − 1) and so 2 | (11β − 1)/2
which implies that (11β + 1)/2 = 5k, for some k > 0. Again by using
Lemma 2.9 we get a contradiction. If β is odd, then 2 | (11β + 1)/2 and
hence (11β−1)/2 = 5k, for some k > 0. Now by using Lemma 2.9, it follows
that β = k=1. Therefore G ∼= L2(11) and the result follows.

The proof of the other cases are similar and we omit them for conve-
nience.

Step 3. Let |π(L)| = 5. Now by using [6], we can see that L is isomorphic
to one of groups L2(29), L2(41), L2(43), L2(59), L2(61), L2(64), L2(67),
L2(71), L2(79), L2(83) or L2(89). In Steps 1 and 2 we use Lemmas 2.2 and
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2.3. But in this step we have no result about simple K5−group. Therefore
we use the following method to get the result. Since Γ(L) has three com-
ponents and πi(L) ⊆ πi(G) for 2 6 i 6 3, it follows that Γ(G) has at least
three components, by Lemma 2.1. Now by using the table of non-abelian
simple groups with at least three components (see [10]), we consider all
possibilities. Again the proof of these cases are similar and for convenience
we do one of them, namely L2(29).

Let L = L2(29). We know that µ(L2(29)) = {29, 14, 15}. If G ∼= Ap

where p and p − 2 are prime numbers, then we get a contradiction, since
2, 3 ∈ π1(Ap) and Γ(G) is a subgraph of Γ(L2(29)). If G ∼= A1(q) where
4 | (q + 1), then q = 29k or (q − 1)/2 = 29k for some k ∈ N. Since
4 - (29k + 1), thus q 6= 29k. So (q − 1)/2 = 29k. Then the third component
of Γ(G) is π(q) = {3, 5}, which is a contradiction, since q is a prime power.
If G ∼= A1(q) where 4 | (q − 1), then q = 29k or (q + 1)/2 = 29k. First
let q = 29k and k > 1. Then q − 1 = 29k − 1 has a prime divisor p where
p 6∈ {2, 7}, by Zsigmondy theorem, which is a contradiction. If k=1, then
G ∼= L2(29). If (q+1)/2 = 29k, then π(q) = {3, 5}, which is a contradiction.
If G ∼= A1(q) where 4 | q, then q − 1 = 29k or q + 1 = 29k and these
diophantine equations have no solution by Lemma 2.8, a contradiction. If
G ∼= 2B2(q) where q = 22n+1 > 2, then q − 1 is equal to a power of 3, 5, 7,
29 or q−1 = 3α5β for some, α, β ∈ N. The equation q−1 = 7α has only one
solution, namely α = n = 1. Since 29 6∈ π(Sz(8)), we get a contradiction.
Also the diophantine equations q − 1 = 3α, q − 1 = 5β or q − 1 = 29γ have
no solution by Lemma 2.8. If q − 1 = 3α5β , then 3 | (22 − 1), 5 | (24 − 1)
and so q − 1 has a prime divisor, except 3, 5 for every n > 2 by Zsigmondy
theorem, which is a contradiction. Also 29 6∈ π(Sz(32)) and so n 6= 2.
Therefore this case is impossible. Since the cases 2Dp(3) where p = 2n + 1,
n > 2, 2Dp+1(2) where p = 2n − 1, n > 2, G2(q) where 3 | q and 2G2(q)
where q = 32n+1 have similar proofs, we consider only one of them, namely
2Dp(3). If G ∼= 2Dp(3) where p = 2n + 1, n > 2, then 2, 3 ∈ π1(2Dp(3)).
Since Γ(G) is a subgraph of Γ(L2(29)) and 2 6∼ 3 in Γ(L2(29)), we get a
contradiction.

If G ∼= F4(q) such that 2 | q, q > 2, then π1(G) contains at least
three prime numbers, by Zsigmondy theorem. Since Γ(G) is a subgraph of
Γ(L2(29)), this gives a contradiction.

By the same method we can show that G 6∼= 2F4(q) where q = 22n+1 > 2.
Since πi(L) ⊆ πi(G) for i=2,3, it follows that G is not isomorphic to the

following groups: A2(2), A2(4), 2A5(2), E7(2), E7(3), 2E6(2), M11, M22,
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M23, M24, J1, J3, J4, HS, Sz, ON , Ly, Co2, F23, F ′
24, M , B or Th.

If G ∼= E8(q), then π1(G) contains at least three prime numbers by Zsig-
mondy theorem, which is a contradiction. Now the proof of this theorem is
complete.

Corollary 3.1. Let L= L2(q), where q < 100 and G be a �nite simple
group such that |G| = |L|. Then G is isomorphic to L.

Proof. Straightforward from Theorem 3.1.

Theorem 3.2. Let L= L2(q), where q < 100 and G be a �nite group
satisfying Γ(G) = Γ(L). Then G is one of the groups in 2nd column of
Table 2 (G means G/Oπ(G)).

Proof. Since t(L) > 3, we can apply Lemma 2.4. Also note that G is
neither a Frobenius group nor a 2-Frobenius group by Lemmas 2.5 and 2.6.
Therefore G has a normal series 1 E N E M E G such that G/M and N are
π1−groups, N is a nilpotent π1−group and M/N is a non-abelian simple
group, such that M/N satis�es the following conditions:

(1) Γ(M/N) is a subgraph of Γ(G);

(2) πi(L) ⊆ πi(G) ⊆ π(L) for i = 2, 3; (∗)
(3) Γ(G) = Γ(L).

Case I. Since L2(5) and L2(9) have the same prime graph, we only consider
one of them. So let L = L2(5). By (∗) and Theorem 3.1, it follows that
M/N ∼= L2(5) or M/N ∼= L2(9). First let M/N ∼= L2(5). We note that
Out(L2(5)) ∼= Z2 [6]. Therefore G/M 6 Out(L2(5)) ∼= Z2, by Lemma 2.7.
If G/M ∼= Z2, then since L2(5).2 has an element of order 6, it follows that
Γ(L2(5).2) is not a subgraph of Γ(L). Thus G = M and G/Oπ(G) ∼= L2(5)
Where π ⊆ {2}. Let M/N ∼= L2(9). We know that Out(L2(9)) ∼= Z2 × Z2

and there exists three involutions in Z2 × Z2.
By using the notations of atlas L2(9).21 and L2(9).22 have elements of

order 6 and 10, respectively [6]. Thus Γ(L2(9).21) and Γ(L2(9).22) are not
subgraphs of Γ(L), and G = M . By the atlas of �nite groups, Γ(L2(9)) =
Γ(L2(9).23). So G/N ∼= L2(9) or G/N ∼= L2(9).23. If 2 ∈ π(N), then let
P ∈ Syl2(N) and Q ∈ Syl3(G). Since N is a nilpotent group, P char N
and N E G, we conclude that P E G. Also 2 6∼ 3 in Γ(L), so Q acts �xed
point freely on P . Hence QP is a Frobenius group, with kernel P and
complement Frobenius Q. Therefore Q is cyclic. This is a contradiction
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since L2(9) has no element of order 9. Hence we have N=1 and G ∼= L2(9)
or L2(9).23.

Table 2.

L G

L2(5) G ∼= L2(5), π ⊆ {2}
L2(9), L2(9).23

L2(7) L2(7) or G ∼= L2(8)
π ⊆ {2}

L2(8) L2(7) or G ∼= L2(8)
π ⊆ {2}

L2(9) G ∼= L2(5), π ⊆ {2}
L2(9), L2(9).23

L2(11) L2(11) or M11

L2(13) G ∼= L2(13) or G2(3)
π ⊆ {2, 3}

L2(16) G ∼= L2(16), π ⊆ {2}
L2(17) L2(17)
L2(19) L2(19)
L2(23) L2(23)
L2(25) L2(25), L2(25).23

L2(27) L2(27)
L2(29) L2(29)
L2(31) L2(31)
L2(32) G ∼= L2(32), π ⊆ {2}
L2(37) G ∼= L2(37), π ⊆ {2, 3}

L G

L2(41) L2(41)
L2(43) L2(43)
L2(47) L2(47)
L2(49) L2(49), L2(49).23,

G ∼= L3(4), L3(4).2′
2

L3(4).2′′
3,

L3(4).2′′
2, L3(4).2′

3,
U4(3), U4(3).23, A7

π ⊆ {2, 3}
L2(53) L2(53)
L2(59) L2(59)
L2(61) G ∼= L2(61), π ⊆ {2, 3, 5}
L2(64) G ∼= L2(64)), π ⊆ {2}
L2(67) L2(67)
L2(71) L2(71)
L2(73) G ∼= L2(73), π ⊆ {2, 3}
L2(79) L2(79)
L2(81) L2(81) , L2(81).23

L2(83) L2(83)
L2(89) L2(89)
L2(97) G ∼= L2(97), π ⊆ {2, 3}

Case II. Since L2(7) and L2(8) have the same graph, we only consider
one of them. So let L = L2(7). By (∗) and Theorem 3.1 it follows that
M/N ∼= L2(7) or M/N ∼= L2(8). First let M/N ∼= L2(7). Therefore
G/M 6 Out(L2(7)) ∼= Z2 by Lemma 2.7. Since L2(7).2 has an element of
order 6, Γ(L2(7).2) is not a subgraph of Γ(L), thus G = M . We know that
N is a 2−group. If 2 ∈ π(N), then M has a solvable {2, 3, 7}−subgroup H,
since L2(7) contains a 7:3 subgroup [6]. Since there exist no edge between
2, 3 and 7 in Γ(L), it follows that t(H)= 3, a contradiction since t(H) 6 2,
by Remark 2.1. Therefore N = 1 and G = L2(7). Let M/N ∼= L2(8). As
L2(8).3 has an element of order 6 and Out(L2(8)) ∼= Z3, then Γ(L2(8).3) is
not a subgraph of Γ(L). Therefore G = M and G/Oπ(G) ∼= L2(8) where
π ⊆ {2}.
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Case III. L = L2(11). By (∗) and Theorem 3.1, it follows that M/N ∼=
L2(11) or M/N ∼= M11. We consider both cases simultaneously. Since
Out(L2(11)) ∼= Z2, Out(M11)=1 and L2(11).2 has an element of order 10, in
each case it follows that G = M . We know that N is a {2, 3}−group. If 2 ∈
π(N), then M has a solvable {2, 5, 11}−subgroup H, since L2(11) and M11

have a 11:5 subgroup. Then Γ(L) yields t(H)=3, which is a contradiction,
since t(H) 6 2, by Remark 2.1. Similarly 3 6∈ π(N). Hence N=1 and
G ∼= L2(11) or M11.

Case IV. Since L2(13), L2(16), L2(17), L2(29), L2(32), L2(37), L2(41),
L2(53), L2(61), L2(73), L2(89) and L2(97) have similar proofs, we con-
sider only one of them. So let L = L2(13). By (∗) and Theorem 3.1,
it follows that M/N ∼= L2(13) or M/N ∼= G2(3). Let M/N ∼= L2(13).
Since Out(L2(13)) ∼= Z2 and L2(13).2 has an element of order 14, it fol-
lows that Γ(L2(13).2) is not a subgraph of Γ(L). Thus G = M and
G/Oπ(G) ∼= L2(13) where π ⊆ {2, 3}. By the same method easily we
can show that, if M/N ∼= G2(3), then G/Oπ(G) ∼= G2(3), where π ⊆ {2, 3}.
Case V. Since L2(19), L2(23), L2(27), L2(31), L2(43), L2(47), L2(59),
L2(67), L2(71), L2(79) and L2(83) have similar proofs, we only consider a
few of them. Let L = L2(19). Similar to the last cases, M/N ∼= L2(19).
Since Out(L2(19)) ∼= Z2 and L2(19).2 has an element of order 6, it fol-
lows that Γ(L2(19).2) is not a subgraph of Γ(L), and so G = M . We
know that L2(19) has a 19:9 subgroup [6]. If 2 ∈ π(N), then M has a
solvable {2, 3, 19}−subgroup H and Γ(L) yields t(H)=3, a contradiction
since t(H) 6 2. It follows that 2 6∈ π(N). Similarly, if 5 ∈ π(N), then
M has a solvable {3, 5, 19}−subgroup H. Hence Γ(L) yields t(H)=3, a
contradiction. This yields 5 6∈ π(N). Now N=1 and G ∼= L2(19). Let
L = L2(43). We know that Out(L2(43)) ∼= Z2, L2(43).2 ∼= PGL(2, 43) and
PGL(2, 43) has an element of order 6, so Γ(L2(43).2) is not a subgraph of
Γ(L), and G = M . Since L2(43) contains a 43 : 21 subgroup, then N = 1
and G ∼= L2(43).

Case VI. L = L2(25). In this case we have M/N ∼= L2(25). We note
that Out(L2(25)) ∼= Z2 × Z2 and by using the notations of the atlas of
�nite groups we know that L2(25).21 and L2(25).22 have element of order
26 and 10, respectively [6]. Thus Γ(L2(25).21) and Γ(L2(25).22) are not
subgraphs of Γ(L), and in this case G = M . By using the atlas of �nite
groups, Γ(L2(25)) = Γ(L2(25).23). So G/N ∼= L2(25) or G/N ∼= L2(25).23.
If 3 ∈ π(N), then let P ∈ Syl3(N) and Q ∈ Syl5(G). We know that N is
nilpotent and P char N , N C G. Therefore P E G. Since 3 6∼ 5 in Γ(L),
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so QP is a Frobenius group, with kernel P and complement Frobenius Q.
Therefore Q is cyclic. This is a contradiction since L2(25) has no element
of order 25. By the same method we can show that 2 6∈ π(N). Therefore
N = 1 and G ∼= L2(25) or G ∼= L2(25).23.

Case VII. L = L2(49). In this case we have M/N ∼= L2(49), A7, L3(4) or
U4(3). First let M/N ∼= L2(49). We know that Out(L2(49)) ∼= Z2 × Z2

and by using the notations of atlas, L2(49).21 and L2(49).22 have elements
of order 10 and 14, respectively. Therefore Γ(L2(49).21) and Γ(L2(49).22)
are not subgraphs of Γ(L), and so in this case G = M . But Γ(L2(q)) =
Γ(L2(49).23), so G/N ∼= L2(49) or G/N ∼= L2(49).23. If 2 ∈ π(N), then let
P ∈ Syl2(N) and Q ∈ Syl7(G). Since 2 6∼ 7 in Γ(L), so QP is a Frobenius
group. Therefore Q is cyclic. This is a contradiction, since L2(49) has no
element of order 49. By the same method we can show that 3 6∈ π(N).
Therefore N = 1 and G ∼= L2(49), G ∼= L2(49).23. Let M/N ∼= A7. Since
Out(A7) ∼= Z2 and A7.2 has an element of order 10, it follows that Γ(A7.2)
is not a subgraph of Γ(L), and so G = M . Hence G/Oπ(G) ∼= A7 where
π ⊆ {2, 3}. Let M/N ∼= L3(4). We know that Out(L3(4)) ∼= Z2 × S3.
Similar to the last cases it follows that by the notations in the atlas of
�nite groups, G/Oπ(G) ∼= L3(4), L3(4).2′

2, L3(4).2′′
2, L3(4).2′

3 or L3(4).2′′
3

where π ⊆ {2, 3}. Let M/N ∼= U4(3). We note that Out(U4(3)) ∼= D8.
Then similarly we conclude that by the notations of the atlas G/N ∼= U4(3)
or G/N ∼= U4(3).23, since 2 � 5 in Γ(L). Hence G/Oπ(G) ∼= U4(3) or
U4(3).23 where π ⊆ {2, 3}. Since U4(3).21, U4(3).22, U4(3).23 and U4(3).4
have element of order 10, then Γ(U4(3).21), Γ(U4(3).22), Γ(U4(3).23) and
Γ(U4(3).4) are not subgraphs of Γ(L), and G = M .

Case VIII. L = L2(64). By assumption we have M/N ∼= L2(64). We note
that Out(L2(64)) ∼= Z2 × Z3. Since L2(64).2 and L2(64).3 have elements
of order 6, thus Γ(L2(64).2) and Γ(L2(64).3) are not subgraphs of Γ(L).
Therefore G = M and G/Oπ(G) ∼= L2(64) where π ⊆ {2}.
Case IX. L = L2(81). By (∗), it follows from Theorem 3.1 that M/N ∼=
L2(81). Since Out(L2(81)) ∼= Z2 × Z4 and L2(81).21 and L2(81).22 have
element of order 82 and 6, respectively, thus Γ(L2(81).21) and Γ(L2(81).22)
are not subgraphs of Γ(L), and in these cases G = M . But Γ(L2(81) =
Γ(L2(81).23. If 2 ∈ π(N), then let P ∈ Syl2(N) and Q ∈ Syl3(G). There-
fore P E G. Since 2 6∼ 3 in Γ(L), so QP is a Frobenius group, with kernel
P and complement Frobenius Q. Therefore Q is cyclic. This is a contradic-
tion, since L2(81) has no element of order 34. By the same method we can
show 5 6∈ π(N). Therefore N=1 and G ∼= L2(81) or L2(81).23. �
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