Actions of a subgroup of the modular group on an imaginary quadratic field

Muhammad Ashiq and Qaiser Mushtaq

Abstract

The imaginary quadratic fields are defined by the set $\{a + b\sqrt{-n} : a, b \in Q\}$ and are denoted by $Q(\sqrt{-n})$, where *n* is a square-free positive integer. In this paper we have proved that if $\alpha = \frac{a+\sqrt{-n}}{c} \in Q^*(\sqrt{-n}) = \{\frac{a+\sqrt{-n}}{c} : a, \frac{a^2+n}{c}, c \in Z, c \neq 0\}$, then *n* does not change its value in the orbit αG , where $G = \langle u, v : u^3 = v^3 = 1 \rangle$. Also we show that the number of orbits of $Q^*(\sqrt{-n})$ under the action of *G* are 2[d(n) + 2d(n+1) - 6] and 2[d(n) + 2d(n+1) - 4] according to *n* is odd or even, except for n = 3 for which there are exactly eight orbits. Also, the action of *G* on $Q^*(\sqrt{-n})$ is always intransitive.

1. Introduction

It is well known [6] that the modular group PSL(2, Z), where Z is the ring of integers, is generated by the linear-fractional transformations $x: z \longrightarrow \frac{-1}{z}$ and $y: z \longrightarrow \frac{z-1}{z}$ and has the presentation $\langle x, y: x^2 = y^3 = 1 \rangle$.

and $y: z \longrightarrow \frac{z-1}{z}$ and has the presentation $\langle x, y : x^2 = y^3 = 1 \rangle$. Let v = xyx, and u = y. Then $(z)v = \frac{-1}{z+1}$ and thus $u^3 = v^3 = 1$. So the group $G = \langle u, v \rangle$ is a proper subgroup of the modular group PSL(2, Z) [1].

The algebraic integer of the form $a + b\sqrt{n}$, where *n* is square free, forms a quadratic field and is denoted by $Q(\sqrt{n})$. If n > 0, the field is a called *real* quadratic field, and if n < 0, it is called an *imaginary quadratic field*. The integers in $Q(\sqrt{1})$ are simply called the *integers*. The integers in $Q(\sqrt{-1})$ are called *Gaussian integers*, and the integers in $Q(\sqrt{-3})$ are called *Eisen*stein integers. The algebraic integers in an arbitrary quadratic field do not

²⁰⁰⁰ Mathematics Subject Classification: 05C25, 11E04, 20G15

Keywords: Imaginary quadratic field, linear fractional transformation, extension field, coset diagram.

necessarily have unique factorization. For example, the fields $Q(\sqrt{-5})$ and $Q(\sqrt{-6})$ are not uniquely factorable. All other quadratic fields $Q(\sqrt{n})$ with $n \leq 7$ are uniquely factorizable.

A number is said to be square free if its prime decomposition contains no repeated factors. All primes are therefore trivially square free.

Let F be an extension field of degree two over the field Q of rational numbers. Then any element $x \in F - Q$ is of degree two over Q and is a primitive element of F. Let $F(x) = x^2 + bx + c$, where $b, c \in Q$, be the minimal polynomial of such an element $x \in F$. Then $2x = -b \pm \sqrt{b^2 - 4c}$ and so $F = Q(\sqrt{b^2 - 4c})$. Here, since $b^2 - 4c$ is a rational number $\frac{l}{m} = \frac{lm}{m^2}$ with $l, m \in Z$, we obtain $F = Q(\sqrt{lm})$ with $l, m \in Z$. In fact it is possible to write $F = Q(\sqrt{n})$, where n is a square free integer.

The imaginary quadratic fields are usually denoted by $Q(\sqrt{-n})$, where n is a square free positive integer. We shall denote the subset

$$\left\{\frac{a+\sqrt{-n}}{c}: a, \frac{a^2+n}{c}, c \in Z, c \neq 0\right\}$$

by $Q^*(\sqrt{-n})$. The imaginary quadratic fields are very useful in different branches of mathematics. For example, [3] the Bianchi groups are the groups $PSL_2(O_n)$, where O_n is the ring of integers of the imaginary quadratic number field $Q(\sqrt{-n})$. Also it is known that O_n is an Euclidean ring if and only if n = 1, 2, 3, 7 or 11.

In [2, 4], many properties of $Q(\sqrt{n})$ have been discussed. Here we discuss some fundamental results of $G = \langle u, v : u^3 = v^3 = 1 \rangle$ on $Q^*(\sqrt{-n})$.

2. Coset diagrams

We use coset diagrams, as defined in [4] and [5], for the group G and study its action on the projective line over imaginary quadratic fields. The coset diagrams for the group G are defined as follows. The three cycles of the transformation u are denoted by three unbroken edges of a triangle permuted anti-clockwise by u and the three cycles of the transformation v are denoted by three broken edges of a triangle permuted anti-clockwise by v. Fixed points of u and v, if they exist, are denoted by heavy dots. This graph can be interpreted as a coset diagram with the vertices identified with the cosets of $Stab_{v_1}(G)$, the stabilizer of some vertex v_1 of the graph, or as 1-skeleton of the cover of the fundamental complex of the presentation which corresponds to the subgroup $Stab_{v_1}(G)$. Let αG denote the orbit of α in an action of G on $Q^*(\sqrt{-n})$.

For instance, in the case of G acting on the projective line over the field $Q^*(\sqrt{n})$, a fragment of a coset diagram will look as follows:

(1) If $k \neq 1, 0, \infty$ then of the vertices k, ku, ku^2 of a triangle, in a coset diagram for the action of G on any subset of the projective line, one vertex is negative and two are positive.

(2) If $k \neq -1, 0, \infty$ then of the vertices k, kv, kv^2 of a triangle, in a coset diagram for the action of G on any subset of the projective line, one

vertex is positive and two are negative.

Theorem 1. If $\alpha = \frac{a+\sqrt{-n}}{c} \in Q^*(\sqrt{-n})$, then n does not change its value in αG .

Proof. Let $\alpha = \frac{a+\sqrt{-n}}{c}$ and $b = \frac{a^2+n}{c}$. Since $(\alpha)u = \frac{\alpha-1}{\alpha} = 1 - \frac{1}{\alpha} = 1 - \frac{1}{\alpha} = 1 - \frac{1}{\alpha} = 1 - \frac{c}{a+\sqrt{-n}} = \frac{b-a+\sqrt{-n}}{b}$. Therefore, the new values of a and c for $(\alpha)u$ are b-a and b respectively. The new value of b for $(\alpha)u$ is $\frac{(b-a)^2+n}{b} = -2a+b+c$. Now $(\alpha)v = \frac{-1}{\alpha+1} = \frac{-c}{a+c+\sqrt{-n}} = \frac{-a-c+\sqrt{-n}}{b+c+2a}$. Therefore the new values of a and c for $(\alpha)v$ are -a-c and 2a+b+c respectively. The new value of b for $(\alpha)v$ is $\frac{(-a-c)^2+n}{2a+b+c} = c$. Similarly, we can calculate the new values of a, b and c for $(\alpha)u^2, (\alpha)v^2, (\alpha)uv, (\alpha)u^2v, (\alpha)vu, (\alpha)uv^2, (\alpha)vu^2$ and $(\alpha)v^2u$ as follows:

α	a	b	c
$(\alpha)u$	b-a	-2a+b+c	b
$(\alpha)v$	-a-c	С	2a+b+c
$(\alpha)u^2$	c-a	С	-2a+b+c
$(\alpha)v^2$	-a-b	2a+b+c	b
$(\alpha)uv$	a-2b	b	-4a + 4b + c
$(\alpha)u^2v$	3a-b-2c	-2a+b+c	-4a+b+4c
$(\alpha)vu$	a+2b	4a + b + 4c	С
$(\alpha)v^2u$	3a+2b+c	4a + 4b + c	2a+b+c
$(\alpha)uv^2$	3a-2b-c	-4a + 4b + c	-2a+b+c
$(\alpha)vu^2$	3a+b+2c	2a+b+c	4a + b + 4c
		<i>T</i> 1 1	

 $Table \ 1$

From the above information we see that all the elements of αG are in $Q^*(\sqrt{-n})$. That is, *n* does not change its value in αG .

As we know from [5] the real quadratic irrational numbers are fixed points of the elements of $PSL(2, Z) = \langle x^2 = y^3 = 1 \rangle$ except for the group theoretic conjugates of $x, y^{\pm 1}$ and $(xy)^n$. Now we want to see that when imaginary quadratic numbers are fixed points of the elements of G.

3. Existence of fixed points in $Q^*(\sqrt{-3})$

Remark 1. Let (z)u = z. Then $\frac{z-1}{z} = z$ gives $z^2 - z + 1 = 0$. Thus $z = \frac{1\pm\sqrt{-3}}{2} \in Q^*(\sqrt{-3})$. Similarly, (z)v = z implies $\frac{-1}{z+1} = z$. So, $z^2 + z + 1 = 0$ gives $z = \frac{-1\pm\sqrt{-3}}{2} \in Q^*(\sqrt{-3})$.

Theorem 2. The fixed points under the action of G on $Q^*(\sqrt{-n})$ exist only if n = 3.

Proof. Let g be a linear-fractional transformation in G. Then, (z)g can be taken as $\frac{az+b}{cz+d}$ where ad - bc = 1. Let $\frac{az+b}{cz+d} = z$ which yields us the quadratic equation $cz^2 + (d-a)z - b = 0$. It has the imaginary roots only if $(d-a)^2 + 4bc < 0$ or $(d+a)^2 - 4(ad-bc) < 0$ or $(a+d)^2 < 4$. That is, $a+d=0,\pm 1$.

If a + d = 0 then g is an involution. But there is no involution in G. Now, if $a + d = \pm 1$ then as $(trace(g))^2 = \det(g)$, order of g will be three and hence it is conjugate to the linear fractional transformations $u^{\pm 1}$ and $v^{\pm 1}$. Since the fixed points of the linear fractional transformations u and v (by Remark 1) are $\frac{1\pm\sqrt{-3}}{2}$ and $\frac{-1\pm\sqrt{-3}}{2}$ respectively, therefore, the roots of the quadratic equation $cz^2 + (d-a)z - b = 0$ belong to the imaginary quadratic field $Q^*(\sqrt{-3})$. If two elements of G are conjugate, then their corresponding determinants are also equivalent.

4. Orbits of $Q^*(\sqrt{-n})$

Definition 1. If $\alpha = \frac{a+\sqrt{-n}}{c} \in Q^*(\sqrt{-n})$ is such that ac < 0 then α is called a *totally negative imaginary quadratic number* and *totally positive imaginary quadratic number* if ac > 0.

As $b = \frac{a^2+n}{c}$, therefore, bc is always positive. So, b and c have same sign. Hence an imaginary quadratic number $\alpha = \frac{a+\sqrt{-n}}{c} \in Q^*(\sqrt{-n})$ is totally negative if either a < 0 and b, c > 0 or a > 0 and b, c < 0. Similarly $\alpha = \frac{a+\sqrt{-n}}{c} \in Q^*(\sqrt{-n})$ is totally positive if either a, b, c > 0 or a, b, c < 0.

Theorem 3.

- (i) If α is a totally negative imaginary quadratic number then $(\alpha)u$ and $(\alpha)u^2$ are both totally positive imaginary quadratic numbers.
- (ii) If α is a totally positive imaginary quadratic number then $(\alpha)v$ and $(\alpha)v^2$ are both totally negative imaginary quadratic numbers.

Proof. (i) Let $\alpha = \frac{a+\sqrt{-n}}{c}$ be a totally negative imaginary quadratic number. Here there are two possibilities: either a < 0 and b, c > 0 or a > 0 and b, c < 0.

Let a < 0 and b, c > 0. We can easily tabulate the following information.

α	a	b	c
$(\alpha)u$	b-a	-2a+b+c	b
$(\alpha)u^2$	c-a	c	-2a+b+c

From the above information, we see that the new values of a, b and c for $(\alpha)u$ and $(\alpha)u^2$ are positive. Therefore, $(\alpha)u$ and $(\alpha)u^2$ are totally positive imaginary quadratic numbers.

Now, let a > 0 and b, c < 0. Then the new values of a, b and c for $(\alpha)u$ and $(\alpha)u^2$ are negative. Therefore, $(\alpha)u$ and $(\alpha)u^2$ are totally positive imaginary quadratic numbers.

(ii) Let $\alpha = \frac{a + \sqrt{-n}}{c}$ be a totally positive imaginary quadratic number. Here there are two possibilities: either a, b, c > 0 or a, b, c < 0.

Let a, b, c > 0. Then one can easily tabulate the following information.

α	a	b	c
$(\alpha)v$	-a-c	С	2a+b+c
$(\alpha)v^2$	-a-b	2a+b+c	b

From the above information, we see that the new value of a for $(\alpha)v$ and $(\alpha)v^2$ is negative and the new values of b and c for $(\alpha)v$ and $(\alpha)v^2$ are positive. Therefore, $(\alpha)v$ and $(\alpha)v^2$ are totally negative imaginary quadratic numbers.

Now, let a, b, c < 0. Then the new value of a for $(\alpha)v$ and $(\alpha)v^2$ is positive and the new values of b and c for $(\alpha)v$ and $(\alpha)v^2$ are negative. Therefore, $(\alpha)v$ and $(\alpha)v^2$ are totally negative imaginary quadratic numbers.

Theorem 4.

- (i) If $\alpha = \frac{a+\sqrt{-n}}{c}$ where c > 0 then the numerator of every element in αG is also positive. (ii) If $\alpha = \frac{a+\sqrt{-n}}{c}$ where c < 0 then the numerator of every element in

the orbit αG is also negative.

Proof. (i) Since $\alpha = \frac{a+\sqrt{-n}}{c}$ with c > 0, therefore, b is also positive. As b and c always have the same sign. Using this fact we can easily see from the information given in Table 1 that every element in αG has positive numerator.

(*ii*) Since $\alpha = \frac{a+\sqrt{-n}}{c}$ with c < 0, therefore, b is also negative. As b and c always have the same sign. Using this fact we can easily see from the information given in Table 2 that every element in αG has negative numerator.

For
$$\alpha = \frac{a+\sqrt{-n}}{c} \in Q^*(\sqrt{-n})$$
, we define $\|\alpha\| = |a|$.

Theorem 5.

- (i) Let α be a totally negative imaginary quadratic number. Then $\|(\alpha)u\| > \|\alpha\|$ and $\|(\alpha)u^2\| > \|\alpha\|$, and
- (ii) Let α be a totally positive imaginary quadratic number. Then $\|(\alpha)v\| > \|\alpha\|$ and $\|(\alpha)v^2\| > \|\alpha\|$.

Proof. (i) Let α be a totally negative imaginary quadratic number. Then either, a < 0 and b, c > 0 or a > 0 and b, c < 0. Let us take a < 0 and b, c > 0. Then, by Theorem 3(i) $(\alpha)u$ and $(\alpha)u^2$ both are totally positive imaginary quadratic numbers. Thus, $\|(\alpha)u\| = |b-a| > |a| = \|\alpha\|$, and $\|(\alpha)u^2\| = |c-a| > = |a| = \|\alpha\|$. Similarly, we have the same result for a > 0 and b, c < 0.

(ii) Let α be a totally positive imaginary quadratic number. Then either, a, b, c > 0 or a, b, c < 0. Let us take a, b, c > 0. Now, using the information given in Table 1, we can easily see that $||(\alpha)v|| = |-a - c| =$ $|a + c| > |a| = ||\alpha||$ and $||(\alpha)v^2|| = |-a - b| = |a + b| > |a| = ||\alpha||$. Similarly, we have the same result for a, b, c < 0.

Theorem 6. Let α be a totally positive or negative imaginary quadratic number. Then there exists a sequence $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_m$ such that α_i is alternately totally negative and totally positive number for $i = 1, 2, 3, \ldots, m-1$ and $\|\alpha_m\| = 0$ or 1.

Proof. Let $\alpha = \alpha_1$ be a totally positive imaginary quadratic number. Then, by Theorem 3(i), $(\alpha)u$ or $(\alpha)u^2$ is a totally negative imaginary quadratic number. If $(\alpha)u$ is a totally negative imaginary quadratic number, then put $\alpha_2 = (\alpha)u$ and by Theorem 5(i), $||(\alpha_1)|| > ||\alpha_2||$. Now if $(\alpha)u^2$ is a totally

negative imaginary quadratic number, then put $\alpha_2 = (\alpha)u^2$. In this case we have also $||(\alpha_1)|| > ||\alpha_2||$.

Now if $(\alpha)u$ a is totally negative imaginary quadratic number, then $(\alpha)uv$ or $(\alpha)uv^2$ is a totally positive imaginary quadratic number. If $(\alpha)uv$ is a totally positive imaginary quadratic number, put $(\alpha)uv = \alpha_3$ and so by Theorem $5(ii) ||(\alpha)uv|| < ||(\alpha)u|| < ||\alpha||$ or $||\alpha_3|| < ||\alpha_2|| < ||\alpha_1||$ and continuing in this way we obtain an alternate sequence $\alpha_1, \alpha_2, \ldots, \alpha_m$ of totally positive and totally negative numbers such that $||\alpha_1|| > ||\alpha_2|| > ||\alpha_3|| > \ldots > ||\alpha_m||$. Since $||\alpha_1||, ||\alpha_2||, ||\alpha_3||, \ldots, ||\alpha_m||$ is a decreasing sequence of non negative integers, therefore, it must terminate and that happens only when ultimately we reach at an imaginary quadratic number $\alpha_m = \frac{a'+\sqrt{-n}}{c}$ such that $||\alpha_m|| = |a'| = 0$ or 1. It can be shown diagrammatically as:

Theorem 7. There are exactly eight orbits of $Q^*(\sqrt{-n})$ under the action of the group G when n = 3.

Proof. As we have seen in Theorem 6, we get a decreasing sequence of non negative integers $\|\alpha_1\|, \|\alpha_2\|, \|\alpha_3\|, \ldots, \|\alpha_m\|$ such that $\|\alpha_1\| > \|\alpha_2\| > \|\alpha_3\| > \ldots > \|\alpha_m\|$ which must terminate and that happens only when ultimately we reach at an imaginary quadratic number $\alpha_m = \frac{a' + \sqrt{-3}}{c}$ such that $\|\alpha_m\| = |a'| = 0$ or 1.

that $\|\alpha_m\| = |a'| = 0$ or 1. If $\alpha_m = \frac{1\pm\sqrt{-3}}{2}$ or $\frac{-1\pm\sqrt{-3}}{2}$ then because $\frac{\pm 1\pm\sqrt{-3}}{2}$ are the fixed points of u and v, therefore, we cannot reach at an imaginary quadratic number whose norm is equal to zero. So in this case there are four orbits, namely $\frac{1+\sqrt{-3}}{2}G$, $\frac{1-\sqrt{-3}}{2}G$, $\frac{-1+\sqrt{-3}}{2}G$ and $\frac{-1-\sqrt{-3}}{2}G$ of $Q^*(\sqrt{-3})$.

Now, if we reach at an imaginary quadratic number $\alpha_m = \frac{a'+\sqrt{-3}}{c}$ such that $\|\alpha_m\| = |a'| = 0$ then $\alpha_m = \frac{\sqrt{-3}}{c}$. Since $\alpha_m = \frac{\sqrt{-3}}{c} \in Q^*(\sqrt{-3})$, therefore, $c = \pm 1, \pm 3$. That is, $\alpha_m = \frac{\sqrt{-3}}{1}, \frac{\sqrt{-3}}{3}, \frac{\sqrt{-3}}{-1}$, and $\frac{\sqrt{-3}}{-3}$.

Now, if $\alpha = \frac{\sqrt{-3}}{1}$, we can easily calculate the new values of a, b, and c as:

α	0	3	1
$(\alpha)u$	3	4	3
$(\alpha)v$	-1	1	4
$(\alpha)u^2$	1	1	4
$(\alpha)v^2$	-3	4	3

Hence from the above table, we see that $\sqrt{-3}$, $\frac{1+\sqrt{-3}}{4}$ and $\frac{-1+\sqrt{-3}}{4}$ lie in αG .

Similarly, if $\alpha = \frac{\sqrt{-3}}{-1}$, then $-\sqrt{-3}$, $\frac{-1+\sqrt{-3}}{-4}$ and $\frac{1+\sqrt{-3}}{-4}$ lie in αG , if $\alpha = \frac{\sqrt{-3}}{3}$, then $\frac{\sqrt{-3}}{3}$, $\frac{1+\sqrt{-3}}{1}$ and $\frac{-1+\sqrt{-3}}{1}$ lie in αG , and if $\alpha = \frac{\sqrt{-3}}{-3}$, then $\frac{\sqrt{-3}}{-3}$, $\frac{1+\sqrt{-3}}{-1}$ and $\frac{-1+\sqrt{-3}}{-1}$ lie in αG .

Thus, $\frac{\sqrt{-3}}{1}$, $\frac{\sqrt{-3}}{-1}$, $\frac{\sqrt{-3}}{3}$, and $\frac{\sqrt{-3}}{-3}$ lie in four different orbits. Hence there are exactly eight orbits of $Q^*(\sqrt{-n})$ for n = 3.

Remark 2.

- 1. If $\alpha = \frac{a+\sqrt{-n}}{c} \in Q^*(\sqrt{-n})$ then $Stab_{\alpha}(G)$ is non-trivial only if n = 3. Particularly, if $\alpha = \frac{\pm 1 \pm \sqrt{-3}}{2}$ then $Stab_{\alpha}(G) \cong C_3$.
- 2. In $Q^*(\sqrt{-3})$, there are four elements of norm zero, namely $\frac{\sqrt{-3}}{1}$, $\frac{\sqrt{-3}}{-1}$ $\frac{\sqrt{-3}}{3}$, and $\frac{\sqrt{-3}}{-3}$.
- 3. In $Q^*(\sqrt{-3})$, there are twelve elements of norm one, namely $\frac{\pm 1 \pm \sqrt{-3}}{2}$, $\frac{\pm 1 \pm \sqrt{-3}}{4}$, and $\frac{\pm 1 \pm \sqrt{-3}}{1}$.

- **Theorem 8.** Let $\alpha \in Q^*(\sqrt{-n})$, where $n \neq 3$. Then (i) if $\alpha = \sqrt{-n}$, then $\sqrt{-n}$, $\frac{1+\sqrt{-n}}{n+1}$ and $\frac{-1+\sqrt{-n}}{n+1}$ lie in αG , (ii) if $\alpha = \frac{\sqrt{-n}}{n}$, then $\frac{\sqrt{-n}}{n}$, $\frac{1+\sqrt{-n}}{1}$ and $\frac{-1+\sqrt{-n}}{1}$ lie in αG , (iii) if $\alpha = \frac{\sqrt{-n}}{2}$, where n is even and $l_1 = \frac{n}{2}$, then α is the only element
 - (iii) if $\alpha = \frac{1}{2}$, where n is even and $r_1 = \frac{1}{2}$, where α is the only element of norm zero in αG , (iv) if $\alpha = \frac{\sqrt{-n}}{n_1}$, where $k_1 = \frac{n}{n_1}$ and $n_1 \neq 1$, 2 or n, then α is the only element of norm zero in αG , and (v) if $\alpha = \frac{1+\sqrt{-n}}{c_1}$, where $1 + n = c_1c_2$ and $c_1 \neq 1$ or n + 1, then α is the only element of norm one in αG .

Proof. (i) If $\alpha = \sqrt{-n}$, then, we can easily tabulate the following information.

α	0	n	1
$(\alpha)u$	n	n+1	n
$(\alpha)v$	-1	1	n+1
$(\alpha)u^2$	1	1	n+1
$(\alpha)v^2$	-n	n+1	n

Hence from the above table, we see that $\sqrt{-n}$, $\frac{1+\sqrt{-n}}{n+1}$ and $\frac{-1+\sqrt{-n}}{n+1}$ lie in αG .

(*ii*) If $\alpha = \frac{\sqrt{-n}}{n}$, then we can calculate the new values of a, b, and c as:

α	0	1	n
$(\alpha)u$	1	n+1	1
$(\alpha)v$	-n	n	n+1
$(\alpha)u^2$	n	n	n+1
$(\alpha)v^2$	-1	n+1	1

Hence from the above table, we see that $\frac{\sqrt{-n}}{n}$, $\frac{1+\sqrt{-n}}{1}$ and $\frac{-1+\sqrt{-n}}{1}$ lie in αG .

(*iii*) If $\alpha = \frac{\sqrt{-n}}{2}$, then we can calculate the new values of a, b, and c as:

α	0	l_1	2
$(\alpha)u$	l_1	$l_1 + 2$	l_1
$(\alpha)v$	-2	2	$l_1 + 2$
$(\alpha)u^2$	2	2	$l_1 + 2$
$(\alpha)v^2$	$-l_1$	$l_1 + 2$	l_1

Hence from the above table, we see that α is the only element of norm zero in αG .

(<i>iv</i>) Let $\alpha = \frac{\sqrt{-n}}{n_1}$, where $k_1 =$	$\frac{n}{n_1}$ and n_1	$\neq 1$ or n , then
--	-----------------	---------------------------	------------------------

α	0	k_1	n_1
$(\alpha)u$	k_1	$n_1 + k_1$	k_1
$(\alpha)v$	$-n_{1}$	n_1	$n_1 + k_1$
$(\alpha)u^2$	n_1	n_1	$n_1 + k_1$
$(\alpha)v^2$	$-k_1$	$n_1 + k_1$	k_1

Hence from the above table, we see that α is the only element of norm zero in αG .

(v) Let $\alpha = \frac{1+\sqrt{-n}}{c_1}$, where $1+n = c_1c_2$ and $c_1 \neq 1$ or n+1, then the new values of a, b, and c can be calculated as:

α	1	c_2	c_1
$(\alpha)u$	$c_2 - 1$	$-2 + c_1 + c_2$	c_2
$(\alpha)v$	$-1 - c_1$	c_1	$2 + c_1 + c_2$
$(\alpha)u^2$	$c_1 - 1$	c_1	$-2 + c_1 + c_2$
$(\alpha)v^2$	$-1 - c_2$	$2 + c_1 + c_2$	c_2

If $c_1 = 2$, then $\|(\alpha)u^2\| = 1$ implies that $(\alpha)u^2 = \frac{1+\sqrt{-n}}{c_2}$. If $c_1 = -2$, then $\|(\alpha)v\| = 1$ implies that $(\alpha)v = \frac{1+\sqrt{-n}}{c_2}$. That is, $\frac{1+\sqrt{-n}}{2}$ and $\frac{1+\sqrt{-n}}{(\frac{n+1}{2})}$ lie in the same orbit, and $\frac{1+\sqrt{-n}}{-2}$ and $\frac{1+\sqrt{-n}}{-(\frac{n+1}{2})}$ lie in the same orbit.

Now if $c_1 \neq 1, 2$ or $\frac{n+1}{2}, n+1$, that is, $c_2 \neq n+1, \frac{n+1}{2}$ or 1, then $\frac{1+\sqrt{-n}}{c_1}$ lie in αG .

Example 1. By using Theorem 8, the orbits of $Q^*(\sqrt{-14})$ are:

(i)
$$\sqrt{-14}$$
, $\frac{1+\sqrt{-14}}{15}$ and $\frac{-1+\sqrt{-14}}{15}$ lie in $\sqrt{-14}G$,
(ii) $\frac{\sqrt{-14}}{-1}$, $\frac{1+\sqrt{-14}}{-15}$ and $\frac{-1+\sqrt{-14}}{-15}$ lie in $\frac{\sqrt{-14}}{-1}G$,
(iii) $\frac{\sqrt{-14}}{14}$, $\frac{1+\sqrt{-14}}{1}$ and $\frac{-1+\sqrt{-14}}{1}$ lie in $\frac{\sqrt{-14}}{14}G$,
(iv) $\frac{\sqrt{-14}}{-14}$, $\frac{1+\sqrt{-14}}{-1}$ and $\frac{-1+\sqrt{-14}}{-1}$ lie in $\frac{\sqrt{-14}}{-14}G$,
(v) $\frac{\sqrt{-14}}{-2}$ lies in $\frac{\sqrt{-14}}{-2}G$,
(vi) $\frac{\sqrt{-14}}{-2}$ lies in $\frac{\sqrt{-14}}{-2}G$,
(vii) $\frac{\sqrt{-14}}{-2}$ lies in $\frac{\sqrt{-14}}{-2}G$,
(viii) $\frac{\sqrt{-14}}{-7}$ lies in $\frac{\sqrt{-14}}{-7}G$,
(ix) $\frac{1+\sqrt{-14}}{-7}$ lies in $\frac{-1+\sqrt{-14}}{-7}G$,
(ix) $\frac{1+\sqrt{-14}}{-7}$ lies in $\frac{-1+\sqrt{-14}}{-7}G$,
(xi) $\frac{1+\sqrt{-14}}{-3}$ lies in $\frac{1+\sqrt{-14}}{-3}G$,
(xii) $\frac{1+\sqrt{-14}}{-3}$ lies in $\frac{1+\sqrt{-14}}{-3}G$,
(xiii) $\frac{-1+\sqrt{-14}}{-5}$ lies in $\frac{-1+\sqrt{-14}}{-5}G$,
(xiv) $\frac{-1+\sqrt{-14}}{-5}$ lies in $\frac{-1+\sqrt{-14}}{-5}G$, and
(xv) $\frac{1+\sqrt{-14}}{-5}$ lies in $\frac{-1+\sqrt{-14}}{-5}G$.
there are sixteen orbits of $Q^*(\sqrt{-n})$.

So,

Remark 3. 1. If $\alpha = \frac{a+\sqrt{-n}}{c} \in Q^*(\sqrt{-n})$, then αG contains the conjugates of the ele-

ments of αG . Since $\alpha = \frac{a+\sqrt{-n}}{c}$ and $\overline{\alpha} = \frac{a-\sqrt{-n}}{c}$ lie in two different orbits, therefore, αG and $\overline{\alpha} G$ are always disjoint.

2. The elements of norm zero and one in $Q^*(\sqrt{-n})$, play a vital role to identify the orbits of $Q^*(\sqrt{-n})$.

Definition 2. If n is a positive integer then d(n) denotes the arithmetic function defined by the number of positive divisors of n.

For example, d(1) = 1, d(2) = 2, d(3) = 2, d(4) = 3, d(5) = 2 and d(6) = 4.

Theorem 9. If $n \neq 3$, then the total number of orbits of $Q^*(\sqrt{-n})$ under the action of G are:

- (i) 2[d(n) + 2d(n+1) 6] if n is odd, and
- (*ii*) 2[d(n) + 2d(n+1) 4] if n is even.

Proof. First suppose that n is odd, that is n + 1 is even. Let the divisors of n are $\pm 1, \pm n_1, \pm n_2, \pm, \ldots, \pm n$ and the divisors of n + 1 are $\pm 1, \pm 2, \pm m_1, \pm m_2, \pm, \ldots, \pm \frac{(n+1)}{2}, \pm (n+1)$. Then by Theorem 8(i), there exist two orbits of $Q^*(\sqrt{-n})$ corresponding to the divisors ± 1 of n and $\pm (n+1)$ of n+1. By Theorem 8(ii), there exist two orbits of $Q^*(\sqrt{-n})$ corresponding to the divisors $\pm n$ of n and ± 1 of n+1. By Theorem 8(v), there exists four orbits of $Q^*(\sqrt{-n})$ corresponding to the divisors $\pm 2, \pm (\frac{n+1}{2})$ of n+1. Now we are left with 2d(n) - 4 and 4d(n+1) - 16. Thus total orbits are 2d(n) - 4 + 4d(n+1) - 16 + 8 = 2d(n) + 4d(n+1) - 12 = 2[d(n) + 2d(n+1) - 6].

Now if n is even, then the total orbits are [2d(n)-4]+[4d(n+1)-8]+4 = 2d(n) + 4d(n+1) - 8 = 2[d(n) + 2d(n+1) - 4].

Example 2. Now, by using Theorem 9,

(i) the orbits of $Q^*(\sqrt{-14})$ are:

2[d(n) + 2d(n+1) - 4] = 2[d(14) + 2d(15) - 4] = 2[4 + 8 - 4] = 16,

(*ii*) the orbits of $Q^*(\sqrt{-15})$ are: 2[d(n) + 2d(n+1) - 6] = 2[d(15) + 2d(16) - 6] = 2[4 + 10 - 6] = 16.

Theorem 10. There are 2d(n) elements of $Q^*(\sqrt{-n})$ of norm zero under the action of G.

Proof. As we have seen in Theorem 6, we get a decreasing sequence of nonnegative integers $\|\alpha_1\|$, $\|\alpha_2\|$, $\|\alpha_3\|$, ..., $\|\alpha_m\|$ such that $\|\alpha_1\| > \|\alpha_2\| >$ $\|\alpha_3\| > \ldots > \|\alpha_m\|$ which must terminate and that happens only when

and

ultimately we reach at an imaginary quadratic number $\alpha_m = \frac{a' + \sqrt{-n}}{c}$ such that $\|\alpha_m\| = |a'| = 0$. Thus $\alpha_m = \frac{\sqrt{-n}}{c}$. Since $\alpha_m = \frac{\sqrt{-n}}{c} \in Q^*(\sqrt{-n})$, therefore, c must be a divisor of n. Hence there are 2d(n) elements of $Q^*(\sqrt{-n})$ of norm zero under the action of G.

Theorem 11. There are 4d(n+1) elements of $Q^*(\sqrt{-n})$ of norm one under the action of G.

Proof. As we have seen in Theorem 6, there exists a decreasing sequence of non-negative integers $\|\alpha_1\|$, $\|\alpha_2\|$, $\|\alpha_3\|$, ..., $\|\alpha_m\|$ such that $\|\alpha_1\| >$ $\|\alpha_2\| > \|\alpha_3\| > \ldots > \|\alpha_m\|$ which must terminate and that happens only when ultimately we reach at an imaginary quadratic number $\alpha_m = \frac{a' + \sqrt{-n}}{c}$ such that $\|\alpha_m\| = |a'| = 1$. Then $\alpha_m = \frac{\pm 1 + \sqrt{-n}}{c}$, where $b = \frac{a^2 + n}{c} = \frac{1 + n}{c}$, that is, c must be a divisor of n + 1. Hence there are 4d(n + 1) elements of $Q^*(\sqrt{-n})$ of norm one under the action of G.

Corollary. The action of G on $Q^*(\sqrt{-n})$ is intransitive.

Proof. If n is even, then the minimum value of n in $Q^*(\sqrt{-n})$ is two. So, by Theorem 9, the total number of orbits are 2[d(n) + 2d(n+1) - 4] = 2[2+2(2)-4] = 4. So, the action of G on $Q^*(\sqrt{-n})$ must be intransitive.

Now, if n is odd, then the minimum value of n in $Q^*(\sqrt{-n})$ is five, when $n \neq 3$. So, by Theorem 10, the total number of orbits are 2[d(n) + 2d(n + 1) - 6] = 2[2+2(4)-6] = 8. So, the action of G on $Q^*(\sqrt{-n})$ is intransitive.

According to Theorem 7, there are exactly eight orbits of $Q^*(\sqrt{-n})$ when n = 3 under the action of the group G. Hence the proof.

References

- M. Ashiq and Q. Mushtaq: Finite presentation of a linear-fractional group, Algebra Colloquium 12 (2005), 585 – 589.
- [2] M. Aslam, Q. Mustaq, T. Maqsood and M. Ashiq: Real quadratic irrational numbers and the group $\langle x, y : x^2 = y^6 = 1 \rangle$, Southeast Asian Bull. Math. 27 (2003), 409 415.
- [3] A. W. Mason: Free quotients of subgroups of the Bianchi groups whose kernels contain many elementary matrices, Math. Proc. Camb. Phil. Soc. 116 (1994), 253 - 273.
- [4] Q. Mushtaq: Modular group acting on real quadratic fields, Bull. Austral. Math. Soc. 37 (1988), 303 - 306.

- [5] Q. Mushtaq: On word structure of the modular group over finite and real quadratic fields, Disc. Math. 178 (1998), 155 - 164.
- W. W. Stothers: Subgroups of the modular group, Proc. Camb. Philos. Soc. 75 (1974), 139 154.

M. Ashiq

Received February 14, 2006

Department of Basic Sciences & Humanities, College of E & ME, National University of Sciences and Technology, Rawalpindi, Pakistan, E-mail: ashiqjaved@yahoo.co.uk

Q. Mushtaq

Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan E-mail: qmushtaq@isb.apollo.net.pk