Actions of a subgroup of the modular group on an imaginary quadratic field

Muhammad Ashiq and Qaiser Mushtaq

Abstract

The imaginary quadratic fields are defined by the set $\{a+b \sqrt{-n}: a, b \in Q\}$ and are denoted by $Q(\sqrt{-n})$, where n is a square-free positive integer. In this paper we have proved that if $\alpha=\frac{a+\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})=\left\{\frac{a+\sqrt{-n}}{c}: a, \frac{a^{2}+n}{c}, c \in Z, c \neq 0\right\}$, then n does not change its value in the orbit αG, where $G=<u, v: u^{3}=v^{3}=1>$. Also we show that the number of orbits of $Q^{*}(\sqrt{-n})$ under the action of G are $2[d(n)+2 d(n+1)-6]$ and $2[d(n)+2 d(n+1)-4]$ according to n is odd or even, except for $n=3$ for which there are exactly eight orbits. Also, the action of G on $Q^{*}(\sqrt{-n})$ is always intransitive.

1. Introduction

It is well known [6] that the modular group $\operatorname{PSL}(2, Z)$, where Z is the ring of integers, is generated by the linear-fractional transformations $x: z \longrightarrow \frac{-1}{z}$ and $y: z \longrightarrow \frac{z-1}{z}$ and has the presentation $<x, y: x^{2}=y^{3}=1>$.

Let $v=x y x$, and $u=y$. Then $(z) v=\frac{-1}{z+1}$ and thus $u^{3}=v^{3}=1$. So the group $G=<u, v>$ is a proper subgroup of the modular group $\operatorname{PSL}(2, Z)$ [1].

The algebraic integer of the form $a+b \sqrt{n}$, where n is square free, forms a quadratic field and is denoted by $Q(\sqrt{n})$. If $n>0$, the field is a called real quadratic field, and if $n<0$, it is called an imaginary quadratic field. The integers in $Q(\sqrt{1})$ are simply called the integers. The integers in $Q(\sqrt{-1})$ are called Gaussian integers, and the integers in $Q(\sqrt{-3})$ are called Eisenstein integers. The algebraic integers in an arbitrary quadratic field do not

[^0]necessarily have unique factorization. For example, the fields $Q(\sqrt{-5})$ and $Q(\sqrt{-6})$ are not uniquely factorable. All other quadratic fields $Q(\sqrt{n})$ with $n \leqslant 7$ are uniquely factorizable.

A number is said to be square free if its prime decomposition contains no repeated factors. All primes are therefore trivially square free.

Let F be an extension field of degree two over the field Q of rational numbers. Then any element $x \in F-Q$ is of degree two over Q and is a primitive element of F. Let $F(x)=x^{2}+b x+c$, where $b, c \in Q$, be the minimal polynomial of such an element $x \in F$. Then $2 x=-b \pm \sqrt{b^{2}-4 c}$ and so $F=Q\left(\sqrt{b^{2}-4 c}\right)$. Here, since $b^{2}-4 c$ is a rational number $\frac{l}{m}=\frac{l m}{m^{2}}$ with $l, m \in Z$, we obtain $F=Q(\sqrt{l m})$ with $l, m \in Z$. In fact it is possible to write $F=Q(\sqrt{n})$, where n is a square free integer.

The imaginary quadratic fields are usually denoted by $Q(\sqrt{-n})$, where n is a square free positive integer. We shall denote the subset

$$
\left\{\frac{a+\sqrt{-n}}{c}: a, \frac{a^{2}+n}{c}, c \in Z, c \neq 0\right\}
$$

by $Q^{*}(\sqrt{-n})$. The imaginary quadratic fields are very useful in different branches of mathematics. For example, [3] the Bianchi groups are the groups $P S L_{2}\left(O_{n}\right)$, where O_{n} is the ring of integers of the imaginary quadratic number field $Q(\sqrt{-n})$. Also it is known that O_{n} is an Euclidean ring if and only if $n=1,2,3,7$ or 11 .

In $[2,4]$, many properties of $Q(\sqrt{n})$ have been discussed. Here we discuss some fundamental results of $G=<u, v: u^{3}=v^{3}=1>$ on $Q^{*}(\sqrt{-n})$.

2. Coset diagrams

We use coset diagrams, as defined in [4] and [5], for the group G and study its action on the projective line over imaginary quadratic fields. The coset diagrams for the group G are defined as follows. The three cycles of the transformation u are denoted by three unbroken edges of a triangle permuted anti-clockwise by u and the three cycles of the transformation v are denoted by three broken edges of a triangle permuted anti-clockwise by v. Fixed points of u and v, if they exist, are denoted by heavy dots. This graph can be interpreted as a coset diagram with the vertices identified with the cosets of $\operatorname{Stab}_{v_{1}}(G)$, the stabilizer of some vertex v_{1} of the graph, or as 1 -skeleton of the cover of the fundamental complex of the presentation
which corresponds to the subgroup $\operatorname{Stab}_{v_{1}}(G)$. Let αG denote the orbit of α in an action of G on $Q^{*}(\sqrt{-n})$.

For instance, in the case of G acting on the projective line over the field $Q^{*}(\sqrt{n})$, a fragment of a coset diagram will look as follows:

(1) If $k \neq 1,0, \infty$ then of the vertices $k, k u, k u^{2}$ of a triangle, in a coset diagram for the action of G on any subset of the projective line, one vertex is negative and two are positive.

(2) If $k \neq-1,0, \infty$ then of the vertices $k, k v, k v^{2}$ of a triangle, in a coset diagram for the action of G on any subset of the projective line, one
vertex is positive and two are negative.

Theorem 1. If $\alpha=\frac{a+\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})$, then n does not change its value in αG.
Proof. Let $\alpha=\frac{a+\sqrt{-n}}{c}$ and $b=\frac{a^{2}+n}{c}$. Since $(\alpha) u=\frac{\alpha-1}{\alpha}=1-\frac{1}{\alpha}=$ $1-\frac{c}{a+\sqrt{-n}}=\frac{b-a+\sqrt{-n}}{b}$. Therefore, the new values of a and c for $(\alpha) u$ are $b-a$ and b respectively. The new value of b for $(\alpha) u$ is $\frac{(b-a)^{2}+n}{b}=-2 a+b+c$. Now $(\alpha) v=\frac{-1}{\alpha+1}=\frac{-c}{a+c+\sqrt{-n}}=\frac{-a-c+\sqrt{-n}}{b+c+2 a}$. Therefore the new values of a and c for $(\alpha) v$ are $-a-c$ and $2 a+b+c$ respectively. The new value of b for $(\alpha) v$ is $\frac{(-a-c)^{2}+n}{2 a+b+c}=c$. Similarly, we can calculate the new values of a, b and c for $(\alpha) u^{2},(\alpha) v^{2},(\alpha) u v,(\alpha) u^{2} v,(\alpha) v u,(\alpha) u v^{2},(\alpha) v u^{2}$ and $(\alpha) v^{2} u$ as follows:

α	a	b	c
$(\alpha) u$	$b-a$	$-2 a+b+c$	b
$(\alpha) v$	$-a-c$	c	$2 a+b+c$
$(\alpha) u^{2}$	$c-a$	c	$-2 a+b+c$
$(\alpha) v^{2}$	$-a-b$	$2 a+b+c$	b
$(\alpha) u v$	$a-2 b$	b	$-4 a+4 b+c$
$(\alpha) u^{2} v$	$3 a-b-2 c$	$-2 a+b+c$	$-4 a+b+4 c$
$(\alpha) v u$	$a+2 b$	$4 a+b+4 c$	c
$(\alpha) v^{2} u$	$3 a+2 b+c$	$4 a+4 b+c$	$2 a+b+c$
$(\alpha) u v^{2}$	$3 a-2 b-c$	$-4 a+4 b+c$	$-2 a+b+c$
$(\alpha) v u^{2}$	$3 a+b+2 c$	$2 a+b+c$	$4 a+b+4 c$

Table 1

From the above information we see that all the elements of αG are in $Q^{*}(\sqrt{-n})$. That is, n does not change its value in αG.

As we know from [5] the real quadratic irrational numbers are fixed points of the elements of $\operatorname{PSL}(2, Z)=<x^{2}=y^{3}=1>$ except for the group theoretic conjugates of $x, y^{ \pm 1}$ and $(x y)^{n}$. Now we want to see that when imaginary quadratic numbers are fixed points of the elements of G.

3. Existence of fixed points in $Q^{*}(\sqrt{-3})$

Remark 1. Let $(z) u=z$. Then $\frac{z-1}{z}=z$ gives $z^{2}-z+1=0$. Thus $z=$ $\frac{1 \pm \sqrt{-3}}{2} \in Q^{*}(\sqrt{-3})$. Similarly, $(z) v=z$ implies $\frac{-1}{z+1}=z$. So, $z^{2}+z+1=0$ gives $z=\frac{-1 \pm \sqrt{-3}}{2} \in Q^{*}(\sqrt{-3})$.

Theorem 2. The fixed points under the action of G on $Q^{*}(\sqrt{-n})$ exist only if $n=3$.

Proof. Let g be a linear-fractional transformation in G. Then, $(z) g$ can be taken as $\frac{a z+b}{c z+d}$ where $a d-b c=1$. Let $\frac{a z+b}{c z+d}=z$ which yields us the quadratic equation $c z^{2}+(d-a) z-b=0$. It has the imaginary roots only if $(d-a)^{2}+4 b c<0$ or $(d+a)^{2}-4(a d-b c)<0$ or $(a+d)^{2}<4$. That is, $a+d=0, \pm 1$.

If $a+d=0$ then g is an involution. But there is no involution in G. Now, if $a+d= \pm 1$ then as $(\operatorname{trace}(g))^{2}=\operatorname{det}(g)$, order of g will be three and hence it is conjugate to the linear fractional transformations $u^{ \pm 1}$ and $v^{ \pm 1}$. Since the fixed points of the linear fractional transformations u and v (by Remark 1) are $\frac{1 \pm \sqrt{-3}}{2}$ and $\frac{-1 \pm \sqrt{-3}}{2}$ respectively, therefore, the roots of the quadratic equation $c z^{2}+(d-a) z-b=0$ belong to the imaginary quadratic field $Q^{*}(\sqrt{-3})$. If two elements of G are conjugate, then their corresponding determinants are also equivalent.

4. Orbits of $Q^{*}(\sqrt{-n})$

Definition 1. If $\alpha=\frac{a+\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})$ is such that $a c<0$ then α is called a totally negative imaginary quadratic number and totally positive imaginary quadratic number if ac >0.

As $b=\frac{a^{2}+n}{c}$, therefore, $b c$ is always positive. So, b and c have same sign. Hence an imaginary quadratic number $\alpha=\frac{a+\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})$ is totally negative if either $a<0$ and $b, c>0$ or $a>0$ and $b, c<0$. Similarly $\alpha=\frac{a+\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})$ is totally positive if either $a, b, c>0$ or $a, b, c<0$.

Theorem 3.

(i) If α is a totally negative imaginary quadratic number then $(\alpha) u$ and $(\alpha) u^{2}$ are both totally positive imaginary quadratic numbers.
(ii) If α is a totally positive imaginary quadratic number then $(\alpha) v$ and $(\alpha) v^{2}$ are both totally negative imaginary quadratic numbers.

Proof. (i) Let $\alpha=\frac{a+\sqrt{-n}}{c}$ be a totally negative imaginary quadratic number. Here there are two possibilities: either $a<0$ and $b, c>0$ or $a>0$ and $b, c<0$.

Let $a<0$ and $b, c>0$. We can easily tabulate the following information.

α	a	b	c
$(\alpha) u$	$b-a$	$-2 a+b+c$	b
$(\alpha) u^{2}$	$c-a$	c	$-2 a+b+c$

From the above information, we see that the new values of a, b and c for $(\alpha) u$ and $(\alpha) u^{2}$ are positive. Therefore, $(\alpha) u$ and $(\alpha) u^{2}$ are totally positive imaginary quadratic numbers.

Now, let $a>0$ and $b, c<0$. Then the new values of a, b and c for $(\alpha) u$ and $(\alpha) u^{2}$ are negative. Therefore, $(\alpha) u$ and $(\alpha) u^{2}$ are totally positive imaginary quadratic numbers.
(ii) Let $\alpha=\frac{a+\sqrt{-n}}{c}$ be a totally positive imaginary quadratic number. Here there are two possibilities: either $a, b, c>0$ or $a, b, c<0$.

Let $a, b, c>0$. Then one can easily tabulate the following information.

α	a	b	c
$(\alpha) v$	$-a-c$	c	$2 a+b+c$
$(\alpha) v^{2}$	$-a-b$	$2 a+b+c$	b

From the above information, we see that the new value of a for $(\alpha) v$ and $(\alpha) v^{2}$ is negative and the new values of b and c for $(\alpha) v$ and $(\alpha) v^{2}$ are positive. Therefore, $(\alpha) v$ and $(\alpha) v^{2}$ are totally negative imaginary quadratic numbers.

Now, let $a, b, c<0$. Then the new value of a for $(\alpha) v$ and $(\alpha) v^{2}$ is positive and the new values of b and c for $(\alpha) v$ and $(\alpha) v^{2}$ are negative. Therefore, $(\alpha) v$ and $(\alpha) v^{2}$ are totally negative imaginary quadratic numbers.

Theorem 4.

(i) If $\alpha=\frac{a+\sqrt{-n}}{c}$ where $c>0$ then the numerator of every element in αG is also positive.
(ii) If $\alpha=\frac{a+\sqrt{-n}}{c}$ where $c<0$ then the numerator of every element in
the orbit αG is also negative.
Proof. (i) Since $\alpha=\frac{a+\sqrt{-n}}{c}$ with $c>0$, therefore, b is also positive. As b and c always have the same sign. Using this fact we can easily see from the information given in Table 1 that every element in αG has positive numerator.
(ii) Since $\alpha=\frac{a+\sqrt{-n}}{c}$ with $c<0$, therefore, b is also negative. As b and c always have the same sign. Using this fact we can easily see from the information given in Table 2 that every element in αG has negative numerator.

For $\alpha=\frac{a+\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})$, we define $\|\alpha\|=|a|$.

Theorem 5.

(i) Let α be a totally negative imaginary quadratic number. Then $\|(\alpha) u\|>\|\alpha\|$ and $\left\|(\alpha) u^{2}\right\|>\|\alpha\|$, and
(ii) Let α be a totally positive imaginary quadratic number. Then $\|(\alpha) v\|>\|\alpha\|$ and $\left\|(\alpha) v^{2}\right\|>\|\alpha\|$.

Proof. (i) Let α be a totally negative imaginary quadratic number. Then either, $a<0$ and $b, c>0$ or $a>0$ and $b, c<0$. Let us take $a<0$ and $b, c>0$. Then, by Theorem $3(i)(\alpha) u$ and $(\alpha) u^{2}$ both are totally positive imaginary quadratic numbers. Thus, $\|(\alpha) u\|=|b-a|>|a|=\|\alpha\|$, and $\left\|(\alpha) u^{2}\right\|=|c-a|>=|a|=\|\alpha\|$. Similarly, we have the same result for $a>0$ and $b, c<0$.
(ii) Let α be a totally positive imaginary quadratic number. Then either, $a, b, c>0$ or $a, b, c<0$. Let us take $a, b, c>0$. Now, using the information given in Table 1, we can easily see that $\|(\alpha) v\|=|-a-c|=$ $|a+c|>|a|=\|\alpha\|$ and $\left\|(\alpha) v^{2}\right\|=|-a-b|=|a+b|>|a|=\|\alpha\|$. Similarly, we have the same result for $a, b, c<0$.

Theorem 6. Let α be a totally positive or negative imaginary quadratic number. Then there exists a sequence $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ such that α_{i} is alternately totally negative and totally positive number for $i=1,2,3, \ldots, m-1$ and $\left\|\alpha_{m}\right\|=0$ or 1 .

Proof. Let $\alpha=\alpha_{1}$ be a totally positive imaginary quadratic number. Then, by Theorem $3(i),(\alpha) u$ or $(\alpha) u^{2}$ is a totally negative imaginary quadratic number. If $(\alpha) u$ is a totally negative imaginary quadratic number, then put $\alpha_{2}=(\alpha) u$ and by Theorem $5(i),\left\|\left(\alpha_{1}\right)\right\|>\left\|\alpha_{2}\right\|$. Now if $(\alpha) u^{2}$ is a totally
negative imaginary quadratic number, then put $\alpha_{2}=(\alpha) u^{2}$. In this case we have also $\left\|\left(\alpha_{1}\right)\right\|>\left\|\alpha_{2}\right\|$.

Now if $(\alpha) u$ a is totally negative imaginary quadratic number, then $(\alpha) u v$ or $(\alpha) u v^{2}$ is a totally positive imaginary quadratic number. If $(\alpha) u v$ is a totally positive imaginary quadratic number, put $(\alpha) u v=\alpha_{3}$ and so by Theorem $5(i i)\|(\alpha) u v\|<\|(\alpha) u\|<\|\alpha\|$ or $\left\|\alpha_{3}\right\|<\left\|\alpha_{2}\right\|<\left\|\alpha_{1}\right\|$ and continuing in this way we obtain an alternate sequence $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ of totally positive and totally negative numbers such that $\left\|\alpha_{1}\right\|>\left\|\alpha_{2}\right\|>\left\|\alpha_{3}\right\|>$ $\ldots>\left\|\alpha_{m}\right\|$. Since $\left\|\alpha_{1}\right\|,\left\|\alpha_{2}\right\|,\left\|\alpha_{3}\right\|, \ldots,\left\|\alpha_{m}\right\|$ is a decreasing sequence of non negative integers, therefore, it must terminate and that happens only when ultimately we reach at an imaginary quadratic number $\alpha_{m}=\frac{a \rho+\sqrt{-n}}{c}$ such that $\left\|\alpha_{m}\right\|=\left|a^{\prime}\right|=0$ or 1 . It can be shown diagrammatically as:

Theorem 7. There are exactly eight orbits of $Q^{*}(\sqrt{-n})$ under the action of the group G when $n=3$.

Proof. As we have seen in Theorem 6, we get a decreasing sequence of non negative integers $\left\|\alpha_{1}\right\|,\left\|\alpha_{2}\right\|,\left\|\alpha_{3}\right\|, \ldots,\left\|\alpha_{m}\right\|$ such that $\left\|\alpha_{1}\right\|>\left\|\alpha_{2}\right\|>$ $\left\|\alpha_{3}\right\|>\ldots>\left\|\alpha_{m}\right\|$ which must terminate and that happens only when ultimately we reach at an imaginary quadratic number $\alpha_{m}=\frac{a \prime+\sqrt{-3}}{c}$ such that $\left\|\alpha_{m}\right\|=\left|a^{\prime}\right|=0$ or 1 .

If $\alpha_{m}=\frac{1 \pm \sqrt{-3}}{2}$ or $\frac{-1 \pm \sqrt{-3}}{2}$ then because $\frac{ \pm 1 \pm \sqrt{-3}}{2}$ are the fixed points of u and v, therefore, we cannot reach at an imaginary quadratic number whose norm is equal to zero. So in this case there are four orbits, namely $\frac{1+\sqrt{-3}}{2} G, \frac{1-\sqrt{-3}}{2} G, \frac{-1+\sqrt{-3}}{2} G$ and $\frac{-1-\sqrt{-3}}{2} G$ of $Q^{*}(\sqrt{-3})$.

Now, if we reach at an imaginary quadratic number $\alpha_{m}=\frac{a \prime+\sqrt{-3}}{c}$ such that $\left\|\alpha_{m}\right\|=|a \prime|=0$ then $\alpha_{m}=\frac{\sqrt{-3}}{c}$. Since $\alpha_{m}=\frac{\sqrt{-3}}{c} \in Q^{*}(\sqrt{-3})$, therefore, $c= \pm 1, \pm 3$. That is, $\alpha_{m}=\frac{\sqrt{-3}}{1}, \frac{\sqrt{-3}}{3}, \frac{\sqrt{-3}}{-1}$, and $\frac{\sqrt{-3}}{-3}$.

Now, if $\alpha=\frac{\sqrt{-3}}{1}$, we can easily calculate the new values of a, b, and c as:

α	0	3	1
$(\alpha) u$	3	4	3
$(\alpha) v$	-1	1	4
$(\alpha) u^{2}$	1	1	4
$(\alpha) v^{2}$	-3	4	3

Hence from the above table, we see that $\sqrt{-3}, \frac{1+\sqrt{-3}}{4}$ and $\frac{-1+\sqrt{-3}}{4}$ lie in αG.

Similarly, if $\alpha=\frac{\sqrt{-3}}{-1}$, then $-\sqrt{-3}, \frac{-1+\sqrt{-3}}{-4}$ and $\frac{1+\sqrt{-3}}{-4}$ lie in αG, if $\alpha=\frac{\sqrt{-3}}{3}$, then $\frac{\sqrt{-3}}{3}, \frac{1+\sqrt{-3}}{1}$ and $\frac{-1+\sqrt{-3}}{1}$ lie in αG, and if $\alpha=\frac{\sqrt{-3}}{-3}$, then $\frac{\sqrt{-3}}{-3}, \frac{1+\sqrt{-3}}{-1}$ and $\frac{-1+\sqrt{-3}}{-1}$ lie in αG.

Thus, $\frac{\sqrt{-3}}{1}, \frac{\sqrt{-3}}{-1}, \frac{\sqrt{-3}}{3}$, and $\frac{\sqrt{-3}}{-3}$ lie in four different orbits. Hence there are exactly eight orbits of $Q^{*}(\sqrt{-n})$ for $n=3$.

Remark 2.

1. If $\alpha=\frac{a+\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})$ then $\operatorname{Stab}_{\alpha}(G)$ is non-trivial only if $n=3$. Particularly, if $\alpha=\frac{ \pm 1 \pm \sqrt{-3}}{2}$ then $\operatorname{Stab}_{\alpha}(G) \cong C_{3}$.
2. In $Q^{*}(\sqrt{-3})$, there are four elements of norm zero, namely $\frac{\sqrt{-3}}{1}, \frac{\sqrt{-3}}{-1}$, $\frac{\sqrt{-3}}{3}$, and $\frac{\sqrt{-3}}{-3}$.
3. In $Q^{*}(\sqrt{-3})$, there are twelve elements of norm one, namely $\frac{ \pm 1 \pm \sqrt{-3}}{2}$, $\frac{ \pm 1 \pm \sqrt{-3}}{4}$, and $\frac{ \pm 1 \pm \sqrt{-3}}{1}$.

Theorem 8. Let $\alpha \in Q^{*}(\sqrt{-n})$, where $n \neq 3$. Then
(i) if $\alpha=\sqrt{-n}$, then $\sqrt{-n}, \frac{1+\sqrt{-n}}{n+1}$ and $\frac{-1+\sqrt{-n}}{n+1}$ lie in αG,
(ii) if $\alpha=\frac{\sqrt{-n}}{n}$, then $\frac{\sqrt{-n}}{n}, \frac{1+\sqrt{-n}}{1}$ and $\frac{-1+\sqrt{-n}}{1}$ lie in αG,
(iii) if $\alpha=\frac{\sqrt{-n}}{2}$, where n is even and $l_{1}=\frac{n}{2}$, then α is the only element of norm zero in αG,
(iv) if $\alpha=\frac{\sqrt{-n}}{n_{1}}$, where $k_{1}=\frac{n}{n_{1}}$ and $n_{1} \neq 1,2$ or n, then α is the only element of norm zero in αG, and
(v) if $\alpha=\frac{1+\sqrt{-n}}{c_{1}}$, where $1+n=c_{1} c_{2}$ and $c_{1} \neq 1$ or $n+1$, then α is the only element of norm one in αG.

Proof. (i) If $\alpha=\sqrt{-n}$, then, we can easily tabulate the following information.

α	0	n	1
$(\alpha) u$	n	$n+1$	n
$(\alpha) v$	-1	1	$n+1$
$(\alpha) u^{2}$	1	1	$n+1$
$(\alpha) v^{2}$	$-n$	$n+1$	n

Hence from the above table, we see that $\sqrt{-n}, \frac{1+\sqrt{-n}}{n+1}$ and $\frac{-1+\sqrt{-n}}{n+1}$ lie in αG.
(ii) If $\alpha=\frac{\sqrt{-n}}{n}$, then we can calculate the new values of a, b, and c as:

α	0	1	n
$(\alpha) u$	1	$n+1$	1
$(\alpha) v$	$-n$	n	$n+1$
$(\alpha) u^{2}$	n	n	$n+1$
$(\alpha) v^{2}$	-1	$n+1$	1

Hence from the above table, we see that $\frac{\sqrt{-n}}{n}, \frac{1+\sqrt{-n}}{1}$ and $\frac{-1+\sqrt{-n}}{1}$ lie in αG.
(iii) If $\alpha=\frac{\sqrt{-n}}{2}$, then we can calculate the new values of a, b, and c as:

α	0	l_{1}	2
$(\alpha) u$	l_{1}	$l_{1}+2$	l_{1}
$(\alpha) v$	-2	2	$l_{1}+2$
$(\alpha) u^{2}$	2	2	$l_{1}+2$
$(\alpha) v^{2}$	$-l_{1}$	$l_{1}+2$	l_{1}

Hence from the above table, we see that α is the only element of norm zero in αG.
(iv) Let $\alpha=\frac{\sqrt{-n}}{n_{1}}$, where $k_{1}=\frac{n}{n_{1}}$ and $n_{1} \neq 1$ or n, then

α	0	k_{1}	n_{1}
$(\alpha) u$	k_{1}	$n_{1}+k_{1}$	k_{1}
$(\alpha) v$	$-n_{1}$	n_{1}	$n_{1}+k_{1}$
$(\alpha) u^{2}$	n_{1}	n_{1}	$n_{1}+k_{1}$
$(\alpha) v^{2}$	$-k_{1}$	$n_{1}+k_{1}$	k_{1}

Hence from the above table, we see that α is the only element of norm zero in αG.
(v) Let $\alpha=\frac{1+\sqrt{-n}}{c_{1}}$, where $1+n=c_{1} c_{2}$ and $c_{1} \neq 1$ or $n+1$, then the new values of a, b, and c can be calculated as:

α	1	c_{2}	c_{1}
$(\alpha) u$	$c_{2}-1$	$-2+c_{1}+c_{2}$	c_{2}
$(\alpha) v$	$-1-c_{1}$	c_{1}	$2+c_{1}+c_{2}$
$(\alpha) u^{2}$	$c_{1}-1$	c_{1}	$-2+c_{1}+c_{2}$
$(\alpha) v^{2}$	$-1-c_{2}$	$2+c_{1}+c_{2}$	c_{2}

If $c_{1}=2$, then $\left\|(\alpha) u^{2}\right\|=1$ implies that $(\alpha) u^{2}=\frac{1+\sqrt{-n}}{c_{2}}$. If $c_{1}=-2$, then $\|(\alpha) v\|=1$ implies that $(\alpha) v=\frac{1+\sqrt{-n}}{c_{2}}$. That is, $\frac{1+\sqrt{-n}}{2}$ and $\frac{1+\sqrt{-n}}{\left(\frac{n+1}{2}\right)}$ lie in the same orbit, and $\frac{1+\sqrt{-n}}{-2}$ and $\frac{1+\sqrt{-n}}{-\left(\frac{n+1}{2}\right)}$ lie in the same orbit.

Now if $c_{1} \neq 1,2$ or $\frac{n+1}{2}, n+1$, that is, $c_{2} \neq n+1, \frac{n+1}{2}$ or 1 , then $\frac{1+\sqrt{-n}}{c_{1}}$ lie in αG.

Example 1. By using Theorem 8, the orbits of $Q^{*}(\sqrt{-14})$ are:
(i) $\sqrt{-14}, \frac{1+\sqrt{-14}}{15}$ and $\frac{-1+\sqrt{-14}}{15}$ lie in $\sqrt{-14} G$,
(ii) $\frac{\sqrt{-14}}{-1}, \frac{1+\sqrt{-14}}{-15}$ and $\frac{-1+\sqrt{-14}}{-15}$ lie in $\frac{\sqrt{-14}}{-1} G$,
(iii) $\frac{\sqrt{-14}}{14}, \frac{1+\sqrt{-14}}{1}$ and $\frac{-1+\sqrt{-14}}{1}$ lie in $\frac{\sqrt{-14}}{14} G$,
(iv) $\frac{\sqrt{-14}}{-14}, \frac{1+\sqrt{-14}}{-1}$ and $\frac{-1+\sqrt{-14}}{-1}$ lie in $\frac{\sqrt{-14}}{-14} G$,
(v) $\frac{\sqrt{-14}}{2}$ lies in $\frac{\sqrt{-14}}{2} G$,
(vi) $\frac{\sqrt{-14}}{-2}$ lies in $\frac{\sqrt{-14}}{-2} G$,
(vii) $\frac{\sqrt{-14}}{7}$ lies in $\frac{\sqrt{-14}}{7} G$,
(viii) $\frac{\sqrt{-14}}{-7}$ lies in $\frac{\sqrt{-14}}{-7} G$,
(ix) $\frac{1+\sqrt{-14}}{3}$ lies in $\frac{1+\sqrt{-14}}{3} G$,
(x) $\frac{-1+\sqrt{-14}}{3}$ lies in $\frac{-1+\sqrt{-14}}{3} G$,
(xi) $\frac{1+\sqrt{-14}}{-3}$ lies in $\frac{1+\sqrt{-14}}{-3} G$,
(xii) $\frac{-1+\sqrt{-14}}{-3}$ lies in $\frac{-1+\sqrt{-14}}{-3} G$,
(xiii) $\frac{1+\sqrt{-14}}{5}$ lies in $\frac{1+\sqrt{-14}}{5} G$, .
(xiv) $\frac{-1+\sqrt{-14}}{5}$ lies in $\frac{-1+\sqrt{-14}}{5} G$,
(xv) $\frac{1+\sqrt{-14}}{-5}$ lies in $\frac{1+\sqrt{-14}}{-5} G$, and
(xvi) $\frac{-1+\sqrt{-14}}{-5}$ lies in $\frac{-1+\sqrt{-14}}{-5} G$.

So, there are sixteen orbits of $Q^{*}(\sqrt{-n})$.

Remark 3.

1. If $\alpha=\frac{a+\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})$, then αG contains the conjugates of the ele-
ments of αG. Since $\alpha=\frac{a+\sqrt{-n}}{c}$ and $\bar{\alpha}=\frac{a-\sqrt{-n}}{c}$ lie in two different orbits, therefore, αG and $\bar{\alpha} G$ are always disjoint.
2. The elements of norm zero and one in $Q^{*}(\sqrt{-n})$, play a vital role to identify the orbits of $Q^{*}(\sqrt{-n})$.

Definition 2. If n is a positive integer then $d(n)$ denotes the arithmetic function defined by the number of positive divisors of n.

For example, $d(1)=1, d(2)=2, d(3)=2, d(4)=3, d(5)=2$ and $d(6)=4$.

Theorem 9. If $n \neq 3$, then the total number of orbits of $Q^{*}(\sqrt{-n})$ under the action of G are:
(i) $2[d(n)+2 d(n+1)-6]$ if n is odd, and
(ii) $2[d(n)+2 d(n+1)-4]$ if n is even.

Proof. First suppose that n is odd, that is $n+1$ is even. Let the divisors of n are $\pm 1, \pm n_{1}, \pm n_{2}, \pm, \ldots, \pm n$ and the divisors of $n+1$ are $\pm 1, \pm 2$, $\pm m_{1}, \pm m_{2}, \pm, \ldots, \pm \frac{(n+1)}{2}, \pm(n+1)$. Then by Theorem $8(i)$, there exist two orbits of $Q^{*}(\sqrt{-n})$ corresponding to the divisors ± 1 of n and $\pm(n+1)$ of $n+1$. By Theorem $8(i i)$, there exist two orbits of $Q^{*}(\sqrt{-n})$ corresponding to the divisors $\pm n$ of n and ± 1 of $n+1$. By Theorem $8(v)$, there exists four orbits of $Q^{*}(\sqrt{-n})$ corresponding to the divisors $\pm 2, \pm\left(\frac{n+1}{2}\right)$ of $n+1$. Now we are left with $2 d(n)-4$ and $4 d(n+1)-16$. Thus total orbits are $2 d(n)-4+4 d(n+1)-16+8=2 d(n)+4 d(n+1)-12=2[d(n)+2 d(n+1)-6]$.

Now if n is even, then the total orbits are $[2 d(n)-4]+[4 d(n+1)-8]+4=$ $2 d(n)+4 d(n+1)-8=2[d(n)+2 d(n+1)-4]$.

Example 2. Now, by using Theorem 9,
(i) the orbits of $Q^{*}(\sqrt{-14})$ are:

$$
2[d(n)+2 d(n+1)-4]=2[d(14)+2 d(15)-4]=2[4+8-4]=16
$$

and
(ii) the orbits of $Q^{*}(\sqrt{-15})$ are:

$$
2[d(n)+2 d(n+1)-6]=2[d(15)+2 d(16)-6]=2[4+10-6]=16
$$

Theorem 10. There are $2 d(n)$ elements of $Q^{*}(\sqrt{-n})$ of norm zero under the action of G.

Proof. As we have seen in Theorem 6, we get a decreasing sequence of nonnegative integers $\left\|\alpha_{1}\right\|,\left\|\alpha_{2}\right\|,\left\|\alpha_{3}\right\|, \ldots,\left\|\alpha_{m}\right\|$ such that $\left\|\alpha_{1}\right\|>\left\|\alpha_{2}\right\|>$ $\left\|\alpha_{3}\right\|>\ldots>\left\|\alpha_{m}\right\|$ which must terminate and that happens only when
ultimately we reach at an imaginary quadratic number $\alpha_{m}=\frac{a \prime+\sqrt{-n}}{c}$ such that $\left\|\alpha_{m}\right\|=|a \prime|=0$. Thus $\alpha_{m}=\frac{\sqrt{-n}}{c}$. Since $\alpha_{m}=\frac{\sqrt{-n}}{c} \in Q^{*}(\sqrt{-n})$, therefore, c must be a divisor of n. Hence there are $2 d(n)$ elements of $Q^{*}(\sqrt{-n})$ of norm zero under the action of G.

Theorem 11. There are $4 d(n+1)$ elements of $Q^{*}(\sqrt{-n})$ of norm one under the action of G.

Proof. As we have seen in Theorem 6, there exists a decreasing sequence of non-negative integers $\left\|\alpha_{1}\right\|,\left\|\alpha_{2}\right\|,\left\|\alpha_{3}\right\|, \ldots,\left\|\alpha_{m}\right\|$ such that $\left\|\alpha_{1}\right\|>$ $\left\|\alpha_{2}\right\|>\left\|\alpha_{3}\right\|>\ldots>\left\|\alpha_{m}\right\|$ which must terminate and that happens only when ultimately we reach at an imaginary quadratic number $\alpha_{m}=\frac{a \rho+\sqrt{-n}}{c}$ such that $\left\|\alpha_{m}\right\|=|a| \mid=1$. Then $\alpha_{m}=\frac{ \pm 1+\sqrt{-n}}{c}$, where $b=\frac{a^{2}+n}{c}=\frac{1+n}{c}$, that is, c must be a divisor of $n+1$. Hence there are $4 d(n+1)$ elements of $Q^{*}(\sqrt{-n})$ of norm one under the action of G.

Corollary. The action of G on $Q^{*}(\sqrt{-n})$ is intransitive.
Proof. If n is even, then the minimum value of n in $Q^{*}(\sqrt{-n})$ is two. So, by Theorem 9 , the total number of orbits are $2[d(n)+2 d(n+1)-4]=$ $2[2+2(2)-4]=4$. So, the action of G on $Q^{*}(\sqrt{-n})$ must be intransitive.

Now, if n is odd, then the minimum value of n in $Q^{*}(\sqrt{-n})$ is five, when $n \neq 3$. So, by Theorem 10, the total number of orbits are $2[d(n)+2 d(n+$ $1)-6]=2[2+2(4)-6]=8$. So, the action of G on $Q^{*}(\sqrt{-n})$ is intransitive.

According to Theorem 7, there are exactly eight orbits of $Q^{*}(\sqrt{-n})$ when $n=3$ under the action of the group G. Hence the proof.

References

[1] M. Ashiq and Q. Mushtaq: Finite presentation of a linear-fractional group, Algebra Colloquium 12 (2005), 585 - 589.
[2] M. Aslam, Q. Mustaq, T. Maqsood and M. Ashiq: Real quadratic irrational numbers and the group $<x, y: x^{2}=y^{6}=1>$, Southeast Asian Bull. Math. 27 (2003), $409-415$.
[3] A. W. Mason: Free quotients of subgroups of the Bianchi groups whose kernels contain many elementary matrices, Math. Proc. Camb. Phil. Soc. 116 (1994), $253-273$.
[4] Q. Mushtaq: Modular group acting on real quadratic fields, Bull. Austral. Math. Soc. 37 (1988), 303 - 306.
[5] Q. Mushtaq: On word structure of the modular group over finite and real quadratic fields, Disc. Math. 178 (1998), $155-164$.
[6] W. W. Stothers: Subgroups of the modular group, Proc. Camb. Philos. Soc. 75 (1974), $139-154$.

Received February 14, 2006
M. Ashiq

Department of Basic Sciences \& Humanities, College of E \& ME, National University of Sciences and Technology, Rawalpindi, Pakistan,
E-mail: ashiqjaved@yahoo.co.uk
Q. Mushtaq

Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
E-mail: qmushtaq@isb.apollo.net.pk

[^0]: 2000 Mathematics Subject Classification: 05C25, 11E04, 20G15
 Keywords: Imaginary quadratic field, linear fractional transformation, extension field, coset diagram.

