
Quasigroups and Related Systems 14 (2006), 91 � 109Loops in Relativisti DynamisTzvi SarrAbstratThe Einstein veloity addition loop and the symmetri veloity addition loop are used todevelop relativisti dynami equations. Sine these loops are highly non-ommutative,the question arises whether one should use the left or the right translations of theseloops. We show that while the left translations are well-suited to relativisti dynamis,the right translations are problemati. We hypothesize that using the left translations isequivalent to a generalized form of the Equivalene Priniple.1. IntrodutionThis paper is about two loops whih play a entral role in Speial Relativity.The �rst is the Einstein veloity addition loop (Dv,⊕E), where
Dv = {v ∈ R

3 : |v| < c}(c = the speed of light) is the ball of relativistially admissible veloitiesand v⊕E u is the relativisti sum of the two veloities v and u. This is a leftBruk loop. The loop operation ⊕E is onstruted from the Lorentz trans-formations between two inertial systems. This onstrution will be arriedout in Setion 2. Einstein veloity addition is, in general, not ommutative.In fat, v ⊕E u = u ⊕E v if and only if v and u are parallel.The seond loop under investigation involves a new dynami variable,alled symmetri veloity, de�ned as follows. If the relative veloity betweentwo inertial systems is v, then the symmetri veloity between the systemsis the unique veloity w suh that w⊕Ew = v. Thus the symmetri veloityis the relativisti half of the given veloity. Let Ds = {v ∈ R
3 : |v| < 1}2000 Mathematis Subjet Classi�ation: 20N05, 83A05Keywords: loops, speial relativity, relativisti dynamis, Einstein veloity addition,symmetri veloity, Equivalene Priniple



92 T. Sarrdenote the set of relativistially admissible symmetri veloities (normalizedto c = 1). The set Ds admits a binary operation ⊕s, the addition ofsymmetri veloities, whih makes (Ds,⊕s) a loop.The two loops (Dv,⊕E) and (Ds,⊕s) are isotopi as topologial loops.Indeed, the funtion Ψ : Dv → Ds whih maps a given veloity v to its or-responding symmetri veloity w is a homeomorphism whih also respetsthe loop operations:
Ψ(v ⊕E u) = Ψ(v) ⊕s Ψ(u). (1)See Setion 5 for expliit de�nitions of Ψ and Ψ−1.Despite the above isotopy, these loops are di�erent. (Dv,⊕E) is a leftBruk loop, whereas (Ds,⊕s) is not. Moreover, these two loops behave dif-ferently geometrially. Friedman and Semon [2℄ have already exploited thisdi�erene. They used symmetri veloity and obtained an analyti solutionfor the motion of an eletri harge in a uniform, onstant eletromagneti�eld E,B in whih E and B are perpendiular. The �rst expliit solutionto this problem was found in 2002 by Takeuhi [5℄.The left translations of (Dv,⊕E) (respetively, (Ds,⊕s)) generate agroup of automorphisms of Dv (respetively, Ds). In turns out that inthe ase of (Dv,⊕E), the automorphisms are projetive (also alled a�ne).This means that line segments are mapped to line segments. In this way,

Dv an be seen as a subset of projetive spae P3. In ontrast, the auto-morphisms indued by symmetri veloity are onformal. Thus while thetwo automorphism groups are isomorphi as groups, they are quite di�erentgeometrially.The use of these two loops in developing relativisti dynamis is new andbrings with it an interesting dilemma. Relativisti dynamis is onernedwith desribing the motion of an objet whose veloity is hanging withtime due to a fore. Sine the veloities are bounded by c, they must beadded relativistially. Over an in�nitesimal time period dt, the fore addsa hange dv to the veloity v. The new veloity will be v ⊕E dv. Thus,veloity addition lies at the heart of relativisti dynamis, and it is naturalto use the loop (Dv,⊕E) to develop relativisti dynamis.Now omes the dilemma. Is the new veloity really v ⊕E dv? Or is it
dv⊕Ev? Sine Einstein veloity addition is, in general, not ommutative, wemust hoose between having the fore at on the left or on the right. At �rstglane, this hoie seems arbitrary. There is no a priori preferene. Whyshould we prefer one over the other? And how does the fore know whih



Loops in Relativisti Dynamis 93side to at on? Furthermore, does it matter? Does the dynamis basedon left translations oinide with the dynamis based on right translations?The answer to this last question will be interesting either way. Agreementof �left� and �right� dynamis would be fasinating given the highly non-ommutative nature of the veloity addition. On the other hand, if the twodynamis are at odds, we will then be faed with two additional questions:Whih dynamis does nature use? Why does nature use this one?Unfortunately, we annot yet ompare �left� and �right� dynamis be-ause no one to date has sueeded in using the right translations to developrelativisti dynamis. Indeed, Friedman [1℄ uses the left translations of theEinstein veloity addition loop (Dv,⊕E) to derive the relative dynamisequation
m0

dv(τ)

dτ
= q(E + v(τ) × B − c−2〈v(τ)|E〉v(τ)) (2)for a partile of harge q and rest-mass m0 in an eletromagneti �eld

E,B. Here, τ is the proper time of the partile. Friedman's developmentis straightforward. The right translations, on the other hand, possess someinherent pathologies. We will attempt to explain this asymmetry in termsof the physial interpretation of the loop operations.Note that the traditional approah to relativisti dynamis does notenounter the above dilemma. In fat, relativisti dynamis is usually de-veloped without referene to Einstein veloity addition at all. In [3℄, forexample, one starts with the assumption that the fore on, say, a hargedpartile is equal to the rate of hange of the partile's relativisti momen-tum. Sine a partile with harge q and veloity v in an eletromagneti�eld E,B experienes a fore F = q(E + v × B), the relativisti dynamisequation in this ase is
m0

d(γv)

dt
= q(E + v × B). (3)In [1℄, it is shown that (2) and (3) are equivalent. Note that although thetraditional approah avoids our dilemma, the equivalene of (2) and (3)means that the traditional approah impliitly assumes that the fore atson the left. See also [4℄.This paper is organized as follows. In the next setion, we onstrutthe Einstein veloity addition loop from the Lorentz transformations. InSetion 3, the left translations of this loop are used to derive the relativistidynamis equation (2). Setion 4 desribes the di�ulties inherent in usingthe right translations to develop relativisti dynamis. Setion 5 is devoted



94 T. Sarrto the symmetri veloity addition loop. Here, also, we will see that the lefttranslations are preferred over the right. In Setion 6, we disuss possiblereasons why the left and right translations should behave so di�erently.The �nal setion o�ers suggestions for further researh. One diretion isto develop relativisti dynamis using the triple produt to overome thedi�ulties of the right translations. Another approah is to show that usingthe left translations is atually equivalent to the Equivalene Priniple. Thelatter idea will be taken up in a forthoming paper.2. Constrution of the Einstein veloity addition loopIn this setion, we will onstrut the Einstein veloity addition loop fromthe Lorentz spaetime transformation between two inertial systems K and
K ′. We assume that the spatial axes of K are parallel to those of K ′ andthat at time t = 0, the origins of the two systems oinided. The spaetimeoordinates of an event in K will be denoted by (

t
r

), where t ∈ R isthe time of the event and r ∈ R
3 represents the loation of the event. Theoordinates of the same event in K ′ will be denoted by (

t′

r′

).Suppose that the veloity of K ′ with respet to K is v. Then the Lorentztransformation from K ′ to K is
(

t
r

)
= γ

(
1 c−2vT

v Pv + α(I − Pv)

) (
t′

r′

)
, (4)where γ = γ(v) = 1√

1−
|v|2

c2

, α = α(v) = 1
γ(v) , vT denotes the transpose of

v, and Pv denotes the projetion operator onto v.The physial de�nition of the Einstein veloity addition is as follows.We are given that the veloity of K ′ with respet to K is v. Suppose thatan observer at rest in system K ′ measures an objet's veloity as u. Thenthe veloity of this objet as measured by an observer at rest in system Kis alled the relativisti sum of v and u and is denoted by v ⊕E u.Consider motion with uniform veloity u in system K ′. The world-lineof this motion is (
t′

ut′

)
. From (4), this world-line in system K is

γ

(
t′ + v

T
ut′

c2

vt′ + t′Pvu + αt′(I − Pv)u

) (5)



Loops in Relativisti Dynamis 95or
γt′

(
1 + 〈v|u〉

c2

v + u‖ + αu⊥

)
, (6)where u‖ = Pvu denotes the omponent of u parallel to v and u⊥ =

(I − Pv)u denotes the omponent of u perpendiular to v. This de�nes auniform motion in system K with veloity
v ⊕E u =

v + u‖ + αu⊥

1 + 〈v|u〉
c2

, (7)with α = α(v) =
√

1 − |v|2

c2
. This de�nes the binary operation ⊕E on Dv.The pair (Dv,⊕E) is a left Bruk loop.In ase v and u are parallel, the Einstein veloity addition redues to
v ⊕E u =

v + u

1 + vu
c2

, (8)where v = |v| and u = |u|. In ase v and u are perpendiular, the formulabeomes
v ⊕E u = v + α(v)u. (9)Note that the veloity addition is ommutative only for parallel veloities.3. Left translationsIn [1℄, the left translations of the loop (Dv,⊕E) are used to obtain therelativisti dynamis equation

m0
dv(τ)

dτ
= q(E + v(τ) × B − c−2〈v(τ)|E〉v(τ)), (10)where τ is the proper time of the partile. It is then shown that (10) isequivalent to (3). Here we give an outline of that development. For details,see [1℄.For eah v in the veloity ball Dv, we de�ne the left translation Lv :

Dv → Dv by
Lv(u) = v ⊕E u. (11)See Figure 1.
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(a)
(b)Figure 1. Ation of the veloity addition on Dv.

(a) A set of 5 uniformly spaed diss ∆j obtained by interseting the three-dimensional ve-loity ball Dv of radius c = 3·108m/s with y-z planes at x = 0,±108,±2·108m/s. (b) Theimages of these ∆j under the left translation Lv(u) = v ⊕E u, with v = (108, 0, 0)m/s.Note that Lv(∆j) is also a dis in Dv, perpendiular to v and moved in the diretion of
v. On eah dis ∆j , the map Lv ats as multipliation by a onstant in the omponentof u perpendiular to v.The left translations have some nie properties. First, eah left transla-tion Lv is a projetive automorphism of Dv. To appreiate the projetivegeometry at work here, envision the ation of Lv on Dv as follows. Fix a ve-loity u ∈ Dv. Identify u with the intersetion of the world-line L =

(
t
ut

)in the inertial system K and the plane Π = {(1, r) : r ∈ R}. Let K ′ be aninertial system moving with relative veloity v with respet to K. Applyingthe Lorentz transformation from K to K ′ to the line L yields a line L′ in
K ′ whose intersetion with Π is v ⊕E u.The seond nie property is losure under inverses. In fat L−1

v = L−v.The above two properties ombine to make the following useful harater-ization of the group Autp(Dv) of all projetive automorphisms of Dv. Let
ψ be any projetive automorphism of Dv. Set v = ψ(0) and U = L−1

v ψ.Then U is a projetive map that maps 0 → 0 and is thus a linear map whihan be represented by a 3× 3 matrix. Sine U maps Dv onto itself, it is anisometry and is represented by an orthogonal matrix. Sine ψ = LvU , thegroup Autp(Dv) is de�ned by
Autp(Dv) = {LvU : v ∈ Dv, U ∈ O(3)}. (12)We write Lv,U instead of LvU .The group Autp(Dv) is a representation of the Lorentz group by a�nemaps. It is a real Lie group of dimension 6, sine any element of the group



Loops in Relativisti Dynamis 97is determined by an element v of the three-dimensional open ball of radius
c in R

3 and an element U of the three-dimensional orthogonal group O(3).The dynamis equation (10) will be onstruted from the elements ofthe Lie algebra autp(Dv) of Autp(Dv). The elements of a Lie algebra are, byde�nition, the tangent spae of the identity of the orresponding Lie group.To obtain the elements of autp(Dv), let g(s) be a di�erentiable urve froma neighborhood I0 of 0 into Autp(Dv), with g(0) = L0,I , the identity of
Autp(Dv). Then g(s) has the form

g(s) = Lv(s),U(s), (13)where v : I0 → Dv is a di�erentiable funtion satisfying v(0) = 0 and
U(s) : I0 → O(3) is di�erentiable and satis�es U(0) = I.For an example of suh a urve g(s), �x v ∈ Dv. Let j = v/|v| andde�ne k = tanh−1(|v|/c). For s ∈ R, de�ne b(s) = tanh(sk)cj. Theresulting urve g(s) := Lb(s) is alled the one-parameter subgroup generatedby Lv. See Figure 2.
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Figure 2. Ation of a one-parameter subgroup on Dv.The e�et on a two-dimensional setion of Dv by the one-parameter subgroup g(s) gen-erated by the map Lv, for s = −1, 0, 1, 2. One ell of the grid has been darkenedalong with its images to help visualize the e�et of the transformation. Note that
g(−1) = L−1

v = L−v, g(0) = I-the identity, g(1) = Lv and g(2) = L2
v = Lv⊕Ev.



98 T. SarrWe denote by δ the element of autp(Dv) generated by g(s). For any�xed u ∈ Dv, g(s)(u) is a smooth urve in Dv, with g(0)(u) = u, and δ(u)is a tangent vetor to this line. Thus, the elements of autp(Dv) are vetor�elds δ(u) on Dv de�ned by
δ(u) =

d

ds
g(s)(u)

∣∣∣
s=0

. (14)Note that (14) is equivalent to using dv ⊕E v and not v ⊕E dv for theveloity at time t + dt.The expliit form of δ(u) is alulated in [1℄. There it is shown that theLie algebra
autp(Dv) = {δE,B : E,B ∈ R

3}, (15)where δE,B : Dv → R
3 is the vetor �eld de�ned by

δE,B(u) = E + u × B − c−2〈u |E〉u. (16)Note that eah generator δE,B(u) is a seond-degree polynomial in u. Thequadrati term an be used to derive the triple produt assoiated with
Dv as a Bounded Symmetri Domain. Moreover, these generators give theorret formulas for the transformation of an eletromagneti �eld betweentwo inertial systems. Two examples of these vetor �elds are shown inFigures 3 and 4.
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Figure 3. The vetor �eld generated by an eletri �eld E.The vetor �eld q/m · δE,B on a two-dimensional setion of Dv, with q/m = 107C/kg,
E = (2, 0, 0)V/m and B = 0. Sine E is in the positive diretion of the vx-axis, the



Loops in Relativisti Dynamis 99�eld tends to move partiles in this diretion. However, near the edge of Dv, the vetorseither shrink to zero magnitude or beome nearly tangent to Dv, re�eting the fat thatthe �ow generated by this �eld annot leave Dv.
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Figure 4. The vetor �eld generated by an eletromagneti �eld E,B.The vetor �eld q/m · δE,B on a two-dimensional setion of Dv, with q/m = 107C/kg,
E = (2, 0, 0)V/m and cB = (0, 0, 3)V/m. Here, the addition of a magneti �eld B ausesa rotation.Using the generator δE,B ∈ autp(Dv) de�ned by (16) to represent thefore on a partile with harge q and rest-mass m0, we obtain the relativistidynamis equation

dv(τ)

dτ
=

q

m0
δE,B(v(τ))or

m0
dv(τ)

dτ
= q(E + v(τ) × B − c−2〈v(τ)|E〉v(τ)), (17)where τ is the proper time of the partile. It is shown in [1℄ that (17) isequivalent to (3). 4. Right translationsWhen we try to mimi the development of the previous setion using theright translations, we run into problems.For eah v ∈ Dv, we de�ne the right translation Rv : Dv → Dv by

Rv(u) = u ⊕E v. (18)



100 T. SarrUnfortunately, the right translations do not possess any of the nie prop-erties of the left translations. The map Rv is not projetive. It's not evenanalyti. Moreover,
R−1

v 6= R−v. (19)In fat, R−1
v is not a right translation at all. We will express R−1

v (u)using Ungar's gyration operator [6℄. For x,y ∈ Dv, de�ne gyr[x,y] : Dv →
Dv by

gyr[x,y](z) = −(x ⊕E y) ⊕E (x ⊕E (y ⊕E z)). (20)Then
R−1

v (u) = u ⊕E − gyr[u,v]v. (21)This last equation shows that R−1
v is not a right translation. It is not learat all how to proeed from this point in developing relativisti dynamis.We think the di�ulties might be overome by using the triple produtassoiated with Dv as a Bounded Symmetri Domain, but this approah isstill in the beginning stages. See Setion 7.5. Symmetri veloity additionIn this setion, we onstrut the loop (Ds,⊕s) of symmetri veloities. Wederive the formula for the addition of symmetri veloities from the physialde�nition of this addition. The left translations of (Ds,⊕s), whih belongto the group Autc(Ds) of all onformal automorphisms of Ds, are thenused to derive the relativisti dynamis equation for symmetri veloities.The elements of the Lie algebra autc(Ds) will be expressed in terms ofa triple produt. We also obtain a very useful two-dimensional version of

(Ds,⊕s). This version is usually simpler to work with and yet aptures allof the properties of the full three-dimensional version. Here too, in the aseof symmetri veloity, we will see that while the left translations yield anie development of relativisti dynamis, the right translations are ratherproblemati, even in the simpler, two-dimensional ase.The de�nition of symmetri veloity is as follows. If the relative veloitybetween two inertial systems is v, then the symmetri veloity between thesystems is the unique veloity w1 suh that
v = w1 ⊕E w1 =

w1 + w1

1 + |w1|
c

|w1|
c

=
2w1

1 + |w1|2/c2
.



Loops in Relativisti Dynamis 101Instead of w1, we use a dimensionless vetor w = w1/c and all it s-veloity.Thus, the relationship between an s-veloity w and its orresponding ve-loity v is given by the two formulas
w = Ψ(v) =

v/c

1 +
√

1 − |v|2/c2
(22)and

v = Ψ−1(w) =
2cw

1 + |w|2
. (23)The set of all relativistially admissible s-veloities form a unit ball

Ds = {w ∈ R
3 : |w| < 1}. (24)The physial meaning of symmetri veloity is as follows. Consider twoinertial systems with relative veloity v between them. Plae two objets ofequal mass (test masses) at the origin of eah inertial system. The enter ofmass of the two objets will be alled the enter of the two inertial systems.The symmetri veloity is the veloity of eah system with respet to theenter of the systems, and the s-veloity is the dimensionless veloity of thesystems with respet to their enter (see Figure 5).
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Figure 5. The physial meaning of symmetri veloity.The physial meaning of symmetri veloity. Two inertial systems K and K′ with relativeveloity v between them are viewed from the system onneted to their enter. In thissystem, K and K′ are eah moving with veloity ±w.



102 T. SarrThe physial de�nition of s-veloity addition is as follows. Considerthree inertial systems K1, K2 and K3. We hoose the spae axes of K2to be parallel to the axes of K1 and the axes of K3 to be parallel to thoseof K2. Denote their origins by O1, O2 and O3, respetively. Denote by athe s-veloity of system K2 with respet to K1 and by w the s-veloity ofsystem K3 with respet to K2. Then the s-veloity w3 of system K3 withrespet to K1 (i.e., the veloity of K3 with respet to the enter of systems
K1 and K3) is alled the sum of the s-veloities a and w and is denoted by
a⊕s w (see Figure 6). In other words, if ca⊕E ca = v and cw⊕E cw = u,then a ⊕s w is 1/c times the relativisti half of v ⊕E u.
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Figure 6. The sum of s-veloities.The sum of s-veloities. Inertial systems K1, K2 and K3, with origins O1, O2 and O3,respetively, had a ommon origin at time t = 0. The line K̃12 is the world-line of theenter of the two inertial systems K1 and K2. Similarly, the lines K̃23 and K̃13 representthe world-lines of the enters of the systems K2, K3 and K1, K3, respetively. Theveloity of system K2 with respet to system K1 is v, and its s-veloity a is the veloityof K2 with respet to K̃12. Similarly, the veloity of system K3 with respet to system
K2 is u, and its s-veloity w is the veloity of K3 with respet to K̃23. By de�nitionof Einstein veloity addition, the veloity of system K3 with respet to system K1 is
v ⊕E u. The s-veloity of K3 with respet to K1, meaning the dimensionless veloity of
K3 with respet to K̃13, is alled the sum of symmetri veloities a and w and is denotedby a ⊕s w.



Loops in Relativisti Dynamis 103Using the above de�nition and formula (7) for Einstein veloity addition,we obtain the s-veloity-addition formula:
a ⊕s w =

(1 + |w|2 + 2〈a | w〉)a + (1 − |a|2)w

1 + |a|2|w|2 + 2〈a | w〉
. (25)As in the ase of Einstein veloity addition, it an be shown that a⊕s w =

w ⊕s a if and only if a and w are parallel.Note that a ⊕s w is a linear ombination of a and w and therefore be-longs to the plane Π generated by a and w. This allows us to obtain atwo-dimensional version of s-veloity addition. It is often su�ient (andeasier!) to work with the two-dimensional version. Moreover, we obtain anew method of solving relativisti dynami equations. If the motion underinvestigation has an invariant plane, then the relativisti dynami equa-tion for the symmetri veloity beomes a �rst-order analyti di�erentialequation in one omplex variable.We obtain the two-dimensional version of s-veloity addition by impos-ing a omplex struture on the plane Π. In other words, we treat the disk
∆ = Ds ∩ Π as a opy of the unit disk |z| < 1 of the omplex plane C.Denote by a the omplex number orresponding to the vetor a and by wthe omplex number orresponding to the vetor w. We use the identities

Re 〈a | w〉 =
aw + aw

2
, |w|2 = ww, (26)where the bar denotes omplex onjugation, to onvert (25) into our two-dimensional version:

a ⊕s w =
(1 + ww + aw + aw)a + (1 − aa)w

1 + aaww + aw + aw
(27)

=
(a + w)(1 + aw)

(1 + aw)(1 + aw)
=

a + w

1 + aw
. (28)This is the well-known Möbius transformation of the omplex unit disk.Thus, s-veloity addition is a generalization of the Möbius addition of om-plex numbers (see Figure 7).
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La(w) = a ⊕s w. (29)Eah left translation La is a onformal automorphism of Ds. In addition,the inverse of a left translation is again a left translation. In fat L−1
a =

L−a. As a result, the same argument as that in Setion 3 shows that thegroup Autc(Ds) of all onformal automorphisms of Ds has the followingharaterization:
Autc(Ds) = {LaU : a ∈ Ds, U ∈ O(3)}. (30)We write La,U instead of LaU .The group Autc(Ds) is a representation of the Lorentz group by onfor-mal maps. It is a real Lie group of dimension 6, sine any element of thegroup is determined by an element a of the three-dimensional open unit ballin R

3 and an element U of the three-dimensional orthogonal group O(3).The two groups Autp(Ds) and Autc(Ds) are isomorphi. In fat, theisomorphism is given by
Lv,U ←→ ΨLv,UΨ−1. (31)



Loops in Relativisti Dynamis 105Nevertheless, they lead to di�erent dynamis, as we will see.The relativisti dynamis equation for symmetri veloities will be on-struted from the elements of the Lie algebra autc(Ds) of Autc(Ds). Tode�ne the elements of autc(Ds), onsider di�erentiable urves g(s) from aneighborhood I0 of zero into Autc(Ds), with g(0) = L0,I , the identity of
Autc(Ds). Then

g(s) = La(s),U(s), (32)where a : I0 → Ds is a di�erentiable funtion satisfying a(0) = 0 and
U(s) : I0 → O(3) is di�erentiable and satis�es U(0) = I. We denote by ξthe element of autc(Ds) generated by g(s). For any �xed w ∈ Ds, g(s)(w)is a smooth urve in Ds, with g(0)(w) = w, and ξ(w) is a tangent vetorto this line. Thus, the elements of autc(Ds) are vetor �elds ξ(w) on Dsde�ned by

ξ(w) =
d

ds
g(s)(w)

∣∣∣
s=0

. (33)The expliit form of ξ(w) is alulated in [1℄. There it is shown that
autc(Ds) = {ξb,A : b ∈ R

3, A is a 3 × 3 antisymmetri matrix}, (34)where
ξb,A(w) = b + Aw − 2〈b|w〉w + |w|2b. (35)It is useful to express the generator ξb,A in terms of the triple produt
{a,b, c} = 〈a|b〉c + 〈c|b〉a − 〈a|c〉b, (36)where a,b, c ∈ R

3. This produt is alled the spin triple produt. Thebounded symmetri domain Ds endowed with the spin triple produt isalled the spin fator and is a domain of type IV in Cartan's lassi�ation.See Chapters 2 and 3 of [1℄ for a full treatment of the spin triple produt inthe theory of Bounded Symmetri Domains and Speial Relativity.Rewriting the generators (35) using the triple produt, we �nd that
autc(Ds) = {ξb,B : b,B ∈ R

3}, (37)where ξb,B : Ds → R
3 is the vetor �eld de�ned by

ξb,B(w) = b + w × B − {w,b,w}. (38)See Figures 8 and 9 for two examples of these vetor �elds.The similarities between Figures 3 and 8 and between Figures 4 and 9an be misleading. For example, the �ow generating Figure 4 is elliptial,while the trajetories in Figure 9 are irles.



106 T. Sarr

1 0.5 0 0.5 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Im
(w

)

Re(w)Figure 8. The vetor �eld of the eletri �eld E on Ds.The vetor �eld ξb,B, with b = (0.07, 0, 0) and B = 0, on a two-dimensional setion ofthe s-veloity ball Ds. Note that this vetor �eld is similar to the orresponding one forthe Lie algebra autp(Dv) of the veloity ball (see Figure 3).
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Loops in Relativisti Dynamis 107To obtain the relativisti dynamis equation for symmetri veloities,we start with
m0

d(γv)

dt
= q(E + v × B) (39)and hange variables from veloity v to s-veloity w. We obtain

m0c
dw(τ)

dτ
= q(E/2 + w(τ) × cB − {w(τ),E/2,w(τ)}) = qξE/2,cB(w(τ)).(40)Thus the left translations yield a nie development of relativisti dy-namis also in the ase of symmetri veloity. The right translations, onthe other hand, are again problemati. Even in the ostensibly simpler two-dimensional version of symmetri veloity addition, the inverses of righttranslations are rather unwieldy. Reall that the two-dimensional versionof s-veloity addition is

a ⊕s b =
a + b

1 + ab
. (41)The left inverses are well-behaved, and we have

L−1
a (b) =

−a + b

1 − ab
= L−a(b). (42)Compare this to the right inverse, whih is not even analyti:

R−1
a (b) =

b(1 − |a|2) − a(1 − |b|2)

1 − |b|2|a|2
. (43)Again the right translations have lead to an apparent dead end.6. Why are the left and righttranslations so di�erent?Why are the left translations so well-suited for relativisti dynamis, whilethe right translations are not? Who told fores that they have to at onthe left?Let's take another look at the physial de�nition of the Einstein veloityaddition. Suppose an observer is at rest in an inertial system K. Forany veloity a ∈ Dv, let Ka denote the inertial system whose axes areparallel to those of K and moves with relative veloity a with respet to K.Then the inverse funtions L−1

a and R−1
a now have the following physial



108 T. Sarrinterpretation. The question �What is the value of L−1
a (u)?� is equivalent tothe question �Whih veloity measured in the system Ka will be measured byour observer as u?� whereas the question �What is the value of R−1

a (u)?�is equivalent to the question �In whih system K ′ will the veloity a bemeasured by our observer as u?� In other words, the two inverse funtionsare answering fundamentally di�erent questions.This might explain why the left and right translations behave di�erently.But it still does not explain the preferred status of left over right.7. Suggestions for further researhAs mentioned previously, we believe that the triple produt might be helpfulin overoming the di�ulties inherent in using the right translations. Inthe two-dimensional version of s-veloity addition, for example, the tripleprodut is derived from (36) and takes the form
{z, b, w} = zbw, (44)where z, b, w ∈ C. Then, although neither the right translation Ra norits inverse is analyti, eah of these funtions does have a power seriesexpansion. More expliitly, for the right translation we have

Ra(b) =
b + a

1 + ba
=

∞∑

n=0

(−1)nD(a, b)n(a + b), (45)where D(a, b)x = {a, b, x} and D(a, b)0 = Id. For the inverse, we have
R−1

a (b) =
b(1 − |a|2) − a(1 − |b|2)

1 − |b|2|a|2
=

∞∑

n=0

Q(a, b)n(−a + b), (46)where Q(a, b)x = {a, x, b} and Q(a, b)0 = Id. It will be interesting to see ifthese power series make the right translations more amenable to relativistidynamis.Another line of investigation involves the Equivalene Priniple. Thispriniple has several versions. The lassial version ([3℄, p. 244) states thatmotion in a uniformly aelerated system is the same as that in an inertialsystem in the presene of a gravitational �eld. Aording to the generalizedEquivalene Priniple, motion in a uniformly aelerated system is the sameas that in an inertial system in the presene of any fore. We believe that
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