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Ranks of nets

G. Eric Moorhouse

Abstract

Let N be a k-net of prime order p. We �nd bounds on the p-rank of (the point-line
incidence matrix of) N for k ∈ {3, 4}, and observe connections between the p-rank and
certain structural properties of N . Implications for the study of �nite projective planes
are described.

1. Loops and 3-nets of prime order

Let (L, ∗) be a loop of prime order p. The 3-net N = N (L) coordinatized
by L is the point-line incidence system having p2 points L2 = L × L, and
3p lines given by

{a} × L for a ∈ L (the lines �x = a�);

L× {b} for b ∈ L (the lines �y = b�); and

{(x, y) ∈ L2 : x ∗ y = c} for c ∈ L (the lines �x ∗ y = c�).

The point-line incidence matrix of N is the p2 × 3p matrix with rows
and columns indexed by points and lines of N respectively; and having
entries 0 and 1 corresponding to non-incident and incident point-line pairs
respectively. We have

Theorem 1.1. (Main Theorem [5]) The p-rank of the incidence matrix

of N equals 3p−3 if L is associative, and 3p−2 otherwise.

Our original proof [5], still the simplest proof available, uses loop theory.
(Here for simplicity we consider only loops and nets of prime order, although
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more arbitrary �nite orders were considered in [5].) We reproduce this proof
below; and we indicate three alternative proofs of the same result. Our
(currently unrealized) goal is a generalization of Theorem 1.1 to k-nets for
k = 3, 4, . . . , p+1; possibly using techniques from nonassociative algebra,
or possibly by generalizing some of the other techniques described in this
paper. The desired generalization of this result is

Conjecture 1.2. [5] Let N be any k-net of prime order p, and let N ′ be
any (k−1)-subnet of N obtained by deleting one of the k parallel classes

of lines of N ; here k ∈ {2, 3, . . . , p+1}. Then the p-rank of the incidence

matrix of N exceeds that of N ′ by at least p−k+1.

The signi�cance of Conjecture 1.2 lies in the fact [5] that this would im-
ply that every projective plane of prime order is Desarguesian, thereby set-
tling one of the most celebrated currently open problems in �nite geometry.
Extensions of this method to other �nite orders would yield restrictions on
the possible orders of �nite projective planes, beyond the restrictions avail-
able through the Bruck-Ryser Theorem [2]. We believe that these �nite geo-
metric questions are worthy of the attention of researchers in nonassociative
algebra. Indeed, Belousov [1] attributes the origins of quasigroup theory to
the study of �nite projective planes. (I am grateful to V.V. Goldberg for
bringing this reference to my attention during our Mile High Conference.)

In Section 2, we describe the p-rank of a net in terms recognizable to
researchers of webs. This leads to a reformulation of our main result The-
orem 1.1 in equivalent terms as Theorem 2.3. In Sections 3, 4, 5 and 6
we provide proofs of this main result using loop theory, group theory, �nite
�eld theory, and number theory (speci�cally, exponential sums) respectively.
Each of these approaches suggests di�erent possibilities for generalization
to k-nets. Finally in Section 7 we describe some recent progress towards
Conjecture 1.2 in the case of 4-nets.

2. Nets and planes of prime order

Consider a �eld F = Fp of prime order p, and let k > 2. For every J ⊆
{1, 2, . . . , k} we consider the projection F k → F |J | de�ned by

(a1, a2, . . . , ak) 7→ (aj : j ∈ J).
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We simply write πi = π{i}, πij = π{i,j}, and we denote J ′ = {1, 2, . . . , k}\J
so that in particular

πi′(a1, a2, . . . , ak) = (a1, a2, . . . , ai−1, ai+1, . . . , ak).

A k-net of order p is a subset N ⊆ F k such that for all i 6= j in

{1, 2, . . . , k}, the map N
πij−→ F 2 is bijective. The members of N are called

points, and the lines of N are the �bres

N ∩ π
−1

i (a) = {v ∈ N : πi(v) = a}

for i ∈ {1, 2, . . . , k}, a ∈ F . For every J ⊆ {1, 2, . . . , k} of cardinality at
least 2, clearly πJ(N ) is a |J |-net of order p; we call this a |J |-subnet
of N . In particular for each i ∈ {1, 2, . . . , k}, we have that πi′(N ) is
a (k−1)-subnet of N , obtained by simply deleting from N the i-th par-
allel class of lines. An isomorphism of nets φ : N → N ′ is a map of
the form (a1, a2, . . . , ak) 7→ (α1(aσ(1)), α2(aσ(2)), . . . , αk(aσ(k))) for some
α1, α2, . . . , αk ∈ Sym(F ) and σ ∈ Sk; this simply says that the corre-
sponding point-line incidence structures are isomorphic.

An a�ne plane of order p is simply a (p+1)-net of order p. The Desar-
guesian a�ne plane is the (p+1)-net

D = {(a, b, a+b, a+2b, . . . , a+(p−1)b) : a, b ∈ F}.

A Desarguesian net is any subnet of D. A Desarguesian 3-net is known
simply as a cyclic 3-net. Every cyclic 3-net of order p is isomorphic to
{(a, b, a+b) : a, b ∈ F}.

Denote by V = V(N ) the vector space consisting of all k-tuples
(f1, f2, . . . , fk) of functions F → F such that

f1(a1) + f2(a2) + · · ·+ fk(ak) = 0

for all (a1, a2, . . . , ak) ∈ N . Also denote by V0 = V0(N ) 6 V the sub-
space consisting of all (f1, f2, . . . , fk) ∈ V satisfying the additional condi-
tion f1(0) = f2(0) = · · · = fk(0) = 0. The map V → F k, (f1, f2, . . . , fk) 7→
(f1(0), f2(0), . . . , fk(0)) induces an isomorphism from V/V0 to a (k−1)-
dimensional subspace of F k; thus dim(V) = dim(V0) + k − 1, and so we
may focus our attention on V0 rather than on V itself. Since V may be
interpreted as the right null space of the point-line incidence matrix A of
N , this gives
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Proposition 2.1. The p-rank of the incidence matrix A of N is given by

rankp A = pk − dimV = (p−1)k + 1− dimV0.

Rephrasing our conjectured bounds for the rank of A in terms of the
nullity gives

Conjecture 2.2. We have:

(i) dim π1(V) 6 k−1.

(ii) dim(V0) 6 1
2(k−1)(k−2), and equality holds i� N is Desarguesian.

Statement (i) is equivalent to Conjecture 1.2, and the �rst assertion of
(ii) is implied by (i). If either (i) or (ii) holds then every plane of prime
order is Desarguesian. As indication that V0 is more natural to consider
than the row or column space of A itself, we observe that in the case of
webs, the corresponding incidence map has in�nite rank, whereas the null
space V is �nite-dimensional. Indeed the bound dim(V0) 6 1

2(k−1)(k−2)
holds for k-webs, with equality attainable in the case of algebraic webs;
see [3,4]. We rephrase the Main Theorem as

Theorem 2.3. Let N be a 3-net of order p. Then dim(V0) 6 1. Moreover,

equality holds i� N is cyclic, in which case V0 is spanned by a triple (f, g, h)
in which the maps f, g, h : F → F are permutations.

3. First proof of main theorem (using loop theory)

Let N ⊂ F 3 be a 3-net of prime order p, in the notation of Section 2, and
suppose (f, g, h) ∈ V0(N ) is nonzero. To within an isomorphism of nets, we
have

N = {(x, y, x ∗ y) : x, y ∈ F}

where (x, y) 7→ x ∗ y ∈ F is a loop operation on F with identity 0. By
de�nition we have

f(0) = g(0) = h(0) = 0;
f(x) + g(y) + h(x ∗ y) = 0 for all x, y ∈ F.

This implies that f(x) = g(x) = −h(x) for all x ∈ F and that f is a
nonzero homomorphism from the loop (F, ∗) to the cyclic group (F,+) of
order p. These two loops are therefore isomorphic, so N is cyclic. Moreover
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every such homomorphism has the form cf for some c ∈ F , so V0(N ) is
1-dimensional. The result follows.

The same argument actually yields the stronger result

Theorem 3.1. [5] Let L be a loop of order n = prm where gcd(p, m) = 1.
Then the p-rank of the incidence matrix of the 3-net N (L) equals 3p−2− e
where e ∈ {0, 1, 2, . . . , r}. We have |K| = pe where K ⊆ L is the largest

normal subloop such that the quotient loop L/K is an elementary abelian

p-group.

4. Second proof of main theorem

(using permutation groups)

An alternative proof of Theorem 3.1 is obtained by considering the left
multiplication group of L. More generally, let Ω be a set of size |Ω| = n =
prm where gcd(p, m) = 1, and let G be a group permuting Ω transitively.
Let H 6 G be the stabilizer of a point which we denote 1 ∈ Ω. For each
k > 0, denote by Ck the vector space over F consisting of all functions
Ωk+1 → F . Then G acts on Ck via

fg(x0, x1, . . . , xk) = f(xg
0, x

g
1, . . . , x

g
k)

for g ∈ G, f ∈ Ck, xi ∈ Ω. Consider the F -linear map ∂ = ∂k : Ck → Ck+1

de�ned by

(∂f)(x0, x1, . . . , xk+1) =
k+1∑
i=0

(−1)k+1−if(x0, x1, . . . , xi−1, xi+1, . . . , xk+1)

for f ∈ Ck, xi ∈ Ω. Note that ∂ is G-equivariant: ∂(fg) = (∂f)g. The
image B1 = ∂C0 6 C1 consists of all functions ∂φ(x0, x1) = φ(x0)− φ(x1)
for some φ : Ω → F . Consider the subspace of G-invariants given by

(B1)G = {f ∈ B1 : fg = f for all g ∈ G}.

In the following, Hom(G/K,F ) denotes the vector space over F consisting
of homomorphisms from the multiplicative group G/K to the additive group
of F .

Lemma 4.1. (B1)G ∼= Hom(G/K,F ) where K is the smallest normal

subgroup of G containing H such that G/K is an elementary abelian p-
group. In particular, dim (B1)G = e ∈ {0, 1, 2, . . . , r} where |G/K| = pe.
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Proof. For each φ : G/K → F , de�ne φ̂ : Ω → F by φ̂(1g) = φ(Kg) for
g ∈ G. Note that φ̂ ∈ C0 is well-de�ned since K contains H. We claim that
the map

θ : Hom(G/K, F ) → (B1)G, φ 7→ ∂φ̂

is an isomorphism of vector spaces over F . Certainly if φ ∈ Hom(G/K,F )
then

∂φ̂(1ug, 1vg) = φ(Kug)− φ(Kvg) = φ(Ku) + φ(Kg)− φ(Kv)− φ(Kg)

= φ(Ku)− φ(Kv) = ∂φ̂(1u, 1v)

for all u, v, g ∈ G. Since G is transitive on Ω, this implies that ∂φ̂ ∈ (B1)G.
If ∂φ̂ = 0 then φ(Kg) = φ(K) = 0 for all g ∈ G, i.e. φ = 0 so θ is injective.
Finally, given f ∈ (B1)G, de�ne φ(Kg) = f(1g, 1). Since f ∈ (B1)G we
have

0 = ∂f(1gh, 1h, 1) = f(1h, 1)− f(1gh, 1) + f(1gh, 1h)

= f(1h, 1)− f(1gh, 1) + f(1g, 1)
= φ(Kh)− φ(Kgh) + φ(Kg)

for all g, h ∈ G so that φ ∈ Hom(G/K, F ) satisfying ∂φ̂ = f and θ is
surjective.

Now suppose (L, ∗) is a loop of order n = prm where gcd(p, m) = 1.
Let 1 ∈ L be the identity, and let G be the left multiplication group of L;
i.e. G 6 Sym(L) is generated by the permutations x 7→ a ∗ x, a ∈ L. We

show that the map (f, g, h) 7→ ∂f gives an isomorphism V0(N )
∼=−→ (B1)G.

For (f, g, h) ∈ V0(N ) we have

f(x) + g(y) + h(x ∗ y) = 0

for all x, y ∈ L and so f(x) = g(x) = −h(x) and

∂f(a ∗ x, a ∗ y) = f(a ∗ x)− f(a ∗ y)
= f(a) + f(x)− f(a)− f(y) = f(x)− f(y)
= ∂f(x, y)

so that ∂f ∈ (B1)G. If ∂f = 0 then f(x) = ∂f(x, 1) = 0. Also if φ : L → F
such that ∂φ ∈ (B1)G then we easily check that (f, f,−f) ∈ V0(N ) where
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f(x) = ∂φ(x, 1) = φ(x)− φ(1):

f(x) + f(y)− f(x ∗ y) = ∂φ(x, 1) + ∂φ(y, 1)− ∂φ(x ∗ y, 1)
= ∂φ(x, 1)− ∂φ(x ∗ y, 1) + ∂φ(x ∗ y, x)

= ∂2(x ∗ y, x, 1) = 0.

Theorem 3.1 follows.

5. Third proof of main theorem (using �nite �elds)

We require the following well-known result, whose proof is included for
completeness. As before we �x F = Fp where p is prime, and we use the
convention that 00 = 1.

Proposition 5.1. Let f : F → F , and for every r > 0, write σf,r =∑
a∈F f(a)r ∈ F . Then

(a) The map f is a permutation of F , if and only if

σf,0 = σf,1 = · · · = σf,p−2 = 0 and σf,p−1 = −1.

(b) We have σf,0 = σf,1 = · · · = σf,p−2 = 0, if and only if
∣∣f(F )

∣∣ equals

either 1 or p.

Proof. First suppose that the map f is a permutation of F , so that σf,r =∑
a∈F ar. Clearly σf,0 = p = 0 ∈ F and σf,p−1 = p−1 = −1 ∈ F . Now

suppose 1 6 r 6 p−2. For every c ∈ {1, 2, . . . , p − 1} we have crσf,r =∑
a∈F (ca)r =

∑
a∈F ar = σf,r since the map a 7→ ca is a permutation of F .

Now the polynomial σf,rX
r − σf,r ∈ F [X] has p−1 > r zeroes in the �eld

F , so σf,r = 0 as required.

In the general case, for every a ∈ F , let na =
∣∣f−1(a)

∣∣, so that σf,r =∑
a∈F arna . The linear system

1 1 1 · · · 1 1
0 1 2 · · · p−2 p−1
0 1 22 · · · (p−2)2 (p−1)2
...

...
...

. . .
...

...
0 1 2p−2 · · · (p−2)p−2 (p−1)p−2

0 1 2p−1 · · · (p−2)p−1 (p−1)p−1





n0

n1

n2
...

np−2

np−1


=



0
0
0
...
0
−1


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over Q has a unique solution, since the coe�cient matrix is a nonsingular
Vandermonde matrix. We have seen that n0 = n1 = · · · = np−1 = 1 is a
solution, so (a) follows. Moreover the linear system


1 1 1 · · · 1 1
0 1 2 · · · p−2 p−1
0 1 22 · · · (p−2)2 (p−1)2
...

...
...

. . .
...

...
0 1 2p−2 · · · (p−2)p−2 (p−1)p−2





n0

n1

n2
...

np−2

np−1


=


0
0
0
...
0


has as its general solution n0 = n1 = · · · = np−1 since the coe�cient matrix
has rank p−1. Since n0 + n1 + n2 + · · · + np−1 = p, we have either (i)
n0 = n1 = · · · = np−1 = 1, or (ii) one of the nk's is p and the others are
zero. Conclusion (b) follows.

LetN be a 3-net of odd prime order p, i.e. a set of p2 triples (x, y, z) ∈ F 3

such that each point (x, y, z) ∈ N is uniquely determined by any two of its
coordinates. We have rankpN = 3p−2−dimV0 where V0 is the set of all
triples (f, g, h) of functions F → F such that f(0) = g(0) = h(0) = 0 and

f(x) + g(y) + h(z) = 0 for all (x, y, z) ∈ N .

We must show that dimV0 6 1, and that equality holds i� the 3-net N is
cyclic.

Suppose (f, g, h) ∈ V0 is nonzero. Using always the convention that
00 = 1, we see that σf,0 = σg,0 = σh,0 = 0. Note that for all r > 0 and all
(x, y, z) ∈ N , we have

h(z)r = (−1)r
r∑

s=0

(
r

s

)
f(x)r−sg(y)s

by the Binomial Theorem. Summing over all p triples (x, y, z) ∈ N with a
�xed value of y gives

σh,r = (−1)r
r∑

s=0

(
r

s

)
σf,r−sg(y)s (5.1)

for all r > 0, y ∈ F .
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Summing (5.1) over all y ∈ F gives

0 =
r∑

s=0

(
r

s

)
σf,r−sσg,s (5.2)

for all r > 0.

Theorem 5.2. We have

σf,r = σg,r = σh,r =
{

0, for r = 0, 1, 2, . . . , p−2, and

−1, for r = p−1.

Proof. As previously noted, the result holds for r = 0. Assume the con-
clusion of the Theorem holds for all r ∈ {0, 1, . . . , t} where t 6 p−2, and
we will verify the conclusion in the case r = t+1. Applying (5.1) in the
case r = t+1, we have σh,t+1 = (−1)t+1σf,t+1 . Similarly, we obtain

σf,t+1 = (−1)t+1σg,t+1 and σg,t+1 = (−1)t+1σh,t+1 . Clearly the conclu-
sion σf,t+1 = σg,t+1 = σh,t+1 = 0 follows if t is even, but we proceed to
obtain the same conclusion regardless of the parity of t.

We consider �rst the case t 6 1
2(p−3). Applying (5.2) for r = 2t+2

yields

0 =
2t+2∑
s=0

(
2t+2

s

)
σf,2t+2−sσg,s =

(
2t+2
t+1

)
σf,t+1σg,t+1 .

Since 2t+2 < p, this implies that σf,t+1σg,t+1 = 0. Combining this with
the previous paragraph yields σf,t+1 = σg,t+1 = σh,t+1 = 0. Thus the
conclusion holds for r = t+1 as well.

Next consider the case 1
2(p−1) 6 t < p−2. Multiplying both sides of

(5.1) by g(y)2t+3−p and setting r = p−1 yields

σh,p−1g(y)2t+3−p =
p−1∑
s=0

(
p−1
s

)
σf,p−1−sg(y)s+2t+3−p

=
p−t−2∑
s=0

(
p−1
s

)
σf,p−1−sg(y)s+2t+3−p.

Note that 2t+3−p > 2, so all exponents are non-negative. Now observe
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that 2t+3−p < t and sum over y ∈ F to obtain

0 = σh,p−1σg,2t+3−p =
p−t−2∑
s=0

(
p−1
s

)
σf,p−1−sσg,s+2t+3−p

=
(

p−1
p−t−2

)
σf,t+1σg,t+1.

Since the latter binomial coe�cient is not divisible by p, we obtain
σf,t+1σg,t+1 = 0. This yields σf,t+1 = σg,t+1 = σh,t+1 = 0 as before.

Applying (5.1) for r = p−1 gives σh,p−1 = σf,p−1 ; and similarly,
σh,p−1 = σg,p−1 . By assumption, (f, g, h) ∈ V0 is nonzero; therefore by
Proposition 5.1 we have σf,p−1 = σg,p−1 = σh,p−1 = −1 and each of the
maps f, g, h is a permutation of F . We may assume that f(x) = g(x) =
−h(x) = x for all x ∈ F ; otherwise relabel the lines in each parallel class so
that this is the case. Since f(x) + g(y) + h(z) = 0 for all (x, y, z) ∈ N , we
obtain N = {(x, y, x+y) : x, y ∈ F} and so the 3-net N is cyclic.

6. Fourth proof of main theorem

(using exponential sums)

Let F = Fp where p is prime, and let ζ ∈ C be a primitive p-th root of
unity. We have a well-de�ned map

e : F → Z[ζ], a 7→ ζa

satisfying e(a + b) = e(a)e(b) for all a, b ∈ F . Each function f : F → F
gives rise to an exponential sum

Sf =
∑
a∈F

e(f(a)) ∈ Z[ζ].

Now suppose N is a 3-net of order p, and let (f, g, h) ∈ V0(N ). Summing
ζf(a)+g(b) = ζ−h(c) over all (a, b, c) ∈ N gives SfSg = Sh, and similarly
SgSh = Sf and ShSf = Sg. Thus

|Sf |2 = |Sg|2 = |Sh|2 = 1
pSfSgSh.

Now if |Sf | = |Sg| = |Sh| = p then f, g, h : F → F are constant functions,
but then the condition f(0) = g(0) = h(0) = 0 forces (f, g, h) = (0, 0, 0).

Otherwise we must have Sf = Sg = Sh = 0, so that f, g, h : F → F are
permutations. After permuting labels, we may assume that
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f(X) = X, g(X) = X, h(X) = −X.

Now

0 = f(a) + g(b) + h(c) = a + b− c

for all (a, b, c) ∈ N , i.e.

N = {(a, b, a+b) : a, b ∈ F}
which is the cyclic 3-net of order p.

7. 4-nets of prime order

Let N be a 4-net of prime order p, and let (f, g, h, u) ∈ V(N ). In the
notation of Section 6, we sum the quantity ζf(x)+g(y) = ζ−h(z)−u(t) over all
(x, y, z, t) ∈ N to obtain SfSg = ShSu. It is not hard to check that either

|Sf | = |Sg| = |Sh| = |Su| > 0

or at least three of the exponential sums {Sf , Sg, Sh, Su} vanish, in which
case the corresponding members of {f, g, h, u} are permutations. With some
further investigation we have shown

Theorem 7.1. [8] Let N be a 4-net of order p. Then:

(i) The number of cyclic 3-subnets of N is 0, 1, 3 or 4.

(ii) N has four cyclic 3-subnets i� N is Desarguesian.

(iii) Suppose N has at least one cyclic 3-subnet. Then N has rank at least

4p−3, and equality holds i� N is Desarguesian.

We remark that (i) and (ii) are best possible in the sense that there
exist (necessarily non-Desarguesian) 4-nets of prime order p having 0, 1 or
3 cyclic subnets. Examples of these for p = 7, 11 are found at [6,7].
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