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Geometric means and re�ection quasigroups

Jimmie Lawson and Yongdo Lim

Abstract

In this paper we show how the category of re�ection quasigroups forms a natural and
suitable context for the development of an abstract theory of the geometric mean, as
it appears in matrix and operator theory. We provide a new characterization of those
quasigroups that arise when re�ection quasigroups are endowed with the mean operation.
We also show how the notion of the geometric mean can be enlarged to that of weighted
means, develop basic properties of the latter, and illustrate their usefulness in solving
equations involving the mean operation.

1. Introduction

The notion of the geometric mean of two positive real numbers, a#b =√
ab, as the solution of the equation x2 = ab can be pro�tably extended

to much more general contexts. A natural approach in the setting of a
noncommutative group G is to �symmetrize� the equation and de�ne the
geometric mean a#b of a and b to be the unique solution of the equation
xa−1x = b, provided such a unique solution exists. In the matrix group
setting the equation thus assumes the form of the simplest of the matrix
Riccati equations.

The Riccati equation has a natural alternative form in the setting of
nonassociative algebra. Recall that the core of a group G is de�ned to be the
group equipped with the binary operation a•b := ab−1a. In the core setting
we are seeking a unique solution of the equation x • a = b. The condition
that this equation always have a unique solution is just the condition that
(G, •) be a right quasigroup (see Section 2). Since one quickly realizes that
this is frequently not the case, it is natural to look for restricted settings in
which it is. Thus we are led to look among •-closed subsets containing the

2000 Mathematics Subject Classi�cation: 20N05
Keywords: Quasigroup, dyadic symmetric set, geometric mean, weighted mean



44 J. Lawson and Y. Lim

identity, the twisted subgroups (terminology courtesy of M. Aschbacher [3]),
for ones that are right quasigroups. The recognition that many familiar
sets of �positive objects� such as the set of positive de�nite symmetric or
Hermitian matrices or the set of positive elements in a C∗-algebra form
twisted subgroups of the multiplicative group of invertible elements suggests
that this approach is worth pursuing.

At this stage it becomes most helpful to identify in an axiomatic method
the type of algebraic structures that are arising as twisted subgroups of the
core of a group. For a twisted subgroup A of a group G, the following
properties of (A, •) are readily veri�ed: for all a, b, c ∈ A,

(1) (idempotency) a • a = a.

(2) (left symmetry) a • (a • b) = b.

(3) (left distributivity) a • (b • c) = (a • b) • (a • c).

These turn out to be familiar axioms. Indeed they are the �rst three of the
four axioms of Ottmar Loos in his axiomization of symmetric spaces [14,
Chapter II], the fourth one being the topological requirement that the �xed
points of La, solutions of a • x = x, be isolated. In the symmetric space
setting the left translation La(b) := a • b represents the symmetry or point
re�ection of the space through the point a, so the �rst two axioms at least
have very natural geometric motivation.

After Loos, groupoids (or magmas as some would have it) that are idem-
potent, left symmetric, and left distributive received rather extensive study.
N. Nobusawa [15, 16] and collaborators [6], who called them symmetric sets,
were among the earliest, if not the earliest. They were also investigated by
R. Pierce [17, 18] under the name of �symmetric groupoids.� Through the
pioneering work of Joyce [5] they resurfaced in knot theory, where they are
referred to as involutory quandles, although such structures, called �kei's,�
were studied as far back as 1945 by M. Takasaki [20]. (For quandles in
general, Axiom (2) is weakened to require only that La be bijective; such
structures are called pseudo-symmetric sets by Nobusawa.) The recent dis-
sertation of D. Stanovský [19] also contains considerable information about
such structures. Other references could be mentioned as well, but we return
to our train of thought.

Pasting together the abstracted properties of twisted subgroups with
the property of being a right quasigroup, we are led to groupoids (X, •)
satisfying for all a, b, c ∈ X
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(1) a • a = a (Saa = a);

(2) a • (a • b) = b (SaSa = idX);

(3) a • (b • c) = (a • b) • (a • c) (SaSb = SSabSa);

(4) the equation x • a = b (Sxa = b) has a unique solution x ∈ X, called
the geometric mean, mean for short, or midpoint of a and b, and
denoted a#b.

Here we follow the notation of Loos and denote by Sa (instead of La) left
translation by a to indicate its geometric interpretation as a symmetry or
point re�ection. Each axiom is then given an alternative formulation in
terms of these symmetries. The terminology �geometric mean� is motivated
by our entire previous discussion, while the terminology �midpoint� is sug-
gested by that fact that it is reasonable to expect that re�ection through
the midpoint between a and b would carry a to b.

Note that it is an immediate consequence of Axiom (2) that the left
translation Sa is a bijection (with inverse Sa); hence (X, •) is also a left
quasigroup. Thus Axioms (2) and (4) together imply that (X, •) is a quasi-
group.

De�nition 1.1. If (X, •) satis�es Axioms (1)-(4), then it is called a re�ec-

tion quasigroup. The re�ection quasigroups form the objects of a category
for which the morphisms are •-preserving homomorphisms.

We note that we have previously investigated re�ection quasigroups in
some detail in [9, 10], where we called them �dyadic symmetric sets.�

We can also consider the modi�ed category of pointed re�ection quasi-
groups with point-preserving •-homomorphisms for morphisms. This view-
point allows a weakening of Axiom (4) that is often useful for veri�cation
of the axiom in speci�c examples.

Lemma 1.2. Let (X, •, ε), ε ∈ X, satisfy Axioms (1) − (3) and for all

b ∈ X, and

(4ε) the equation x • ε = b (Sxε = b) has a unique solution x ∈ X.

Then (X, •) is a re�ection quasigroup.

Proof. For a, b ∈ X, pick y such that y•ε = Syε = a; then Sya = SySyε = ε.
It follows that

Syx • a = b ⇔ x • ε = SySyx • Sya = Syb.
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The lemma follows from hypothesis and the fact Sy is bijective.

The lemma leads to a characterization of those twisted subgroups ad-
mitting geometric means. Note �rst that if A is a twisted subgroup and e
is the identity, then c is a solution of x • e = b if and only if ce−1c = c2 = b.
Thus the equation x•e = b has a unique solution if and only if every element
of A has a unique square root in A, i.e., A is uniquely 2-divisible. From the
preceding lemma we conclude that

Proposition 1.3. For a twisted subgroup A of a group G, (A, •) is a re-

�ection quasigroup if and only if A is uniquely 2-divisible.

Example 1.4. The twisted subgroups of positive de�nite symmetric real
matrices, positive de�nite Hermitian matrices, and positive elements of a
C∗-algebra are all uniquely 2-divisible, a standard and well-known fact.
They thus yield examples of re�ection quasigroups and admit geometric
means.

The geometric mean in these contexts is a known quantity in the litera-
ture and has a variety of characterizations. In a uniquely 2-divisible twisted
subgroup it can be de�ned directly by

a#b = a1/2(a−1/2ba−1/2)1/2a1/2;

one sees by direct computation that this satis�es the equation x • a =
xa−1x = b. There are a variety of references where the geometric mean
appears (see, for example, [1, 2, 4, 7, 8, 13]). In [8] the treatment begins
with the matrix Riccati equation de�ning the geometric mean, as we have
done here.

2. The quasigroup theory of means

After our initial foray into the study of the geometric mean [8], we began to
look for a suitable categorical �home� for a general theory of the geometric
mean. In the preceding section we have seen that re�ection quasigroups
provide a natural axiomatic theory for geometric means. In this section
we demonstrate that much of the basic algebraic theory of the geometric
mean can be worked out in an elementary and straightforward way in the
quasigroup context. We thus set forth some elementary, mostly well-known
facts about quasigroups that will be pertinent and useful for our study of
re�ection quasigroups.
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A set M equipped with a binary operation • : M × M → M is a
quasigroup if for all a, b ∈ M , the equations x • a = b and a • y = b have
unique solutions, the right and left quotients, usually denoted by x = b/a
and y = a \ b.

Remark 2.1. Alternatively one can de�ne a quasigroup by requiring that
the left and right translation maps La, Ra : X → X de�ned by La(x) = a•x
and Ra(x) = x•a are bijections. It follows that quasigroups are cancellative.

Quasigroups form the objects of a category with corresponding mor-
phisms those functions that are •-homomorphisms.

We develop the quasigroup theory that pertains to re�ection quasigroups
in the context of general quasigroups. We assume as we go along that
(X, •) denotes a re�ection quasigroup, and point out applications of our
developments to re�ection quasigroups. There will be some variation in
notation in the general quasigroup setting and the re�ection quasigroup
setting. For example, left translation is denoted La in the general setting
and Sa in the re�ection quasigroup setting. The right quotient of b by a is
denoted b/a, but this same element is called the mean and denoted by a#b
in the re�ection quasigroup setting.

Let (M, •) be a quasigroup. We consider the right quotient operation
x •r y := x/y. That is,

x •r y = w ⇐⇒ x/y = w ⇐⇒ x = w • y. (2.1)

Lemma 2.2. Let (M, •) be a quasigroup.

(i) (M, •r) is a quasigroup.

(ii) (•r)r = •.

(iii) A function is a •-homomorphism if and only if it is a •r-homomorphism.

(iv) La distributes over • if and only if it distributes over •r.

Proof. (i) The quasigroup property of (M, •r) follows from (2.1):

x •r a = b ⇐⇒ x = b • a,

a •r y = b ⇐⇒ a = b • y ⇐⇒ y = b \ a.

(ii) From

a = b(•r)rc ⇐⇒ a •r c = b ⇐⇒ a = b • c,
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we have (•r)r = •.
(iii) Suppose f : (M, •) → (Y, •) is a homomorphism. From (2.1)

x •r y = w ⇐⇒ x = w • y =⇒ f(x) = f(w • y) = f(w) • f(y)
⇐⇒ f(x) •r f(y) = f(w).

The converse follows from (ii).
(iv) Immediate from (iii).

Lemma 2.3. Let (M, •) be a quasigroup.

(i) (M, •) is idempotent if and only if (M, •r) is.

(ii) (M, •) is left symmetric (Lx◦Lx = idM for all x) if and only if (M, •r)
is commutative.

Proof. (i) From (2.1) x = x • x if and only if x •r x = x.

(ii) Let a, b ∈ M . There exists a unique x such that Lx(a) = x • a = b.
Assuming that Lx is involutive and applying it to the previous equation,
we conclude that a = Lx(b) = x • b. From these two equations we conclude
that

b •r a = b/a = x = a/b = a •r b.

Conversely assume that (M, •r) is commutative and let x ∈ M . Let
a ∈ M and set b := x • a = Lx(a). Then

x = b/a = b •r a = a •r b = a/b,

so Lx(Lx(a)) = Lx(b) = x • b = (a/b) • b = a.

Remark 2.4. Consider a re�ection quasigroup (X, •). By de�nition a#b =
b/a = b •r a = a •r b, where the last equality follows from part (ii) of the
preceding lemma. Thus the operation # is commutative, equal to •r, and
idempotent. It follows from Lemma 2.2(i) that (X, #) is also a quasigroup
and from part (ii) that (X, #r) = (X, •).

Lemma 2.5. In a quasigroup (M, •), the following are equivalent.

(i) R−1
x•y = R−1

x •R−1
y , where (R−1

x •R−1
y )(z) = R−1

x (z) •R−1
y (z).

(ii) If a • c = b • d := m, then (a • b) • (c • d) = m.
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Proof. (i) implies (ii): Suppose that a • c = b • d := m. Then

a = R−1
c (a • c) = R−1

c (m), b = R−1
d (b • d) = R−1

d (m).

This implies that

a • b = R−1
c (m) •R−1

d (m) = (R−1
c •R−1

d )(m) = R−1
c•d(m)

and thus m = Rc•d(a • b) = (a • b) • (c • d).
(ii) implies (i): Let x, y and m be given. Let a = R−1

x (m), b = R−1
y (m).

Then m = a • x = b • y and then by (ii)

(a • b) • (x • y) = m.

This implies that

R−1
x•y(m) = a • b = R−1

x (m) •R−1
y (m) = (R−1

x •R−1
y )(m).

Since m was arbitrary, we have

R−1
x•y = R−1

x •R−1
y . �

Remark 2.6. A binary operation • is called medial if for all a, b, c, d,

(a • b) • (c • d) = (a • c) • (b • d).

Observe that if the operation • is idempotent and a•c = m = b•d, then the
right hand side of the preceding equation is also m, so the left must be also.
Hence condition (ii) of Lemma 2.5, in the setting of idempotent operations,
can be viewed as weakened mediality condition, called limited mediality. If
one interprets geometric means as midpoints of some sort, then the notion
of limited mediality has an intuitive geometric interpretation.

Proposition 2.7. In a quasigroup (M, •), the following are equivalent.

(i) (M, •) is left distributive, i.e., x • (y • z) = (x • y) • (x • z) for all

x, y, z.

(ii) In (M, •r), for all x, y, R−1
x•ry = R−1

x •r R−1
y .

(iii) For all a, b, c, d ∈ M , if a•r c = b•r d := m, then (a•r b)•r (c•r d) = m.

If, in addition, M is left symmetric, then (i)− (iii) are equivalent to
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(iv) For all x, y, z ∈ M , (x • y) • z = x • (y • (x • z)).

Proof. The equivalence of (ii) and (iii) follows from the preceding lemma.
Suppose that (i) holds. We have w = R−1

x (z) in (M, •r) if and only if
w •r x = z if and only if w = z • x. Thus R−1

x (z) = z • x. From Lemma
2.2(iv), we have

R−1
x (z) •r R−1

y (z) = (z • x) •r (z • y) = z • (x •r y) = R−1
x•ry(z).

Thus (ii) holds.
Conversely assume that (ii) holds. Then from the previous paragraph

and the hypothesis

z • (x •r y) = R−1
x•ry(z) = R−1

x (z) •r R−1
y (z) = (z • x) •r (z • y).

By Lemma 2.2(iv) (M, •) is left distributive.
The equivalence of (i) and (iv) follows by replacing z by x • z in each

and reducing it to the other by means of left symmetry.

We gather together the preceding results into a characterization of the
mean operation # on a re�ection quasigroup. The theorem follows directly
from our preceding results.

Theorem 2.8. Let (X, •) be a re�ection quasigroup. Then (X, #) equals

(X, •r) and is a quasigroup satisfying for all a, b, c, d ∈ X:

(1) (idempotency) a#a = a;

(2) (commutivity) a#b = b#a;

(3) (limited mediality) If a#c = m = b#d, then (a#b)#(c#d) = m.

Furthermore, (X, #r) = (X, •).
Conversely, if (X, #) is an idempotent, commutative, limited medial

quasigroup, then (X, •) := (X, #r) is a re�ection quasigroup and (X, •r) =
(X, #).

The preceding theorem is quite satisfactory. It provides a characteriza-
tion of the geometric mean operations arising from re�ection quasigroups.

Remark 2.9. It was shown in [2] that the geometric mean operation of
positive de�nite matrices satis�es the limited medial property (2.6). We
have extended this result to any re�ection quasigroup.
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3. Dyadic powers, weighted means,

and dyadic symmetric sets

Let (X, •, ε) be a pointed re�ection quasigroup. If X is, in particular, a
uniquely 2-divisible twisted subgroup, • is the core operation, and ε is the
identity, then by the de�ning equation of ε#x,

x = (ε#x) • ε = (ε#x)ε−1(ε#x) = (ε#x)2

and thus ε#x = x1/2. We thus have for all x, y ∈ X,

ε#x = x1/2 x • ε = x2 ε • x = x−1,

where the last two equalities follow directly from the de�nition x • y =
xy−1x. We take these equalities to be de�ning equalities for the powers
x1/2, x2 and x−1 in the case of general pointed re�ection quasigroups.

Note that the squaring map is right translation Rε, the inversion map
is Lε = Sε and the square root map is left translation L#

ε by ε in (X, #).
Since

ε • (x • ε) = (ε • x) • (ε • ε) = (ε • x) • ε,

it follows that Rε and Sε commute. Since (ε#x) • ε = x (by the de�ning

equation), it follows that L#
ε given by L#

ε (x) = ε#x = x1/2 is the inverse

for the bijection Rε. Thus the square root map L#
ε commutes with Rε, and

also commutes with Sε since Rε does. The mutual commutativity of these
three operators allows us unambiguously to de�ne the dyadic powers xm/2n

by an appropriate composition of these three maps. We note that in the
uniquely 2-divisible setting, these powers agree with those computed with
respect to the group operation.

Example 3.1. The additive group D of dyadic rationals (rational numbers
with denominator a power of 2) is a uniquely 2-divisible subgroup of itself,
and hence provides an important special example of a (pointed) re�ection
quasigroup. The re�ection operation is given by r • s = 2r − s and the
corresponding geometric mean operation is the standard midpoint operation
r#s = (r + s)/2. The re�ection quasigroup D is called the dyadic line and
a •-homomorphism from D into a re�ection quasigroup X is called a dyadic

geodesic.

Theorem 3.2 (Corollary 5.8, [9]). Let (X, •) be a re�ection quasigroup

and let x, y ∈ X. Then there exists a unique •-homomorphism (and hence
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also #-homomorphism) γ from the dyadic line (D, •) to X such that γ(0) =
x and γ(1) = y. For the particular case that x = ε in a pointed re�ection

quasigroup, γ is given by γ(t) = yt, the tth-power for the dyadic t.

The proof of the theorem involves showing that t 7→ yt, as de�ned in
the preceding remarks, is the unique •-homomorphism sending 0 to ε and
1 to y, and then extending to the general case by pointing the re�ection
quasigroup at x.

Remark 3.3. A function β : D → D is a •-homomophism if and only if it is
of the form β(t) = at+ b for constants a, b ∈ D. Such maps clearly preserve
midpoints, hence are #-homomorphisms, and thus •-homomorphisms. The
uniqueness statement in the preceding theorem guarantees that these ex-
haust the •-homomorphisms. Thus a reparametrization of a dyadic geodesic
is again a dyadic geodesic if and only if the reparametrization is a�ne.

De�nition 3.4. We de�ne the t-weighted mean x#ty = γ(t), where γ is
the unique dyadic geodesic with γ(0) = x and γ(1) = y.

The weighted means allow the simultaneous extension of the re�ection
operation and the mean operation to an all-inclusive, comprehensive setting.
For a re�ection quasigroup, we de�ne

Φ : D×X ×X → X, Φ(t, x, y) := x#ty.

We call pairs (X, Φ) arising in this way dyadic symmetric sets. (In our
original paper [9] we de�ned dyadic symmetric sets to be what in this paper
are called �re�ection quasigroups,� but the terminology there was motivated
by the existence of the weighted means.)

Remark 3.5. Observe that (i) x = x#0y = Φ(0, x, y), (ii) y = x#1y =
Φ(1, x, y), (iii) y#x = x#y = x# 1

2
y = Φ(1/2, x, y), (iv) x • y = x#−1y =

Φ(−1, x, y), and (v) y • x = x#2y = Φ(2, x, y). (The �rst two follow from
the de�nition of the weighted mean and the others all follow from the fact
that t 7→ x#ty is a •- and #-homomophism from D.) Thus for a re�ection
quasigroup the map Φ incorporates and extends the re�ection and mean
operations into a dyadic �module.�

A triple (X, Φ, ε) is a pointed dyadic symmetric set if (X, Φ) is a dyadic
symmetric set and ε is some distinguished element of X. In this case we
have that Φ(t, ε, y) = ε#ty = yt.
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Example 3.6. For a vector space V over a �eld with 2 6= 0, we have

Φ : D× V × V → V, Φ(t, v, w) = (1− t)v + tw.

(Note that m/2n is de�ned in the �eld for all integers m,n.)

We list elementary properties of a dyadic symmetric set.

Proposition 3.7. Let (X, Φ, ε) be a pointed dyadic symmetric set. Then

the following properties hold for general elements of D and X:

(i) The map Φx,y : D → X de�ned by Φx,y(t) = x#ty is a •- and #-

homomorphism; in particular, this holds for t 7→ xt : D → X.

(ii) x#t(x#sy) = x#tsy; in particular, (xs)t = xst.

(iii) x#ty = y#1−tx.

(iv) x • (y#tz) = (x • y)#t(x • z); in particular, (y#tz)−1 = y−1#tz
−1.

(v) The maps x 7→ x#tb, t 6= 1, and y 7→ a#ty, t 6= 0, are bijective.

Proof. Part (i) follows from the de�nition of x#ty. Parts (ii)− (iv) follow
from Theorem 3.2 (the uniqueness of the de�ning homomorphism) and the
observation that a�ne maps f(t) = at+ b are •-homomorphisms on D, and
isomorphisms for a 6= 0. For (ii) the two sides of the equality, thought of as
maps of t, are •-homomorphisms (the right hand side involves composition
with f(t) = st) sending 0 to x and 1 to x#sy, and hence agree everywhere.
For part (iii) the homomorphisms again agree at 0 and 1. For (iv) the
left hand composition with Sx is a •-homomorphism as a consequence of
the distributive law and the two sides again agree at 0 and 1 (the second
part is the special case x = ε). For (v), we may assume, by changing the
pointing if necessary, that a = ε. Then a#ty = ε#ty = yt. Since we
saw at the beginning of the section that the map y 7→ yt, t 6= 0, is some
appropropriate composition of the bijections Sε, Lε and L#

ε , we conclude
that y 7→ yt = a#ty is bijective. The bijectivity of x 7→ x#tb then follows
from (iii).

Lemma 3.8. Let (X, •) be a re�ection quasigroup, and let m ∈ X. Then

Xm := {(a, b) ∈ X ×X|a#b = m} is a subquasigroup of the product quasi-

group X ×X.
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Proof. Let (a, b), (c, d) ∈ X, i.e., a#b = m = c#d. By the de�ning equation
of #, m • a = (a#b) • a = b and similarly m • c = d. Thus

m • (a • c) = (m • a) • (m • c) = b • d,

and hence m = (a • c)#(b • d). It follows from the limited medial property
that m = (a#c)#(b#d).

The preceding lemma allows us to derive an extended version of limited
mediality in the context of dyadic symmetric sets.

Corollary 3.9. Let (X, •) be a re�ection quasigroup and suppose that

a#c = m = b#d. Then (a#tb)#(c#td) = m for all t.

Proof. We note that (a, c), (b, d) ∈ Xm as de�ned in Lemma 3.8. Since
by that lemma Xm is a subquasigroup of X × X and hence a re�ection
quasigroup, there exists a dyadic geodesic t 7→ (a, c)#t(b, d) in Xm. Since
the operations are de�ned coordinatewise, this map is a •-homomorphism
in each coordinate, and by uniqueness of this homomorphism we must have
(a, c)#t(b, d) = (a#tb, c#td) for each t. Since the image is in Xm for each
m, the corollary follows.

Recall from Theorem 2.8 that the quasigroup (X, #) derived from a
re�ection quasigroup can be characterized as a quasigroup satisfying

(1) (idempotency) a#a = a;

(2) (commutativity) a#b = b#a;

(3) (limited mediality) If a#c = m = b#d, then (a#b)#(c#d) = m.

In addition we have seen that the map γ(t) = a#tb is a #-homomorphism
from D to X carrying 0 to a and 1 to b. Thus

(4) (a#rb)#(a#sb) = γ(r)#γ(s) = γ((r + s)/2) = a#(r+s)/2b.

We can obtain a version of Theorem 2.8 for dyadic symmetric sets by show-
ing that all of these properties generalize to the setting of weighted means
and that these generalized properties characterize dyadic symmetric sets.
The preceding properties are obtained from the corresponding ones in the
following theorem by specializing to the case t = 1/2.

Theorem 3.10. In a re�ection quasigroup (X, •) the weighted means satisfy

the following properties for all a, b, c, d ∈ X, all r, s, t ∈ D:
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(0) a#0b = a, a#1b = b;

(1) (idempotency) a#ta = a;

(2) (commutivity) a#tb = b#1−ta;

(3) (limited mediality) If a#c = m = b#d, then (a#tb)#(c#td) = m;

(4) (a�ne change of parameter) (a#rb)#t(a#sb) = a#(1−t)r+tsb;

(5) (exponential law) a#r(a#sb) = a#rsb;

(6) (cancellativity) a#tb = a#tc for t 6= 0 implies b = c.

Conversely if for Φ : D × X × X → X, a#tb := Φ(t, a, b) satis�es items

(0)− (6), then a#tb is the t-weighted mean for the re�ection quasigroup X
with operations a • b := a#−1b and a#b := a#1/2b.

Proof. Property (0) holds by Remark 3.5. The unique dyadic geodesic car-
rying 0 and 1 to a is the constant map to a, so (1) is satis�ed. Properties
(2) and (5) we have already established in Proposition 3.7 and property (3)
in Corollary 3.9. For (4) the left hand side is a •-homomorphism in t, and
the right hand side is also, since it is the composition of the dyadic geodesic
t 7→ a#tb with the a�ne map on D sending t to (1− t)r + ts (see Remark
3.3). Since they both sent 0 to a#rb and 1 to a#sb, by uniqueness they
agree. Property (6) follows from Proposition 3.7.

Conversely suppose that items (1) through (6) are satis�ed. We set
a#b := a#1/2b. As we remarked before the theorem, properties (1) − (3)
ensure that the corresponding properties of Theorem 2.8 are satis�ed by #.
Note that the equation a#x = b has solution x = a#2b since a#1/2(a#2b) =
a#1b = b by Properties (5) and (0). The uniqueness follows from (6),
and then by commutivity (X, #) is a quasigroup. Thus by Theorem 2.8,
(X, •) := (X, #r) is a re�ection quasigroup with # as its mean. From

(a#2b)#a = a#1/2(a#2b) = a#1b = b,

we conclude that b#ra = a#2b = b#−1a. Thus a•b = a#−1b. Finally it fol-
lows from Property (4) with t = 1/2 that t 7→ a#tb is a #-homomorphism,
and hence a •-homomorphism. Thus it is the unique dyadic geodesic car-
rying 0 to a and b to 1.
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4. Solving equations involving means

In this section we apply the machinery of weighted means that we have
developed to the solution of equations involving the mean operation. There
is no attempt here to develop a comprehensive theory�only to illustrate
how the need for such machinery arises and how it can be employed. In [12]
we have studied lower degree symmetric matrix equations in some detail.
There again the mean was a crucial tool, although it did not appear directly
in the equations in the setting.

Throughout this section we assume that (X, •) is a dyadic symmetric
set and a#b is the associated geometric mean operation on X. We also

assume that the weighted mean extends to all real numbers t and that the

properties of the weighted mean developed in the last section remain valid

in this context. Many of the typical examples (positive de�nite matrices,
positive elements of a C∗-algebra), indeed most topological examples, satisfy
this requirement. We have studied in some detail the topological setting for
the theory of dyadic symmetric sets and the extension of the weighted mean
to all real parameters in [11].

Theorem 4.1. The geometric mean x = a#b is the unique solution of

(x#a)#(x#b) = x. (4.2)

Proof. Let x = a#b. Then x = x#x = a#b = (x#a)#(x#b) by the limited
medial property and hence a#b is a solution of the equation (4.2).

Conversely, suppose that (x#a)#(x#b) = x. Then

x#b = x • (x#a) = (x • x)#(x • a) = x#(x • a)

and by the cancellative law b = x • a. Therefore, x = a#b.

Theorem 4.2. The weighted mean a# 4
3
b is the unique solution of the equa-

tion

x#(x#a) = b.

Furthermore, a# 2
3
b is the unique solution of the equation

(a#x)#b = x.

Proof. Applying the left translation a#4/3(·) to

b = x#(x#a) = x#1/2(x#1/2a) = x#1/4a = a#3/4x,
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we obtain a#4/3b = a#4/3(a#3/4x) = x. Conversely if x = a#4/3b, then

x#(x#a) = x#1/4a = a#3/4x = a#3/4(a#4/3b) = a#1b = b.

Next, consider the equation (a#x)#b = b#(a#x) = x. By the de�ning
property of the mean, this is equivalent to

b = x • (a#x) = (x • a)#(x • x) = (x • a)#x. (4.3)

Setting y = x • a, we have x = y#a and thus (4.3) becomes

y#(y#a) = b.

This has the unique solution y = a# 4
3
b and hence

x = y#a = (a#4/3b)#a = a#1/2(a#4/3b) = a# 2
3
b. �

Remark 4.3. We observe that for a re�ection quasigroup (X, •) possessing
general weighted means, the two quasigroups (X, •) and (X, #) are orthog-
onal in the sense that given a, b ∈ X, the simultaneous equations{

a = x • y

b = x#y

have a unique solution. Indeed since a = x • y is equivalent to x = a#y,
the second equation reduces to

b = y#(y#a).

By Theorem 4.2, we can uniquely solve the system by

y = a# 4
3
b, x = a#(a# 4

3
b) = a# 2

3
b.

Theorem 4.4. Let (X, •, ε) be a pointed dyadic symmetric set and a, b ∈ X.
Then the simultaneous equations{

c • a = b#x

c • x = a#x

have unique solutions in x and c, namely x = a#b and c = a#(b#(a#b)) =
(a#b)#(a#(a#b)) = a#3/8b. In particular, the geometric mean x = a#b
is the unique solution of

a#(b#x) = x#(x#a).
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Proof. The second equation is equivalent to

x = c • (c • x) = c • (a#x) = (c • a)#(c • x).

By the de�ning equation of the geometric mean, this is equivalent to

c • a = x • (c • x).

Combining this with the two equations of the theorem, we have

b#x = c • a = x • (c • x) = x • (a#x) = (x • a)#(x • x) = (x • a)#x.

From the cancellative property of the mean operation, b = x•a and therefore
x = a#b by the mean de�ning equation. The characterizations for c in order
that the original equations be satis�ed for x = a#b then follow directly from
those equations. By properties of the weighted mean in the previous section,
these both reduce to a#3/8b, and hence are equal. Their equality ensures
that a#b is a solution of the equation in the last assertion of the theorem.

Suppose that a#(b#x) = x#(x#a). Setting c = b#x and d = x#a, we
have from the limited medial property that

a#c = x#d = (a#x)#(c#d) = d#(c#d).

From the cancellation property, x = c#d = (x#b)#(x#a). By Theorem
4.1, x = a#b. Thus the solution in the last equation of the theorem is
unique.
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