
Quasigroups and Related Systems 13 (2005), 269 − 280A lass of quasigroups assoiated with aubi Pisot numberVedran Kr£adina and Vladimir VoleneAbstratIn this paper idempotent medial quasigroups satisfying the identity (ab · a)a = b arestudied. An example are the omplex numbers with multipliation de�ned by a · b =

(1 − q)a + qb, where q is a solution of q3
− 2q2 + q − 1 = 0. The positive root of thisubi equation an be viewed as a generalization of the golden ratio. It turns out thatthe quasigroups under onsideration have many similar properties to the so-alled goldensetion quasigroups. 1. IntrodutionLet q 6= 0, 1 be a omplex number and de�ne a binary operation on C by

a ·b = (1−q)a+qb. It is known that (C, ·) is an IM-quasigroup, i.e. satis�esthe laws of idempoteny and mediality :
a · a = a, (1)

ab · cd = ac · bd. (2)Immediate onsequenes are the identities known as elastiity, left and rightdistributivity :
ab · a = a · ba, (3)
a · bc = ab · ac, (4)
ab · c = ac · bc. (5)This quasigroup will be denoted by C(q). For some speial values of q, thequasigroup satis�es additional identities. If q = 1+

√
5

2
is the golden ratio,2000 Mathematis Subjet Classi�ation: 20N05.Keywords: IM-quasigroup, Pisot number.



270 V. Kr£adina and V. Volene
C(q) is a representative example of the golden setion or GS-quasigroups.GS-quasigroups were de�ned in [8℄ as idempotent quasigroups satisfyingthe (equivalent) identities a(ab · c) · c = b, a · (a · bc)c = b; see also [2℄,[3℄, [4℄ and [10℄. An alternative de�nition would be as IM-quasigroups withthe simpler identity a(ab · b) = b. In this paper we study IM-quasigroupssatisfying a similar identity:

(ab · a)a = b. (6)Representative examples are the quasigroups C(q) with q a root of q3 −
2q2+q−1 = 0. Denote by r1,2 =

3

√

25±
√

69

2
. The roots of this ubi equationare q1 = 1

3
(2 + r1 + r2) ≈ 1.755 and q2,3 = 1

6

(

4 − r1 − r2 ± i
√

3 (r1 − r2)
)

≈
0.123 ± 0.745 i. The number q1 is a Pisot number, i.e. an algebrai inte-ger greater than 1 whose algebrai onjugates q2,3 have absolute values lessthan 1. This number was onsidered in [5℄ as a generalization of the goldenratio and was alled the seond upper golden ratio. Therefore, we will referto IM-quasigroups satisfying the identity (6) as G2-quasigroups.In the ontext of [5℄, the seond lower golden ratio was the positive rootof p3 − p − 1 = 0. This is the smallest Pisot number p1 ≈ 1.325; note that
q1 = p2

1. For more details about Pisot numbers see [1℄.In this paper it is shown that G2-quasigroups have many properties sim-ilar to those of GS-quasigroups. For example, they allow a simple de�nitionof parallelograms using an expliit formula for the fourth vertex. In the lastsetion G2-quasigroups are haraterized in terms of Abelian groups with aertain type of automorphism.2. Basi properties and further identitiesThe following lemma will be used quite often.Lemma 2.1. In an IM-quasigroup, identity (6) is equivalent with either ofthe identities
(a · ba)a = b, (7)
a(ba · a) = b. (8)Proof. By using elastiity we get (ab · a)a

(3)
= (a · ba)a

(3)
= a(ba · a).Note that the equivalene holds even in a groupoid satisfying (1) and (2).Elastiity follows diretly from idempoteny and mediality, without using



G2-quasigroups 271solvability or anellativity. Consequently, the de�nition of G2-quasigroupsan be relaxed to the identities alone.Proposition 2.2. Any groupoid satisfying (1), (2) and (6) is neessarily aquasigroup.Proof. Given a and b de�ne x = ab · a and y = ba · a. From (6) and (8) wesee that xa = b and ay = b, i.e. the groupoid is left and right solvable. Nowassume ax1 = ax2 and y1a = y2a. Then, x1

(6)
= (ax1 ·a)a = (ax2 ·a)a

(6)
= x2and y1

(8)
= a(y1a · a) = a(y2a · a)

(8)
= y2, so the groupoid is left and rightanellative.The next proposition is similar to [8, Theorem 5℄.Proposition 2.3. In a G2-quasigroup, any two of the equalities ab = c,

ca = d and da = b imply the third.Proof. Denote the equalities by (i), (ii) and (iii), respetively. Then wehave:
(i), (ii) ⇒ (iii) : da

(ii)
= ca · a (i)

= (ab · a)a
(6)
= b,

(i), (iii) ⇒ (ii) : ca
(i)
= ab · a (iii)

= (a · da)a
(7)
= d,

(ii), (iii) ⇒ (i) : ab
(iii)
= a · da

(ii)
= a(ca · a)

(8)
= c.

a b

c

Figure 1: Identity (9) in the omplex plane.



272 V. Kr£adina and V. VoleneWe list some more identities valid in G2-quasigroups. They are a-ompanied by pitures illustrating the example of the omplex plane withmultipliation de�ned by a · b = (1 − q1)a + q1b.Proposition 2.4. The following identity holds in any G2-quasigroup:
(a · ab)c · a = ac · b. (9)Proof. (a · ab)c · a (5)

= (a · ab)a · ca (5)
= (a · ab)(ca) · (a · ca)

(3)
= (a · ab)(ca) ·

(ac · a)
(2)
= (ac)(ab · a) · (ac · a)

(4)
= ac · (ab · a)a

(6)
= ac · b.Proposition 2.5. The following identity holds in any G2-quasigroup:

(ab · a)c · b = (ab · c)a. (10)Proof. (ab·a)c·b (5)
= (ab·b)(ab)·cb (3)

= (ab)(b·ab)·cb (2)
= (ab·c)·(b·ab)b

(7)
= (ab·

c)a.
a b

c

Figure 2: Identity (10) in the omplex plane.Proposition 2.6. The following identity holds in any G2-quasigroup:
a · (ba · c)d = b(ac · d). (11)Proof. a · (ba · c)d (5)

= a · (ba ·d)(cd)
(4)
= (a · ba)(ad) · (a · cd)

(2)
= (a · ba)a · (ad ·

cd)
(7)
= b(ad · cd)

(5)
= b(ac · d).
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Figure 3: Identity (11) in the omplex plane.3. Parallelograms and other geometri oneptsThe points a, b, c, d of a medial quasigroup are said to form a parallelogram,denoted by Par(a, b, c, d), if there are points p, q suh that pa = qb and
pd = qc. In [7℄ it was proved that this relation satis�es the axioms ofparallelogram spae:1. For any three points a, b, c there is a unique point d suh that

Par(a, b, c, d).2. Par(a, b, c, d) implies Par(e, f, g, h), where (e, f, g, h) is any yli per-mutation of (a, b, c, d) or (d, c, b, a).3. Par(a, b, c, d) and Par(c, d, e, f) imply Par(a, b, f, e).In an IM-quasigroup, the unique point d of axiom 1 satis�es the followingequation [9, Theorem 12℄:
ab · dc = ac. (12)This equation an be expliitly solved for d in GS-quasigroups: d = a·b(ca·a)[8, Theorem 6℄. Here we prove a similar result for G2-quasigroups.Proposition 3.1. In a G2-quasigroup, for any a, b, c we have

Par(a, b, c, (ba · cb)b).Proof. By substituting d = (ba · cb)b into the equation (12) we get
ab · [(ba · cb)b · c] = ac.



274 V. Kr£adina and V. VoleneIt su�es to show that this is a valid identity in any G2-quasigroup:
ab · [(ba · cb)b · c] (5)

= ab · [(ba · c)(cb · c) · bc] (2)
= ab · [(ba · c)b · (cb · c)c] =

(6)
= ab · [(ba · c)b · b] (5)

= ab · [(ba · b) · cb]b (5)
= ab · [(ba · b)b · (cb · b)] =

(6)
= ab · a(cb · b) (4)

= a · b(cb · b) (8)
= ac.Now we have a diret de�nition of parallelograms in G2-quasigroups,without using auxiliary points:

Par(a, b, c, d) ⇐⇒ d = (ba · cb)b. (13)Using the parallelogram relation geometri onepts suh as midpoints, ve-tors and translations an be introdued. Of ourse, in the speial ase ofthe quasigroups C(q) the onepts agree with the usual de�nitions of planegeometry. Thus, geometri theorems an be proved by formal alulationsin a quasigroup. We give an example partiular to G2-quasigroups (Theo-rem 3.4).In any medial quasigroup, b is said to be the midpoint of the pair ofpoints a, c if Par(a, b, c, b) holds. This is denoted by M(a, b, c). The follow-ing proposition provides a haraterization in G2-quasigroups.Proposition 3.2. In a G2-quasigroup, M(a, b, c) is equivalent with
c = (ab · ba)a. (14)Proof. By axiom 2 of parallelogram spaes, M(a, b, c) is equivalent with

Par(b, a, b, c), and the laim follows from (13).To failitate notation, we introdue a new binary operation:
a ∗ b = (ba · a)b. (15)Starting from the quasigroup C(q1), this de�nes the binary operation in thequasigroup C(p1), i.e. a ∗ b = (1− p1)a + p1b. If ab = c (resp. a ∗ b = c), wesay that b divides the pair of points a, c in the seond upper (resp. lower)golden ratio. Here are some properties of the new binary operation. It isassumed that the original binary operation has higher priority than `∗', e.g.

a ∗ bc means a ∗ (bc).
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a bba ba.a a*bFigure 4: A new binary operation de�ned by (15).Lemma 3.3. The operation de�ned by (15) in a G2-quasigroup satis�es thefollowing identities:

a ∗ a = a, (16)
ab ∗ cd = (a ∗ c)(b ∗ d), (17)

(a ∗ (a ∗ b)c)c = b. (18)Proof. Idempoteny of the new operation (16) follows diretly from (1).Identity (17) follows by repeated appliation of mediality:
ab ∗ cd

(15)
= (cd · ab)(ab) · cd (2)

= (ca · db)(ab) · cd (2)
= (ca · a)(db · b) · cd =

(2)
= (ca · a)c · (db · b)d (15)

= (a ∗ c)(b ∗ d).Here is the proof of identity (18):
(a ∗ (a ∗ b)c)c

(15)
= {[(ba · a)b · c]a · a}[(ba · a)b · c] · c =
(2)
= {[(ba · a)b · c]a · (ba · a)b}(ac) · c =
(2)
= {[(ba · a)b · c](ba · a) · ab}(ac) · c =
(2)
= {[(ba · a)b · ba](ca) · ab}(ac) · c =
(5)
= {[(ba · b)(ab) · ba](ca) · ab}(ac) · c =
(2)
= {[(ba · b)b · (ab · a)](ca) · ab}(ac) · c =
(6)
= {[a(ab · a) · ca](ab) · ac}c (2)

= {[ac · (ab · a)a](ab) · ac}c =
(6)
= [(ac · b)(ab) · ac]c

(5)
= [(ac · a)b · ac]c

(2)
= [(ac · a)a · bc]c =

(6)
= (c · bc)c (7)

= b.Identity (17) ould be alled mutual mediality of the two binary oper-ations. By identifying two fators various kinds of distributivities follow:
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a ∗ bc = (a ∗ b)(a ∗ c), a(b ∗ c) = ab ∗ ac and their right ounterparts. Iden-tity (18) is an analogue of the de�ning identity for GS-quasigroups [8℄. Itis used in the proof of the following theorem.Theorem 3.4. In a G2-quasigroup, suppose that a ∗ e = c, a ∗ f = b and
cg = f . Then, bg = e. Furthermore, suppose M(a, h, g) and h ∗ g = d.Then, dh = a and M(b, d, c).Proof. The �rst laim follows by substitution:

bg = (a ∗ f)g = (a ∗ cg)g = (a ∗ (a ∗ e)g)g
(18)
= e.If, in addition, M(a, h, g) and h ∗ g = d hold, we get g = (ah · ha)a by (14),and the remaining laims follow by tedious, but straightforward omputa-tions:

dh = (h ∗ g)h = [h ∗ (ah · ha)a]h
(15)
= {[(ah · ha)a · h]h · (ah · ha)a}h =

(2)
= {[(ah · ha)a · h](ah · ha) · ha}h (2)

= {[(ah · ha)a · ah](h · ha) · ha}h =
(5)
= {[(ah · a)(ha · a) · ah](h · ha) · ha}h =
(2)
= {[(ah · a)a · (ha · a)h](h · ha) · ha}h =
(6)
= {[h · (ha · a)h](h · ha) · ha}h (4)

= {h[(ha · a)h · ha] · ha}h =
(5)
= {h[(ha · h)(ah) · ha] · ha}h (2)

= {h[(ha · h)h · (ah · a)] · ha}h =
(6)
= [h · a(ah · a)](ha) · h (4)

= h[a(ah · a) · a] · h (3)
= h[a · (ah · a)a] · h =

(6)
= (h · ah)h

(7)
= a.To prove M(b, d, c), we utilize (14) one more:

(bd · db)b
(4)
= (bd · d)(bd · b) · b (5)

= (bd · d)b · (bd · b)b (6)
= (bd · d)b · d =

= (bd · d)b · (h ∗ g)
(15)
= (bd · d)b · (gh · h)g =

(2)
= (bd · d)(gh · h) · bg (2)

= (bd · gh)(dh) · bg =
(2)
= (bg · dh)(dh) · bg = (ea · a)e

(15)
= a ∗ e = c.In the speial ase of the quasigroup C(q1), Theorem 3.4 proves:



G2-quasigroups 277Corollary 3.5. Let ABC be a triangle and suppose the points E and Fdivide AC and AB in the seond lower golden ratio, respetively. Then theevians BE and CF interset in a point G that divides them in the seondupper golden ratio. Furthermore, the midpoint H of AG divides the thirdevian AD in the seond upper golden ratio.
a

b cd

ef
g

h

Figure 5: Geometri interpretation of Theorem 3.4.The statement of Corollary 3.5 remains true if every instane of the se-ond lower/upper golden ratio is replaed by the orresponding n-th goldenratio (for a de�nition see [5℄). For n = 1, both the lower and the uppergolden ratio are equal to 1+
√

5

2
and we get the geometri interpretationof [8, Theorem 15℄.4. Representation theoremsLet (G, +) be an Abelian group with an automorphism ϕ suh that thefollowing equality holds for every x ∈ G:

ϕ3(x) − 2ϕ2(x) + ϕ(x) − x = 0. (19)De�ne another binary operation on G by the formula
a · b = a + ϕ(b − a). (20)



278 V. Kr£adina and V. VoleneIt is easy to verify that G is an IM-quasigroup with this new operation.Furthermore, the identity (6) follows from (19):
(ab · a)a = ab · a + ϕ(a) − ϕ(ab · a)

= ab + ϕ(a) − ϕ(ab) + ϕ(a) − ϕ(ab) − ϕ2(a) + ϕ2(ab)

= 2ϕ(a) − ϕ2(a) + ab − 2ϕ(ab) + ϕ2(ab)

= 2ϕ(a) − ϕ2(a) + (id − 2ϕ + ϕ2)(a + ϕ(b) − ϕ(a))

=
[

a − ϕ(a) + 2ϕ2(a) − ϕ3(a)
]

+
[

ϕ3(b) − 2ϕ2(b) + ϕ(b) − b
]

+ b

(19)
= b.Therefore, (G, ·) is a G2-quasigroup. The purpose of this setion is to showthat any G2-quasigroup an be obtained in this way.Theorem 4.1. Let (G, ·) be a G2-quasigroup. Choose an arbitrary o ∈ Gand de�ne a new binary operation on G by the formula

a + b = (oa · bo)o. (21)Then, (G, +) is an Abelian group with neutral element o.Proof. We �rst prove assoiativity, ommutativity and that o is the neutralelement:
(a + b) + c

(21)
= [o · (oa · bo)o](co) · o (5)

= [o · (oa · bo)o]o · (co · o) =
(7)
= (oa · bo)(co · o) (2)

= (ob · ao)(co · o) (2)
= (ob · co)(ao · o) =

(7)
= [o · (ob · co)o]o · (ao · o) (5)

= [o · (ob · co)o](ao) · o =
(2)
= (oa)[(ob · co)o · o] · o (21)

= a + (b + c),

a + b
(21)
= (oa · bo)o (2)

= (ob · ao)o
(21)
= b + a,

a + o
(21)
= (oa · oo)o (1)

= (oa · o)o (6)
= a.For any a ∈ G de�ne −a = o · (o · oa)a. This is the inverse of a:

a + (−a)
(21)
= {oa · [o · (o · oa)a]o}o (5)

= (oa · o){[o · (o · oa)a]o · o} =
(6)
= (oa · o) · (o · oa)a

(2)
= (oa)(o · oa) · oa (7)

= o.



G2-quasigroups 279Theorem 4.2. The mappings ϕ : x 7→ ox and ψ : x 7→ xo are automor-phisms of the group (G, +) of Theorem 4.1 and satisfy the identity
ψ(a) + ϕ(b) = ab. (22)Proof. The following shows that ϕ is an automorphism:

ϕ(a) + ϕ(b) = oa + ob
(21)
= (o · oa)(ob · o) · o (3)

= (o · oa)(o · bo) · o =
(4)
= o(oa · bo) · o (3)

= o · (oa · bo)o (21)
= o(a + b) = ϕ(a + b).The proof that ψ is an automorphism is similar. Finally,

ψ(a) + ϕ(b) = ao + ob
(21)
= (o · ao)(ob · o) · o (3)

= (o · ao)(o · bo) · o =
(4)
= o(ao · bo) · o (5)

= o(ab · o) · o (7)
= ab.Theorem 4.3. Equations (19) and (20) are satis�ed in the setting of theprevious two theorems.Proof. As a speial ase of (22), we see that ψ(x) + ϕ(x) = xx

(1)
= x, i.e.

ψ(x) = x − ϕ(x). Now equation (20) follows diretly from (22):
ab = ψ(a) + ϕ(b) = a − ϕ(a) + ϕ(b) = a + ϕ(b − a).To prove equation (19), note that

ψ2(x) = ψ(x − ϕ(x)) = x − ϕ(x) − ϕ(x − ϕ(x)) = ϕ2(x) − 2ϕ(x) + x.Therefore, ϕ3(x) − 2ϕ2(x) + ϕ(x) = ϕ(ψ2(x)) = o(xo · o) (8)
= x.This is a diret proof of a G2-version of Toyoda's representation theoremfor medial quasigroups [6℄.Referenes[1℄ M.-J. Bertin, A. Deomps-Guilloux, M. Grandet-Hugot, M. Pathi-aux-Delefosse and J.-P. Shreiber: Pisot and Salem numbers, BirkhäuserVerlag, Basel, 1992.
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