
Quasigroups and Related Systems 13 (2005), 245− 264

Computing in GF(pm) and in gff(nm) using Maple

Czesªaw Ko±cielny

Abstract

It is mentioned in [1] that the author intends to show how to construct strong ciphers
using SMG(pm)♦ . But in order to implement such cryptosystems, an e�ective tool for
computing in GF (pm) and SMG(pm), in the form of an appropriate hardware or soft-
ware, is needed. The operation of this hardware or software ought to be de�ned by
means of the detailed algorithms. Thus, to get ready the execution of his intention,
the author describes in the paper these algorithms, which are represented as routines,
written in the comprehensive Maple interpreter, intelligible both for mathematicians and
programmers as well. The routines may be used either immediately as elements of en-
crypting/decrypting procedures in the Maple programming environment or can be easily
translated into any compiled programming language (in this case encryption/decryption
can be performed at least 100 times faster than in the Maple environment). Aside from
that on the basis of the mentioned routines any VLSI chip as the encrypting/decrypting
hardware for SMG(pm)− and GF (pm)−based cryptosystems can be produced.

It has also been shown that SMG(pm) can be considered as a multiplicative system
of an algebraic structure with addition and multiplication operations, containing a large
class of systems, including GF (pm). The system is denoted as gff(nm), and multipli-
cation in it is performed modulo an arbitrary polynomial od degree m over the ring Zn.
That way gff(nm) is a generalization of Galois �eld, very well suited for applications in
cryptography. This system is named a generalized �nite �eld.

♦For all prime p, for any positive integer m ≥ 2 and for any polynomial f(x) of
degree m over GF (p) there exists an algebraic system SMG(pm) = 〈Gx, •〉, consisting of
the set Gx of all pm−1 non-zero polynomials of degree d over GF (p), 0 6 d 6 m−1, and
of an operation of multiplication of these polynomials modulo polynomial f(x). Such an
algebraic system is a generalization of the multiplicative group of GF (pm), therefore, it
is called the spurious multiplicative group of GF (pm).

2000 Mathematics Subject Classi�cation: 05B15, 20N05, 94B05
Keywords: Galois �elds, generalized �nite �elds, cryptography, Maple.

246 C. Ko±cielny

1. Introduction

It is not possible to do serious application research in the area of cryptology
without complete knowledge concerning several algebraic systems. Promi-
nent position on the list of such systems takes the Galois �eld. Thus, now
it will be reminded to the reader about the main properties of this system,
which are the most important for cryptographic practice.

Recall that for all prime p, for any positive integer m ≥ 1 and for any
irreducible polynomial

f(x) = xm +
m∑

i=1

fm−i x
m−i (1)

of degree m over GF (p) there exists an algebraic system called Galois �eld
and denoted as GF (pm)

GF (pm) = 〈F , +, ·〉, (2)

consisting of the set F of all pm polynomials of degree d over GF (p),
0 6 d 6 m − 1, and of operations of addition and multiplication of these
polynomials. Since GF (pm) is a �eld, it must satisfy the following set of
axioms, concerning any �eld:

F1 The system 〈F , +〉, is an abelian group.

F2 The system 〈F∗, ·〉, is an abelian group, F∗ = F \ {0}, 0 is an
additive identity element.

F3 ∀a, b, c ∈ F (a · (b + c) = a · b + a · c) ∧ ((a + b) · c = a · c + b · c).

In the case of GF (pm) the above axioms are ful�lled if addition and multi-
plication are performed according to the way shown beneath.

Let

a(x) =
m∑

i=1

am−i x
m−i, b(x) =

m∑
i=1

bm−i xm−i (3)

be two elements of F . Then their sum will be

a(x) + b(x) = c(x) =
m∑

i=1

cm−i xm−i , (4)

Computing in GF (pm) and in gff(nm) using Maple 247

where
ci ≡ ai + bi (mod p), i = 0, . . . , m− 1.

Similarly

a(x)− b(x) = d(x) =
m∑

i=1

dm−i xm−i , (5)

where
di ≡ ai − bi (mod p), i = 0, . . . , m− 1.

The multiplication is more complicated. To calculate the product of two
elements belonging to GF (pm) one must �rst compute

g(x) = a(x) · b(x) = g2 m−2 x2 m−2 + g2 m−3 x2 m−3 + · · ·+ g2 x2 + g1 x + g0

where

g0 ≡ a0 b0 (mod p),
g1 ≡ a1 b0 + a0 b1 (mod p),
g2 ≡ a2 b0 + a0 b2 + a1 b1 (mod p),
. .
g2 m−3 ≡ am−1 bm−2 + am−2 bm−1 (mod p),
g2 m−2 ≡ am−1 bm−1 (mod p).

Next, to obtain �nally the product h(x) of two GF (pm) elements (3), we
must represent g(x) as

g(x) = u(x) · f(x) + h(x) (6)

using addition and multiplication modulo p, wherefrom

a(x) · b(x) = h(x).

The operation of multiplication in GF (pm) may also be shortly written as

h(x) ≡ a(x) · b(x) (mod f(x)).

The multiplicative inverse a−1(x) of the element a(x) can be determined
by means of extended Euclidean algorithm for polynomials, which yields:

248 C. Ko±cielny

a(x) · a−1(x) + w(x) · f(x) = 1,

that is

a(x) · a−1(x) ≡ 1 (mod f(x)).

So

a(x)/b(x) = a(x) · b−1(x).

We see that we can compute in GF (pm) as in any �eld, performing ad-
dition, subtraction, multiplication, division and the operation of rising to
a power (by repeating the multiplication operation). The presented prin-
ciples of computing in Galois �eld may be suitably optimized or improved
to be well adapted for hardware or software implementation. It's worth
mentioning here that elements of GF (pm) can be represented not only as
polynomials or vectors over GF (p), but also as numbers. The latter case
is the most interesting for cryptography, therefore, we will continue the
problem of computing in Galois �eld, considering mainly the system

GF (pm) = 〈F, +, •〉, (7)

where F= {0, 1, . . . , pm − 1}. The system (7) is obtained from the system
(2) using the isomorphic mapping

σ : F → F, (8)

de�ned by the function

σ(a(x)) = a(p) = A ∈ F, (9)

converting a polynomial a(x) ∈ F to a number from the set F.

The mapping σ is an isomorphism, so the inverse mapping σ−1 exists
and is described by means of the following two-step algorithm:

Step 1:

convert a base 10 number A ∈ F to base p, namely,

A = am−1 · · · a1 a0, ai ∈ {0, 1, . . . , p− 1},

Computing in GF (pm) and in gff(nm) using Maple 249

Step 2:
σ−1(A) = a0 + a1 x + · · ·+ am−1 xm−1 ∈ F .

Thus,

∀ A, B ∈ F (A • B = σ(σ−1(A) · σ−1(B))) ∧
(A + B = σ(σ−1(A) + σ−1(B))). (10)

It is also said that the �eld GF (pm) is the �eld extension GF (p)[x]/(f(x))
where f(x) is an irreducible polynomial of degree m over the integers
modulo p.

According to the above description of operations in a Galois �eld we
may note that to e�ciently implement arithmetic in GF (pm) we need fast
routines doing addition of polynomials over GF (p) and their multiplication
over GF (p) modulo irreducible polynomial with coe�cients from GF (p).
Besides we also need a function which realizes the mappings σ and σ−1,
the function determining the extended Euclidean algorithm for polynomial,
etc. The system Maple provides such set of the routines which use a special
data representation. Knowledge of this representation is not required by the
user who wants to compute in Galois �elds only. In this case a user-friendly
module GF su�ces.

It is mentioned in the Maple manual that if the modulus p is su�ciently
small, operations in GF (pm) are performed directly by the hardware. The
largest prime for which computations are done in this way is the number
46327 (on a 32 bit machine).

2. Computing in GF (pm) using Maple GF package

The Maple library package GF, having the structure of a module, returns
routines and constants performing arithmetic in GF (pm). To begin com-
puting we must �rst create an instance F of a Galois �eld GF (pm) using,
for example, the statements

#arithmetic in GF(125) has been defined

> p := 5: m := 3:

f := 1 + 2*x + x^3:

F := GF(p, m, f):

250 C. Ko±cielny

The actual parameters p, m and f exactly correspond to the variables
p, m, and the polynomial f(x), used in Section 1. The parameter f is
optional - if it is absent in the invocation statement of the module GF, then
the system Maple selects itself the irreducible polynomial f(T). This case
will not be considered here, because we must control the behavior of the
�eld using the polynomial f.

Addition, subtraction, multiplication, raising to the k−th power, com-
putation of the multiplicative inverse and division in the Galois �eld are
performed by means of the following routines, respectively:

F:-`+`(x1, x2, ..., xn::zppoly) : n−ary addition
F:-`-`(x1, x2::zppoly) : unary or binary subtraction
F:-`*`(x1, x2, ..., xn::zppoly) : n−ary multiplication
F:-`^`(x::zppoly, k::integer) : raising x to the k−th power
F:-inverse(x::zppoly) : unary inversion
F:-`/`(x1, x2::zppoly) : unary or binary division

The operands x1, x2, ..., xn and x of the routines performing oper-
ations in GF (pm) must be of a special type, zppoly, relating to the Maple
modp1 function. The results returned by these routines are of the same type.
But we may need to operate using operands of type polynom, nonnegint
and zppoly and obtain these three type of results. To achieve the aim we
ought to use the following unary conversion routines:

routine name type of result

F:-input(x::integer) zppoly

F:-output(x::zppoly) integer

F:-ConvertIn(x::symbol, +, * or ^) zppoly

F:-ConvertOut(x::zppoly) symbol, +, * or ^

In practice, we usually use operands of type polynom or nonnegint and
we want to have the type of results of computations of the same type as
that of operands.

Example 1. Suppose that the statements in the beginning of the section
and the statements beneath have been executed. We will now compute in
GF (125). After de�ning three elements of GF (125) in the form of poly-
nomials ax, bx and cx, we can observe how to compute the multiplicative
inverse of ax, the additive inverse of bx, the sum of ax, bx and cx and the

Computing in GF (pm) and in gff(nm) using Maple 251

product of these three elements:

> ax := 4*x + 3: bx := 2*x + 1: cx := x^2 + 2:

> F:-ConvertOut(F:-inverse(

F:-ConvertIn(ax)));

4x2 + 2x + 4

> F:-ConvertOut(F:-`-`

F:-ConvertIn(bx)));

3x + 4

> F:-ConvertOut(F:-`+`(

F:-ConvertIn(ax),

F:-ConvertIn(bx),

F:-ConvertIn(cx)));

x2 + x + 1

> F:-ConvertOut(F:-`*`(

F:-ConvertIn(ax),

F:-ConvertIn(bx),

F:-ConvertIn(cx)));

3x2 + 2x + 1

Further let us de�ne three numbers A, B and C which will play the role
of elements form GF (125) by means of the appropriate statement and let's
execute the same operations as previously:

> A := 23: B := 11: C := 27:

> F:-output(F:-inverse(

F:-input(A)));

114

> F:-output(F:-`-`(

F:-input(B)));

19

252 C. Ko±cielny

> F:-output(F:-`+`(

F:-input(A),

F:-input(B),

F:-input(C)));

31

> F:-output(F:-`*`(

F:-input(A),

F:-input(B),

F:-input(C)));

86

It is also possible to calculate more complicated expressions over
GF (125) using directly the package GF. E.g. the expression

w =
A B + A C + B C

A + B + C

may be calculated as follows:

> w := F:-output(F:-`/`(

F:-`+`(

F:-`*`(F:-input(A), F:-input(B)),

F:-`*`(F:-input(A), F:-input(C)),

F:-`*`(F:-input(B), F:-input(C))),

F:-`+`(F:-input(A), F:-input(B), F:-input(C))));

w := 6

Programming of similar expressions can be considerably simpli�ed by
means of auxiliary procedures having short names. For example, if we use
routines named a_, m_ and d_ for performing addition, multiplication and
division in GF (pm), respectively, then the above expression will have the
form

> w := d_(a_(m_(A, B), m_(A, C), m_(B, C)), a_(A, B, C));

w := 6

which gives the same result but is much more simple. In Appendices A and
B it is shown how to construct such routines.

The module GF also exports the following functions:

Computing in GF (pm) and in gff(nm) using Maple 253

F:-trace(x::zppoly),

F:-norm(x::zppoly),

F:-order(x::zppoly),

F:-random(),

F:-isPrimitiveElement(x::zppoly),

F:-PrimitiveElement(),

F:-zero,

F:-one,

F:-variable,

F:-size,

F:-factors(),

F:-extension,

which allow to do an advanced research on applications of Galois �elds, but
cogitation about them is not within the scope of this paper.

3. A system gff(nm) - a generalized �nite �eld

It is possible to view Galois �eld from another angle. Now let n be an
arbitrary integer ≥ 2, m− an arbitrary integer ≥ 1, f(x)− an arbitrary
polynomial of degree m over the ring Zn. Next let

gff(nm) = 〈F[x], +, ·〉, (11)

be an algebraic system consisting of the set F[x] of all nm polynomials of
degree d , 0 6 d 6 m− 1, 0 included, over the ring Zn and of operations of
addition and multiplication of these polynomials. Operations on elements of
gff(nm) are performed nearly in the same manner as in GF (pm): addition
over the ring Zn, multiplication over the same ring modulo polynomial f(x).

It is easy to observe that gff(nm) ful�lls the following set of axioms:

f1 The system 〈F[x], +〉, is an abelian group.

f2 The system 〈F[x]∗, ·〉 is an abelian quasigroupoidz ,
F[x]∗ = F[x] \ {0}, where 0 is an additive identity element.

z The groupoid is an algebraic structure on a set with a binary operator. The only
restriction on the operator is closure. It is assumed here that for the quasigroupoid
a closure is not required.

254 C. Ko±cielny

f3 ∀a, b, c ∈ F[x] (a · (b + c) = a · b + a · c) ∧ ((a + b) · c = a · c + b · c).

The multiplicative system of gff(nm) is an abelian quasigroupoid
〈F[x]∗, ·〉, which is not closed under multiplication, since if n is not a prime,
then for some a, b ∈ F[x] the case a · b = 0 may occur. Several properties
of this quasigropupoid in [1] are described. For example, the elements of
this quasigroupoid belong to two disjoint sets - a set of invertible elements
and a set of non invertible elements. Any invertible element is a generator
of cyclic group, being a subgroup of the groupoid. Furthermore one should
know that if n is not a prime of if f(x) is not irreducible then the system
gff(nm) is not an integral domain. In this case the extended Euclidean al-
gorithm for polynomials fails and cannot be able to determine all invertible
elements in gff(nm).

After applying the mapping (8) to the system (11), taking into account
that now p = n, we obtain the system

gff(nm) = 〈F, +, •〉, (12)

the elements of which are numbers from the set {0, 1, . . . , nm − 1}. Such
system is the most useful for cryptography.
Example 2. To familiarize the reader with some properties of gff(nm)
having elements in the form of numbers the tables of operations in gff(42)
and in gff(16) have been calculated and shown in Table 1 and Table 2.
We may notice that multiplication on invertible elements is commutative
and associative, so, an appropriate fragment of the multiplication table is a
Latin square.

To the family of systems gff(nm) belongs a big class of algebraic struc-
tures. E.g. if n is a prime and f(x) is not irreducible then the multiplicative
structure of gff(pm) forms SMG(pm), if n is prime and f(x) irreducible,
gff(nm) becomes GF (pm). Thus, gff(nm), as a generalization of �nite
�elds, may be called a generalized �nite �eld. Although all properties
of gff(nm) are not yet known, this algebraic structure will certainly be
broadly applied, mainly in cryptography and coding.

4. A method of computing in gff(nm)

While de�ning Galois �eld using Maple package one invokes theGF module
with or without the third actual parameter, namely, without the irreducible
polynomial. If we use this parameter, the polynomial must be absolutely

Computing in GF (pm) and in gff(nm) using Maple 255

Table 1: Addition and multiplication tables in gff(42) with f(x) = x2+x+3
over Z[4]. The set of invertible elements: {1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15}

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12
2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13
3 3 0 1 2 7 4 5 6 11 8 9 10 15 12 13 14
4 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
5 5 6 7 4 9 10 11 8 13 14 15 12 1 2 3 0
6 6 7 4 5 10 11 8 9 14 15 12 13 2 3 0 1
7 7 4 5 6 11 8 9 10 15 12 13 14 3 0 1 2
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 10 11 8 13 14 15 12 1 2 3 0 5 6 7 4

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5
11 11 8 9 10 15 12 13 14 3 0 1 2 7 4 5 6
12 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 15 12 1 2 3 0 5 6 7 4 9 10 11 8
14 14 15 12 13 2 3 0 1 6 7 4 5 10 11 8 9
15 15 12 13 14 3 0 1 2 7 4 5 6 11 8 9 10

• 0 1 3 4 5 6 7 9 11 12 13 14 15 2 8 10
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 3 4 5 6 7 9 11 12 13 14 15 2 8 10
3 0 3 1 12 15 14 13 11 9 4 7 6 5 2 8 10
4 0 4 12 13 1 5 9 14 6 7 11 15 3 8 10 2
5 0 5 15 1 6 11 12 7 13 3 4 9 14 10 2 8
6 0 6 14 5 11 13 3 12 4 15 1 7 9 8 10 2
7 0 7 13 9 12 3 6 5 15 11 14 1 4 10 2 8
9 0 9 11 14 7 12 5 1 3 6 15 4 13 2 8 10

11 0 11 9 6 13 4 15 3 1 14 5 12 7 2 8 10
12 0 12 4 7 3 15 11 6 14 13 9 5 1 8 10 2
13 0 13 7 11 4 1 14 15 5 9 6 3 12 10 2 8
14 0 14 6 15 9 7 1 4 12 5 3 13 11 8 10 2
15 0 15 5 3 14 9 4 13 7 1 12 11 6 10 2 8
2 0 2 2 8 10 8 10 2 2 8 10 8 10 0 0 0
8 0 8 8 10 2 10 2 8 8 10 2 10 2 0 0 0

10 0 10 10 2 8 2 8 10 10 2 8 2 8 0 0 0

256 C. Ko±cielny

Table 2: Addition and multiplication tables in gff(16) with f(x) = x over
Z[16]. The set of invertible elements: {1, 3, 5, 7, 9, 11, 13, 15}

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
3 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2
4 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3
5 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4
6 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5
7 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6
8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7
9 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8

10 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9
11 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10
12 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11
13 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12
14 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13
15 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

• 0 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14
3 0 3 9 15 5 11 1 7 13 6 12 2 8 14 4 10
5 0 5 15 9 3 13 7 1 11 10 4 14 8 2 12 6
7 0 7 5 3 1 15 13 11 9 14 12 10 8 6 4 2
9 0 9 11 13 15 1 3 5 7 2 4 6 8 10 12 14

11 0 11 1 7 13 3 9 15 5 6 12 2 8 14 4 10
13 0 13 7 1 11 5 15 9 3 10 4 14 8 2 12 6
15 0 15 13 11 9 7 5 3 1 14 12 10 8 6 4 2
2 0 2 6 10 14 2 6 10 14 4 8 12 0 4 8 12
4 0 4 12 4 12 4 12 4 12 8 0 8 0 8 0 8
6 0 6 2 14 10 6 2 14 10 12 8 4 0 12 8 4
8 0 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0

10 0 10 14 2 6 10 14 2 6 4 8 12 0 4 8 12
12 0 12 4 12 4 12 4 12 4 8 0 8 0 8 0 8
14 0 14 10 6 2 14 10 6 2 12 8 4 0 12 8 4

Computing in GF (pm) and in gff(nm) using Maple 257

irreducible, otherwise the module does not work. This means that the GF
module is not suitable for computing in gff(nm), in which multiplication
of its elements is taken over Zn modulo an arbitrary polynomial f(x) with
coe�cients from Zn. In order to overcome this obstacle one should resort to
the source on the basis of which the GF module has been built: the modp1
function.

It may be said, without going into details, that operations in gff(nm)
are performed by means of the function modp1 according to the description
given in Section 1. Using the function modp1, the author worked out the
procedures for computing in gff(nm) and listed them in the Appendix C.
These are the routines: A_, S_, M_, D_, AI_, MI_ and P_, for performing
addition, subtraction, multiplication, division, calculation of additive and
multiplicative inverses and raising to a power in gff(nm), respectively. The
routine MI_ determines multiplicative inverses by means of extended Eu-
clidean algorithm for polynomials (and usually cannot �nd all invertible
elements). The routine MIp_, for computing multiplicative inverses using
the multiplication operation and raising to a power in rather small gff(nm),
is also listed.

To begin calculations one ought to invoke the procedure INIT_ with
determined actual parameters corresponding to formal parameters nn and
fx, representing the modulus n and the polynomial f(x), which de�nes
multiplication. The procedure turns the actual parameter corresponding to
the formal parameter nn into the global variable n and the actual param-
eter which replaces the formal parameter fx into the global variable ext.
These two global variables are indispensable for assuring the operation of
the remaining routines.

Here is an example of usage of these procedures:

Example 3. We will compute the expression

t =
A B + A C + B C

1
A − 1

B + 1
C

in gff(162) with f(x) = x2 +2x+11 for A = 13, B = 254, C = 50, . Then
we calculate the same expression in GF (28) when f(x) = x8+x4+x3+x+1.

> INIT_(16, x^2 + 2*x + 11): A := 13: B := 24: C := 1:

> t := D_(A_(M_(A, B), M_(A, C), M_(B, C)),

A_(A_(MI_(A), AI_(MI_(B))), MI_(C)));

258 C. Ko±cielny

t := 60

> INIT_(2, x^8 + x^4 + x^3 + x + 1):

> t := D_(A_(M_(A, B), M_(A, C), M_(B, C)),

A_(A_(MI_(A), AI_(MI_(B))), MI_(C)));

t := 184

The result of computations in gff(162) has been achieved since there ex-
ist there multiplicative inverses for A, B and C. The element 27 ∈ gff(162)
is not invertible, then if A = 27 the expression t will not be determined.

5. Conclusions

Apart from the discussion about using the GF Maple library package in
application research, in the paper a new algebraic structure denoted as
gff(nm) and named generalized �nite �eld, has been de�ned. For the
de�ned structure a complete set of routines for performing all possible op-
erations on elements of gff(nm) has been presented. Since gff(nm) is a
generalization of Galois �eld, the routines can be also used for doing arith-
metic in �nite �elds and may stand in for the Maple GF module in the case
of computing in huge �elds, when this module is useless (i.e. when it is not
able to factorize pm − 1). The time of execution of any operation depends
on the number of elements of gff(nm) and on the size of operands. If, for
example, nm ≈ 1030, 10300, 103000 and 1030000, x = dnm/2e, y = x, C(x, y)
denotes an arbitrary binary or n-ary operation on elements x, y ∈ gff(nm),
then the time of execution of one such operation equals approximately to 0.1
milliseconds, 0.3 milliseconds, 5 milliseconds and 250 milliseconds, respec-
tively (Maple 9.5 on PC with the processor Pentium 4). The GF module
gives similar results, but it has problems with computing in many �elds of
order higher than 10100.

The generalized �nite �eld, in comparison with Galois �eld, seems to
be messy and defective. This feature ensures that gff(nm) will be used
mainly for implementing transformations creating di�usion and confusion
during the encryption process, and in random number and cryptographic
key generators.

Computing in GF (pm) and in gff(nm) using Maple 259

Apology and acknowledgment

The author feels obliged to state that not all the errors which were observed
in his work [1] by Prof. A. D. Keedwell, have been corrected. It refers
to "reversible" instead of a proper term "invertible". This mistake was
unintentional and the author apologizes to Prof. A. D. Keedwell and to the
readers.

The author also very much appreciates kind advice of Prof. Keedwell,
concerning errors in the draft of this paper.

Appendix A

In this Appendix the routines ax_, sx_, mx_, dx_, px_, mix_ and aix_,
for doing addition, subtraction, multiplication, division, rising to a power,
computing additive and multiplicative inverses in GF (pm), respectively,
are listed. The procedures will work properly if we create an instance of
pm− element Galois �eld by means of the statement

> F := GF(p, m);

or

> F := GF(p, m, fx);

after previously de�ning actual parameters p, m, and, in the second state-
ment, fx, which denote a prime, a positive integer and an irreducible poly-
nomial of degree m over GF (p). The routine ax_ is n−ary, the routines
aix_ and mix_ are unary and the remaining ones binary. The parameters
of these routines are elements of GF (pm) in the form of polynomials and
the routines return also the results as polynomials.

> ax_ := proc()

local i, s, ss;

s := proc(a, b::polynom)

F:-ConvertOut(

F:-`+`(F:-ConvertIn(b), F:-ConvertIn(a)))

end proc;

ss := 0;

for i to nargs do ss := s(ss, args[i]) end do;

ss

260 C. Ko±cielny

end proc:

> sx_ := proc(a, b::polynom)

F:-ConvertOut(F:-`-`(F:-ConvertIn(b), F:-ConvertIn(a)))

end proc:

> mx_ := proc(a, b::polynom)

F:-ConvertOut(F:-`*`(F:-ConvertIn(b), F:-ConvertIn(a)))

end proc:

> dx_ := proc(a, b::polynom)

F:-ConvertOut(F:-`/`(F:-ConvertIn(b), F:-ConvertIn(a)))

end proc:

> mix_ := proc(a::polynom)

F:-ConvertOut(F:-inverse(F:-ConvertIn(a)))

end proc:

> aix_ := proc(a::polynom)

F:-ConvertOut(F:-`-`(F:-ConvertIn(a)))

end proc:

> px_ := proc(a::polynom, k::integer)

F:-ConvertOut(F:-`^`(F:-ConvertIn(a), k))

end proc:

Appendix B

Similarly as in Appendix A, the routines a_, s_, m_, p_, d_, ai_ and mi_,
for doing addition, subtraction, multiplication, division, rising to a power,
computing additive and multiplicative inverses in GF (pm), respectively, are
listed here. The procedures will work properly if we create an instance of
pm− element Galois �eld by means of the statement

> F := GF(p, m);

or

> F := GF(p, m, fx);

Computing in GF (pm) and in gff(nm) using Maple 261

after previously de�ning actual parameters p, m, and, in the second state-
ment, fx, which denote a prime, a positive integer and an irreducible poly-
nomial of degree m over GF (p). The routine a_ is n−ary, the routines
ai_ and mi_ unary and the remaining ones binary. The parameters of
these routines are elements of GF (pm) in the form of numbers from the set
{0, 1, . . . , pm − 1} and they return also the results as numbers from this
set.

> a_ := proc()

local i, s, ss;

s := proc(a, b::nonnegint)

F:-output(

F:-`+`(F:-input(a), F:-input(b)))

end proc;

ss := 0;

for i to nargs do ss := s(ss, args[i]) end do;

ss

end proc:

> s_ := proc(a, b::nonnegint)

F:-output(F:-`-`(F:-input(a), F:-input(b)))

end proc:

> m_ := proc(a, b::nonnegint)

F:-output(F:-`*`(F:-input(a), F:-input(b)))

end proc:

> d_ := proc(a, b::nonnegint)

F:-output(F:-`/`(F:-input(a), F:-input(b)))

end proc:

> ai_ := proc(a::nonnegint)

F:-output(F:-`-`(F:-input(a)))

end proc:

> mi_ := proc(a::nonnegint)

F:-output(F:-inverse(F:-input(a)))

end proc:

262 C. Ko±cielny

> p_ := proc(a::nonnegint, k::integer)

F:-output(F:-`^`(F:-input(a), k))

end proc:

Appendix C

In this Appendix the routines INIT_, A_, S_, M_, P_, D_, AI_, MI_ and MIp_,
for initializing computations and for doing addition, subtraction, multipli-
cation, division, rising to a power, computing additive and multiplicative
inverses in the generalized �nite �eld gff(nm), respectively, are listed. The
procedures doing computations in gff(nm) will work properly if we �rst
execute the statement

> INIT_(nn, fx);

after previously de�ning actual parameters corresponding to the formal pa-
rameters pn, and fx, which denote an arbitrary positive integer and an
arbitrary polynomial of degree m over the ring Zn, respectively. This rou-
tine calculates the global variables n = nn and ext, which represent the
modulus n and the polynomial fx as the polynomial of type zppoly, respec-
tively. These global variables are necessary for all routines doing arithmetic
in gff(nm). The routine A_ is n−ary, the routines AI_, MI_ and MIp_ are
unary and the remaining ones binary. The parameters of these routines are
elements of gff(nm) in the form of numbers from the set {0, 1, . . . , nm−1}
and they also return the results as numbers from this set.

> INIT_ := proc(nn::posint, fx::polynom)

global ext, n;

ext := modp1(ConvertIn(modp(fx, nn), x), nn);

n := nn

end proc:

> A_ := proc()

local a, i, t;

a := [args];

for i to nargs do a[i] :=

modp1(ConvertIn(convert(a[i], base, n), x), n)

end do;

t := modp1(ConvertOut(modp1('Add'(op(a)), n), u), n);

subs(u = n, t)

Computing in GF (pm) and in gff(nm) using Maple 263

end proc:

> S_ := proc(a, b::nonnegint)

local t, u;

t := modp1(ConvertOut(modp1('Subtract'(

modp1(ConvertIn(convert(a, base, n), x), n),

modp1(ConvertIn(convert(b, base, n), x), n)), n)

, u), n);

subs(u = n, t)

end proc:

> M_ := proc(a, b::nonnegint)

local t, u;

t := modp1(ConvertOut(modp1(Rem('Multiply'(

modp1(ConvertIn(convert(a, base, n), x), n),

modp1(ConvertIn(convert(b, base, n), x), n)), ext), n)

, u), n);

subs(u = n, t)

end proc:

> P_ := proc(a::nonnegint, k::integer)

local t, u;

t := modp1(ConvertOut(modp1('Powmod'(

modp1(ConvertIn(convert(a, base, n), x), n), k, ext),

n), u), n);

subs(u = n, t)

end proc:

> D_ := proc(a::nonnegint, b::posint)

M_(a, MI_(b))

end proc:

> AI_ := proc(a::nonnegint)

local t, u;

t := modp1(ConvertOut(modp1(

'Subtract'(modp1(ConvertIn(convert(a, base, n), x),

n)), n), u), n);

subs(u = n, t)

264 C. Ko±cielny

end proc:

> MI_ := proc(a::posint)

local s, t;

modp1('Gcdex'(modp1(ConvertIn(convert(a, base, n), x), n),

ext, 's'), n);

t := modp1(ConvertOut(s, x), n);

subs(x = n, t)

end proc:

> MIp_ := proc(a)

local mi, k, mk, nn;

mi := a;

k := 0;

nn := n^degree(modp1(ConvertOut(ext, x), n));

if a = 1 then return 1 end if;

while mi > 1 do

k := k + 1;

mi := M_(mi, a);

if mi = 0 or k > nn - 1 then

error "inverse does not exist"

end if

end do;

P_(a, k)

end proc:

References

[1] C. Ko±cielny: Spurious multiplicative group of GF (pm): a new tool for

cryptography, Quasigroups and Related Systems 12 (2004), 61− 73.

[2] R. Lidl, H. Niederreiter: Introduction to �nite �elds and their applications,
Cambridge University Press (1986).

[3] A. J. Menezes, Editor: Applications of �nite �elds, Kluwer Academic
Publishers, (1993).

Received June 16, 2005

Academy of Management in Legnica, Faculty of Computer Science
ul. Reymonta 21, 59-220 Legnica, Poland
e-mail: c.koscielny@wsm.edu.pl

